

PHYSICS 320: Problem Set No. 4
 Due: Fri. Oct. 29 2010

1. For the Hubbard model

$$H = \sum_{i \neq j, \sigma} -t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \text{h.c.} + U \sum_i n_{i\uparrow} n_{i\downarrow},$$

show that the operators for total number of up spin electrons M_\uparrow and downspin electrons M_\downarrow commute with the Hamiltonian and hence so does the operator for total number of electrons M . The energy eigenvalues $\{E(m_\uparrow, m_\downarrow)\}$, can be labelled by $m_\sigma = M_\sigma/N$, where N is the number of lattice sites.

- (a) Now, assume that the lattice is bipartite and the hopping $t_{ij} = t$ for nearest neighbours and zero otherwise. Show that

$$\{E(1 - m_\uparrow, 1 - m_\downarrow)\} = \{E(m_\uparrow, m_\downarrow)\}$$

up to an additive constant. What is this constant? (*Hint: Make a suitable transformation of the electron creation and annihilation operators $c_{i\sigma}^\dagger$ and $c_{i\sigma}$ which maps the Hamiltonian back onto itself up to an additive constant but with densities $1 - m_\uparrow$ and $1 - m_\downarrow$ instead of m_\uparrow and m_\downarrow .*)

- (b) Now consider two ways of modifying the Hamiltonian of part (a): 1) By adding a term $-t' \sum_{\langle il \rangle, \sigma} c_{i\sigma}^\dagger c_{j\sigma} + \text{h.c.}$ and 2) by adding a term $V \sum_{\langle il \rangle} n_i n_l$, where $n_i = \sum_\sigma n_{i\sigma}$. In both cases $\langle il \rangle$ denote next nearest neighbours. In which of these cases is

$$\{E(1 - m_\uparrow, 1 - m_\downarrow)\} = \{E(m_\uparrow, m_\downarrow)\}$$

up to an additive constant?

2. A two-site Hubbard model has the Hamiltonian

$$H = -t \sum_\sigma c_{1\sigma}^\dagger c_{2\sigma} + c_{2\sigma}^\dagger c_{1\sigma} + U [n_{1\uparrow} n_{1\downarrow} + n_{2\uparrow} n_{2\downarrow}].$$

If there are two electrons and $|t|/U \ll 1$, show that second order perturbation theory generates a Hamiltonian of the form $H = J \mathbf{S}_1 \cdot \mathbf{S}_2$ between the spins of the electrons on the two sites. What is the value of J and its sign?

The above simple two site problem demonstrates how one obtains a spin 1/2 Heisenberg model from a half-filled Hubbard model in the limit of small $|t|/U$ using perturbation theory. Let us now consider a spin 1/2 Heisenberg model

$$H_H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j,$$

on a $2N \times 2N$ square lattice with periodic boundary conditions. Here $\langle ij \rangle$ are nearest neighbours. Assume J can have either sign.

- (a) Show that the ferromagnetic state with all spins pointing in the same direction is an eigenstate of H_H . In particular show that when $J < 0$, this state is the ground state.
 (b) Now, show that the Neel state is not an eigenstate of H_H .

Despite the fact the Neel state is not an eigenstate of H_H for any finite N , it can be shown (rather non-trivially) that it is indeed the ground state as $N \rightarrow \infty$ for $J > 0$.

3. As was shown in class a consideration on ferromagnetism in the Hubbard model within Hartree-Fock theory yields the following energy for the ground state.

$$E(m) = \sum_{\mathbf{k}} [(\epsilon_{\mathbf{k}} - e_{\mathbf{k}} U m) n_{\mathbf{k}}^+ + (\epsilon_{\mathbf{k}} + e_{\mathbf{k}} U m) n_{\mathbf{k}}^-] + U N m^2,$$

where $\epsilon_{\mathbf{k}}$ is the band dispersion, m , the ferromagnetic order parameter ($|m| < 1$), $n_{\mathbf{k}}^\pm$ the occupancies of states in the two magnetic subbands and $e_{\mathbf{k}} = \pm 1$. Further

$$m = \frac{1}{2N} \sum_{\mathbf{k}} e_{\mathbf{k}} (n_{\mathbf{k}}^+ - n_{\mathbf{k}}^-).$$

- (a) Assume the band dispersion is free electron like $\epsilon_{\mathbf{k}} = \hbar^2|\mathbf{k}|^2/2m$ and that \mathbf{k} takes on continuous values from $+\infty$ to $-\infty$. Show that at $T = 0$ for certain values of the density of electrons n , the paramagnetic state has the lowest energy while for others a ferromagnetic state with $m \neq 0$ has the lowest energy. Show that the transition from paramagnet to ferromagnet as a function of n is continuous. At what value of n does it occur?
- (b) Is the ferromagnetic state the ground state for high or low densities? Is this similar or different compared to the case of the jellium model you encountered in problem # 4 of problem set #2? Why?
4. Now, consider the case of spin density wave (SDW) order in the Hubbard model in Hartree-Fock theory. The energy of the ground state as a function of the SDW order parameter $m_{\mathbf{q}}$ is

$$E(m_{\mathbf{q}}) = \sum_{\mathbf{k}} [E_{\mathbf{k}}^+ n_k^+ + E_{\mathbf{k}}^- n_k^-] + UNm_{\mathbf{q}}^2,$$

where

$$E_{\mathbf{k}}^{\pm} = \frac{\epsilon_{\mathbf{k}} + \epsilon_{\mathbf{k}+\mathbf{q}}}{2} \pm e_{\mathbf{k}} \sqrt{\left(\frac{\epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}+\mathbf{q}}}{2}\right)^2 + U^2 m_{\mathbf{q}}^2}.$$

Here $\epsilon_{\mathbf{k}}$ is the band dispersion and $e_{\mathbf{k}} = \pm 1$. Determine the condition for a continuous transition to take place from a paramagnetic ($m_{\mathbf{q}} = 0$) state to a SDW state. Do this by expanding the energy to second order in the order parameter and determining when the relevant coefficient changes sign.

5. Consider the Hubbard model

$$H = U \sum_i n_{i\uparrow} n_{i\downarrow}$$

without the hopping term and $U > 0$.

- (a) At $T = 0$, the chemical potential is the energy required to add a particle to the system, i.e. $\mu = E(N + 1) - E(N)$, where $E(N)$ is the energy of the system with N particles. Calculate the chemical potential as a function of the filling n .
- (b) Now consider $T \neq 0$. Once again calculate μ as a function of n . It will help to use the partition function in the grand canonical ensemble. Show that you obtain the same value of μ as part (a) in the limit $T \rightarrow 0$.