Rheology of active-particle suspensions

Abstract

We study the interplay of activity, order, and flow through a set of coarse-grained equations governing the hydrodynamic velocity, concentration, and stress fields in a suspension of active, energy-dissipating particles. We make several predictions for the rheology of such systems, which can be tested on bacterial suspensions, cell extracts with motors and filaments, or artificial machines in a fluid. The phenomena of cytoplasmic streaming, elastotaxis, and active mechanosensing find natural explanations within our model.

Publication
PHYSICAL REVIEW LETTERS 92, (2004).
Date
Links