PHYSICS 320: Problem Set No. 1
Due: Wed. Sep. 1 2010

1. Consider a state

Uy (1, R) = D dn(R)1hn (r, R),

n

of the system of ions and electrons. Here ¢, (r, R) is an eigenfunction of just the electronic part of the Hamil-
tonian. R = {R;} and r = {r;} are shorthand for the entire set of ionic and electronic coordinates respectively.
The partial expectation value of the ionic kinetic energy in this state obtained by integrating only over the
electronic coordinates has the following three terms:

TOR) = Y l@;n(R) > Vi %AR)] ,

T(R) =~ > [wn,,(R) / dr g, (r, R) Z {VR,mn(R) - Vi, tn(r, R)}] :
and
T (R) =~ > [o:::w(men(R) / dr g (r,R) ;vawn(nm] :

T )(R) and T )(R) are the terms that are neglected in the Born-Oppenheimer approximation. Suppose
Yn(r,R) = 1, (r — R) is real.

(a) Show that sum of the diagonal terms in }_  in the expression for T,(,?)(R) (i.e. terms with n = p) is zero.

(b) Show that the sum of the diagonal terms in ) in the expression for T )(R) gives a contribution that
is proportional to me/M times the electronic kinetic energy. m. is the mass of an electron.

The sum of the off-diagonal terms in T (R) and T (R) can also be argued to be smaller than T )(R) by
powers of m./M but the arguments are more involved.

2. In this problem you will calculate the matrix element of a total single particle operator between bosonic oc-
cupation number states. As was shown in class, an occupation number state of N bosons has the following
form

HM el 1/2
In1,na, ... na) = (zle'z> Z [p1)1lp2)2 - [PN)N-
' P({p;})

Here, M is the total number of single particle states and n; is the occupancy of the i*" single particle state.
Ip;); is the single particle state the j*® particle is in. Thus, the possible range of values of p; is 1 to M. P({p,})
is the set of all possible p;’s such that n; of them are equal to 1, ny equal to 2 and so on. A total single particle
operator can be written as

N
FU=% 1,
=1

where f; acts only on the [*! particle and all the f;’s act in the same way on the corresponding particles (since
we are describing a system of identical particles).

(a) Show that (B|F(1M|A) = 0 for two occupation number states |A) and |B) if |B) is not the same state as
|A) or cannot be obtained from it by moving one boson from single particle state k to state i.



(b) Now, consider |A) and |B) where the latter is obtained from the former by moving a boson from single
particle state k to i. The two states are thus of the form

|A) = |na,na,.omi =1,y oma) = Nao Y [ [p2)a- - o),
Pa({p;})

IB) = |n1,n2, .. oniyoonk = Loonar) = Neo Y [p1 ph)a- - D) N,
Py ({p}})

where N4 and Np are the appropriate normalization factors and P4 and Ppg, the appropriate sets of allowed
values of the p;’s and p’’s.

Consider a particular f; and

(B|fi|lA) = NaNp > il 20051 il n PN fi(lpor [p2)2 - lpo)i-- - lpw)w) -
Pa({p;}).Ps({p}})

How many terms in this sum are non-zero? What are their values?

(c) Using the above information and the actual values of N4 and Np, calculate (B|f;]A). What is thus, the
value of (B|F(M|A)?

(d) Repeat the above procedure to calculate the diagonal matrix element (A|F(1|A).

3. Consider the Fock space of a single particle level of bosons.

(a) Show that the annihilation operator a in this space can have any complex eigenvalue . What is the
corresponding normalized eigenstate |«) as a linear superposition of the occupation number states? What
can be said about the eigenvalues and eigenstates of the creation operator af?

(b) What is the probability Py(a) of having N particles in the state |«)? What is the average number of
particles in such a state and the uncertainty in the number of particles?

(c) Calculate (o|a) for two states ) and |o’). Why is this quantity not zero?
(d) Show that

where I is the identity operator of the Fock space and the integration is over the entire complex plane.

4. The Hamiltonian

H = Z —t (CICiJrl + hC) + €;Nn;,
%

describes fermions on a 1D lattice where n; and €; are respectively the number of fermions and on-site energy
at site . Assume a lattice spacing a and periodic boundary conditions.

(a) Assume €; = €, Vi. What is the band structure? What is the first Brillouin zone? For which value(s) of
the density of fermions is the system an insulator?

(b) Now, assume that ¢; = €; for odd i and ¢; = e for even i. Calculate the band structure. What is the first
Brillouin zone? In this case, for which value(s) of the density of fermions is the system an insulator?

(c) Set €1 = €5 in (b) and show that you recover the results of (a).
5. Consider the ground state of a non-interacting 3D gas of electrons with Fermi momentum kp.
(a) The density operator
() = W)W, (r),
where s is the spin and Wl(r) and W,(r) are the field operators defined in class. Calculate the follow-

ing quantities: (n1(r)), (ny(r)), (ny(r)nqi(x")), (ny(r)n;(r')) and (n;(r)n,(r’')), where (...) denotes the
expectation value in the ground state. Why is (nq(r)n (r’)) different from (ng(r)ns(r’)) and (n|(r)n;(r'))?



(b)

With Coulomb interactions, the exact ground state is no longer like that of a non-interacting gas of
electrons. Qualitatively, how do you expect the quantity (n;(r)n;(r’)) to be different in this case from
what you calculated for the non-interacting system?

6. Suppose there is a system of bosons such that two or more of them cannot occupy a single particle state. Such
bosons are called hardcore bosons. Let the the creation and annihilation operators for hardcore bosons in single
particle levels labelled by 7 be {b;r} and {b;} respectively. The bosonic nature of these particles is reflected by

the fact that [b;,b;] = [b;, bT.] = 0, when i # j. They are also like fermions in the sense that no single particle

J

state can have two or more of them.

(a)
(b)

Show that the complete algebra of {b;r} and {b;} is different from that of regular bosons or fermions by
calculating [bi,b;-r], {b;,b;} and {bi,b}}.
Now, consider the following 1D tight binding model on a lattice with N sites.

Hb = —tz b;rbiJrl + h.c.

and

Hy = —th;-rciH + h.c.,
i

where {b!} and {b;} are hardcore bosonic operators and {c/} and {¢;} are fermionic operators. Assume
periodic boundary conditions for both cases. Numerically diagonalize both Hamiltonians to obtain their
energy spectra for N = 4 and number of particles M = 1,2 and 3. It might help to use occupation numbers
states for each site as basis states to write down the Hamiltonians as matrices that can then be diagonalized
numerically.

Even though for both hardcore bosons and fermions every site can have at most one particle, you should
find a difference in the energy spectra for the two for some value(s) of M (which one(s)?). This is due to
the difference in the algebra of creation and annihilation operators between the two cases.

Show that if we define new operators
&G =(-1)%"b,

{¢'} and {&;} obey the algebra for fermions, when ¢; = 0 and ¢; = dj<i b;r-bj for all other i.

Now, use the mapping from (c) to convert Hj into a Hamiltonian in terms of the operators {&| } and {¢;}
for a general N. Show that the spectrum of eigenvalues of Hj is the same or different compared to Hjy
depending on whether the number of particles M is odd or even. (Hint: Show that the boundary conditions
on the fermions defined by {é:} and {¢;} are periodic or antiperiodic depending on whether M is odd or
even.)

Calculate the energy spectrum analytically for Hy and Hy for general N and M (you may leave the energy
in terms of single particle energy eigenvalues and the occupation numbers of single particle levels). Show
that the expressions that you get agree with the numerical answers for N = 4 and M = 1,2 and 3 from

(b).



