PHYSICS 320: Problem Set No. 3
Due: Wed. Oct. 4 2010

1. In class, we calculated the imaginary part of the dielectric constant es(q,w) at 7' = 0 and marked out the
region in the (w,|q|) plane where it is not equal to zero. We also argued that this region is where particle-hole
excitations exist. In this problem you will see this directly.

(a) Consider a free Fermi gas with Fermi momentum hkp at T = 0. A particle-hole excitation is created when
an electron from inside the Fermi sea is excited to a state outside it such that the momentum of the system
has changed by an amount fiq and its energy by Aw. Indicate the region in the (w,|q|) plane where such
particle-hole excitations exist.

(b) How is the case of one dimension different from two and three dimensions?

2. Now consider a system at T' = 0, where free electrons exist in two bands with dispersions
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The lower band is completely occupied and the electrons in the upper band have Fermi momentum hkpr. Consider
particle-hole excitations of the sort where electrons from the lower band are excited to the upper band and the
energy and momentum of the system change by hw and fiq. Indicate the region in the (w, |q|) plane, where such
excitations exist. What role does dimensionality play here?

3. Consider the Kubo formula for the complex permittivity derived in class,
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with § — 0+4. Here fy(ex) is the occupancy of the single particle state of a free fermion with momentum k and
energy €.

(a) Obtain an expression for ez(q,w)] in the limit w > (|q|,kr|q|/m). You can leave the expression as
a sum/integral over momenta. This is the Landau damping term responsible for damping out plasma
oscillations at large wave number. You can see that only particles with specific values of k contribute to
the damping of a particular (q,wq) plasma mode. What is the velocity of these particles in the direction
of q7

(b) It was shown in class that plasma oscillations were longitudinal oscillations of the electric field. Transverse
oscillations give rise to regular EM waves. What is the condition on ¢;(q,w) for EM waves to propagate?
What is the dispersion relation for these waves at small q7

(¢) At large values of q, longitudinal plasma oscillations undergo Landau damping. What happens to transverse
EM waves? (Hint: Use the condition on the velocity of the particles contributing to Landau damping from

part (a).)

4. In class we saw that upon applying a magnetic field B the Fermi surface of a Fermi liquid deformed and the up
(down) spin quasiparticles formed separate Fermi surfaces with Fermi momentum kg; (kp|) such that
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where g is the bare g factor of the electron. We can define an effective g factor (denoted by g*) of the quasiparticle
such that
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To be consistent, the energy to flip the spin of a quasiparticle from | to T in the field B without changing
anything else must also equal g*upB.

(a) Show that for non-interacting electrons, g* = g, the bare g factor.



(b) Calculate g* for a Fermi liquid in terms of g and Fl(s’“).

(c) Is it possible to flip the spin a quasiparticle from T to |?

5. Calculate the Landau parameters ek ., f°(k,k’) and f*(k,k’) in the Hartree-Fock approximation for the jellium
model.

(a) To calculate e ., consider the state of the system with a filled Fermi sphere of Fermi momentum #kp and
a single electron with momentum hk and spin o.

(b) Now consider the case where you have a filled Fermi sphere and two electrons with momentum and spin
values (hk, o) and (hk',c’). f5(k,k’) and f*(k,k’) are given by the interaction energy between the two
electrons. Show using the equation for the effective mass in Fermi liquid theory that it goes to zero at the
Fermi surface.



