Spin injection into a metal from a topological insulator

Abstract

We study a junction of a topological insulator with a thin two-dimensional nonmagnetic or partially polarized ferromagnetic metallic film deposited on a three-dimensional insulator. We show, by deriving generic boundary conditions applicable to electrons traversing the junction, that there is a finite spin-current injection into the film whose magnitude can be controlled by tuning a voltage V applied across the junction. For ferromagnetic films, the direction of the component of the spin current along the film magnetization can also be tuned by tuning the barrier potential V-0 at the junction. We point out the role of the chiral spin-momentum locking of the Dirac electrons behind this phenomenon and suggest experiments to test our theory.

Publication
PHYSICAL REVIEW B 86, (2012).
Date
Links