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PHYSICS 320: Problem Set No. 4
Due: Fri. Oct. 29 2010

1. For the Hubbard model

H =
∑

i 6=j,σ

−tijc
†
iσcjσ + h.c. + U

∑

i

ni↑ni↓,

show that the operators for total number of up spin electrons M↑ and downspin electrons M↓ commute with
the Hamiltonian and hence so does the operator for total number of electrons M . The energy eigenvalues
{E (m↑,m↓)}, can be labelled by mσ = Mσ/N , where N is the number of lattice sites.

(a) Now, assume that the lattice is bipartite and the hopping tij = t for nearest neighbours and zero otherwise.
Show that

{E (1−m↑, 1−m↓)} = {E (m↑, m↓)}
up to an additive constant. What is this constant? (Hint: Make a suitable transformation of the electron
creation and annihilation operators c†iσ and ciσ which maps the Hamiltonian back onto itself up to an
additive constant but with densities 1−m↑ and 1−m↓ instead of m↑ and m↓.)

(b) Now consider two ways of modifying the Hamltonian of part (a): 1) By adding a term−t′
∑
〈il〉,σ c†iσcjσ+h.c.

and 2) by adding a term V
∑
〈il〉 ninl, where ni =

∑
σ niσ. In both cases 〈il〉 denote next nearest neighbours.

In which of these cases is

{E (1−m↑, 1−m↓)} = {E (m↑, m↓)}
up to an additive constant?

2. A two-site Hubbard model has the Hamiltonian

H = −t
∑

σ

c†1σc2σ + c†2σc1σ + U [n1↑n1↓ + n2↑n2↓] .

If there are two electrons and |t|/U ¿ 1, show that second order perturbation theory generates a Hamiltonian
of the form H = JS1 · S2 between the spins of the electrons on the two sites. What is the value of J and its
sign?
The above simple two site problem demonstrates how one obtains a spin 1/2 Heisenberg model from a half-filled
Hubbard model in the limit of small |t|/U using perturbation theory. Let us now consider a spin 1/2 Heisenberg
model

HH = J
∑

〈ij〉
Si · Sj ,

on a 2N × 2N square lattice with periodic boundary conditions. Here 〈ij〉 are nearest neighbours. Assume J
can have either sign.

(a) Show that the ferromagnetic state with all spins pointing in the same direction is an eigenstate of HH . In
particular show that when J < 0, this state is the ground state.

(b) Now, show that the Neel state is not an eignestate of HH .

Despite the fact the Neel state is not an eigenstate of HH for any finite N , it can be shown (rather non-trivially)
that it is indeed the ground state as N →∞ for J > 0.

3. As was shown in class a consideration on ferromagnetism in the Hubbard model within Hartree-Fock theory
yields the following energy for the ground state.

E(m) =
∑

k

[
(εk − ekUm) n+

k + (εk + ekUm)n−k
]
+ UNm2,

where εk is the band dispersion, m, the ferromagnetic order parameter (|m| < 1), n±k the occupancies of states
in the two magnetic subbands and ek = ±1. Further

m =
1

2N

∑

k

ek

(
n+
k − n−k

)
.
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(a) Assume the band dispersion is free electron like εk = ~2|k|2/2m and that k takes on continuous values
from +∞ to −∞. Show that at T = 0 for certain values of the density of electrons n, the paramagnetic
state has the lowest energy while for others a ferromagnetic state with m 6= 0 has the lowest energy. Show
that the transition from paramagnet to ferromagnet as a function of n is continuous. At what value of n
does it occur?

(b) Is the ferromagnetic state the ground state for high or low densities? Is this similar or different compared
to the case of the jellium model you encountered in problem # 4 of problem set #2? Why?

4. Now, consider the case of spin density wave (SDW) order in the Hubbard model in Hartree-Fock theory. The
energy of the ground state as a function of the SDW order parameter mq is

E(mq) =
∑

k

[
E+

k n+
k + E−

k n−k
]
+ UNm2

q,

where

E±
k =

εk + εk+q

2
± ek

√(
εk − εk+q

2

)2

+ U2m2
q.

Here εk is the band dispersion and ek = ±1. Determine the condition for a continuous transition to take place
from a paramagnetic (mq = 0) state to a SDW state. Do this by expanding the energy to second order in the
order parameter and determining when the relevant coefficient changes sign.

5. Consider the Hubbard model

H = U
∑

i

ni↑ni↓

without the hopping term and U > 0.

(a) At T = 0, the chemical potential is the energy required to add a particle to the system, i.e. µ = E(N +
1)−E(N), where E(N) is the energy of the system with N particles. Calculate the chemical potential as
a function of the filling n.

(b) Now consider T 6= 0. Once again calculate µ as a function of n. It will help to use the partition function
in the grand canonical ensemble. Show that you obtain the same value of µ as part (a) in the limit T → 0.


