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PHYSICS 320: Problem Set No. 3
Due: Wed. Oct. 4 2010

1. In class, we calculated the imaginary part of the dielectric constant ε2(q, ω) at T = 0 and marked out the
region in the (ω, |q|) plane where it is not equal to zero. We also argued that this region is where particle-hole
excitations exist. In this problem you will see this directly.

(a) Consider a free Fermi gas with Fermi momentum ~kF at T = 0. A particle-hole excitation is created when
an electron from inside the Fermi sea is excited to a state outside it such that the momentum of the system
has changed by an amount ~q and its energy by ~ω. Indicate the region in the (ω, |q|) plane where such
particle-hole excitations exist.

(b) How is the case of one dimension different from two and three dimensions?

2. Now consider a system at T = 0, where free electrons exist in two bands with dispersions

E±(k) = ±
(
~2|k|2
2m

+
∆
2

)
,

The lower band is completely occupied and the electrons in the upper band have Fermi momentum ~kF . Consider
particle-hole excitations of the sort where electrons from the lower band are excited to the upper band and the
energy and momentum of the system change by ~ω and ~q. Indicate the region in the (ω, |q|) plane, where such
excitations exist. What role does dimensionality play here?

3. Consider the Kubo formula for the complex permittivity derived in class,

ε̃(q, ω) = ε1(q, ω) + iε2(q, ω) = 1− 4πe2

q2

∑

k

f0(εk+q)− f0(εk)
εk+q − εk + ω + iδ

,

with δ → 0+. Here f0(εk) is the occupancy of the single particle state of a free fermion with momentum k and
energy εk.

(a) Obtain an expression for ε2(q, ω)] in the limit ω À (|q|, kF |q|/m). You can leave the expression as
a sum/integral over momenta. This is the Landau damping term responsible for damping out plasma
oscillations at large wave number. You can see that only particles with specific values of k contribute to
the damping of a particular (q, ωq) plasma mode. What is the velocity of these particles in the direction
of q?

(b) It was shown in class that plasma oscillations were longitudinal oscillations of the electric field. Transverse
oscillations give rise to regular EM waves. What is the condition on ε1(q, ω) for EM waves to propagate?
What is the dispersion relation for these waves at small q?

(c) At large values of q, longitudinal plasma oscillations undergo Landau damping. What happens to transverse
EM waves? (Hint: Use the condition on the velocity of the particles contributing to Landau damping from
part (a).)

4. In class we saw that upon applying a magnetic field B the Fermi surface of a Fermi liquid deformed and the up
(down) spin quasiparticles formed separate Fermi surfaces with Fermi momentum kF↑ (kF↓) such that

ε̃kF↑↑ +
1
2
gµBB = ε̃kF↓↓ −

1
2
gµBB,

where g is the bare g factor of the electron. We can define an effective g factor (denoted by g∗) of the quasiparticle
such that

εkF↑↑ +
1
2
g∗µBB = εkF↓↓ −

1
2
g∗µBB.

To be consistent, the energy to flip the spin of a quasiparticle from ↓ to ↑ in the field B without changing
anything else must also equal g∗µBB.

(a) Show that for non-interacting electrons, g∗ = g, the bare g factor.
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(b) Calculate g∗ for a Fermi liquid in terms of g and F
(s,a)
l .

(c) Is it possible to flip the spin a quasiparticle from ↑ to ↓?

5. Calculate the Landau parameters εk,σ, fs(k,k′) and fa(k,k′) in the Hartree-Fock approximation for the jellium
model.

(a) To calculate εk,σ, consider the state of the system with a filled Fermi sphere of Fermi momentum ~kF and
a single electron with momentum ~k and spin σ.

(b) Now consider the case where you have a filled Fermi sphere and two electrons with momentum and spin
values (~k, σ) and (~k′, σ′). fs(k,k′) and fa(k,k′) are given by the interaction energy between the two
electrons. Show using the equation for the effective mass in Fermi liquid theory that it goes to zero at the
Fermi surface.


