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PHYSICS 320: Problem Set No. 1
Due: Wed. Sep. 1 2010

1. Consider a state

Ψm(r,R) =
∑

n

φmn(R)ψn(r,R),

of the system of ions and electrons. Here ψn(r,R) is an eigenfunction of just the electronic part of the Hamil-
tonian. R = {Ri} and r = {rj} are shorthand for the entire set of ionic and electronic coordinates respectively.
The partial expectation value of the ionic kinetic energy in this state obtained by integrating only over the
electronic coordinates has the following three terms:

T (1)
m (R) = − ~2
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n
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and

T (3)
m (R) = − ~2

2M
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n,p

[
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∑
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T
(2)
m (R) and T

(3)
m (R) are the terms that are neglected in the Born-Oppenheimer approximation. Suppose

ψn(r,R) ≈ ψn(r−R) is real.

(a) Show that sum of the diagonal terms in
∑

n,p in the expression for T
(2)
m (R) (i.e. terms with n = p) is zero.

(b) Show that the sum of the diagonal terms in
∑

n,p in the expression for T
(3)
m (R) gives a contribution that

is proportional to me/M times the electronic kinetic energy. me is the mass of an electron.

The sum of the off-diagonal terms in T
(2)
m (R) and T

(3)
m (R) can also be argued to be smaller than T

(1)
m (R) by

powers of me/M but the arguments are more involved.

2. In this problem you will calculate the matrix element of a total single particle operator between bosonic oc-
cupation number states. As was shown in class, an occupation number state of N bosons has the following
form

|n1, n2, . . . , nM 〉 =

(∏M
i=1 ni!
N !

)1/2 ∑

P ({pj})
|p1〉1|p2〉2 . . . |pN 〉N .

Here, M is the total number of single particle states and ni is the occupancy of the ith single particle state.
|pj〉j is the single particle state the jth particle is in. Thus, the possible range of values of pj is 1 to M . P ({pj})
is the set of all possible pj ’s such that n1 of them are equal to 1, n2 equal to 2 and so on. A total single particle
operator can be written as

F (1) =
N∑

l=1

fl,

where fl acts only on the lth particle and all the fl’s act in the same way on the corresponding particles (since
we are describing a system of identical particles).

(a) Show that 〈B|F (1)|A〉 = 0 for two occupation number states |A〉 and |B〉 if |B〉 is not the same state as
|A〉 or cannot be obtained from it by moving one boson from single particle state k to state i.
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(b) Now, consider |A〉 and |B〉 where the latter is obtained from the former by moving a boson from single
particle state k to i. The two states are thus of the form

|A〉 = |n1, n2, . . . , ni − 1, . . . , nk, . . . , nM 〉 = NA

∑

PA({pj})
|p1〉1 |p2〉2 . . . |pN 〉N ,

|B〉 = |n1, n2, . . . , ni, . . . , nk − 1, . . . , nM 〉 = NB

∑

PB({p′j})
|p′1〉1 |p′2〉2 . . . |p′N 〉N ,

where NA and NB are the appropriate normalization factors and PA and PB , the appropriate sets of allowed
values of the pj ’s and p′j ’s.
Consider a particular fl and

〈B|fl|A〉 = NANB

∑

PA({pj}),PB({p′j})
(1〈p′1| 2〈p′2| . . . l〈p′l| . . . N 〈p′N |) fl (|p1〉1 |p2〉2 . . . |pl〉l . . . |pN 〉N ) .

How many terms in this sum are non-zero? What are their values?

(c) Using the above information and the actual values of NA and NB , calculate 〈B|fl|A〉. What is thus, the
value of 〈B|F (1)|A〉?

(d) Repeat the above procedure to calculate the diagonal matrix element 〈A|F (1)|A〉.
3. Consider the Fock space of a single particle level of bosons.

(a) Show that the annihilation operator a in this space can have any complex eigenvalue α. What is the
corresponding normalized eigenstate |α〉 as a linear superposition of the occupation number states? What
can be said about the eigenvalues and eigenstates of the creation operator a†?

(b) What is the probability PN (α) of having N particles in the state |α〉? What is the average number of
particles in such a state and the uncertainty in the number of particles?

(c) Calculate 〈α′|α〉 for two states |α〉 and |α′〉. Why is this quantity not zero?

(d) Show that
∫

dαdα∗

2πi
e−|α|

2 |α〉〈α| = I,

where I is the identity operator of the Fock space and the integration is over the entire complex plane.

4. The Hamiltonian

H =
∑

i

−t
(
c†i ci+1 + h.c.

)
+ εini,

describes fermions on a 1D lattice where ni and εi are respectively the number of fermions and on-site energy
at site i. Assume a lattice spacing a and periodic boundary conditions.

(a) Assume εi = ε, ∀i. What is the band structure? What is the first Brillouin zone? For which value(s) of
the density of fermions is the system an insulator?

(b) Now, assume that εi = ε1 for odd i and εi = ε2 for even i. Calculate the band structure. What is the first
Brillouin zone? In this case, for which value(s) of the density of fermions is the system an insulator?

(c) Set ε1 = ε2 in (b) and show that you recover the results of (a).

5. Consider the ground state of a non-interacting 3D gas of electrons with Fermi momentum kF .

(a) The density operator

ns(r) = Ψ†s(r)Ψs(r),

where s is the spin and Ψ†s(r) and Ψs(r) are the field operators defined in class. Calculate the follow-
ing quantities: 〈n↑(r)〉, 〈n↓(r)〉, 〈n↑(r)n↑(r′)〉, 〈n↓(r)n↓(r′)〉 and 〈n↑(r)n↓(r′)〉, where 〈. . . 〉 denotes the
expectation value in the ground state. Why is 〈n↑(r)n↓(r′)〉 different from 〈n↑(r)n↑(r′)〉 and 〈n↓(r)n↓(r′)〉?



3

(b) With Coulomb interactions, the exact ground state is no longer like that of a non-interacting gas of
electrons. Qualitatively, how do you expect the quantity 〈n↑(r)n↓(r′)〉 to be different in this case from
what you calculated for the non-interacting system?

6. Suppose there is a system of bosons such that two or more of them cannot occupy a single particle state. Such
bosons are called hardcore bosons. Let the the creation and annihilation operators for hardcore bosons in single
particle levels labelled by i be {b†i} and {bi} respectively. The bosonic nature of these particles is reflected by
the fact that [bi, bj ] = [bi, b

†
j ] = 0, when i 6= j. They are also like fermions in the sense that no single particle

state can have two or more of them.

(a) Show that the complete algebra of {b†i} and {bi} is different from that of regular bosons or fermions by
calculating [bi, b

†
i ], {bi, bj} and {bi, b

†
j}.

(b) Now, consider the following 1D tight binding model on a lattice with N sites.

Hb = −t
∑

i

b†i bi+1 + h.c.

and

Hf = −t
∑

i

c†i ci+1 + h.c.,

where {b†i} and {bi} are hardcore bosonic operators and {c†i} and {ci} are fermionic operators. Assume
periodic boundary conditions for both cases. Numerically diagonalize both Hamiltonians to obtain their
energy spectra for N = 4 and number of particles M = 1, 2 and 3. It might help to use occupation numbers
states for each site as basis states to write down the Hamiltonians as matrices that can then be diagonalized
numerically.
Even though for both hardcore bosons and fermions every site can have at most one particle, you should
find a difference in the energy spectra for the two for some value(s) of M (which one(s)?). This is due to
the difference in the algebra of creation and annihilation operators between the two cases.

(c) Show that if we define new operators

c̃i = (−1)φi bi,

{c̃†i} and {c̃i} obey the algebra for fermions, when φ1 = 0 and φi =
∑

j<i b†jbj for all other i.

(d) Now, use the mapping from (c) to convert Hb into a Hamiltonian in terms of the operators {c̃†i} and {c̃i}
for a general N . Show that the spectrum of eigenvalues of Hb is the same or different compared to Hf

depending on whether the number of particles M is odd or even. (Hint: Show that the boundary conditions
on the fermions defined by {c̃†i} and {c̃i} are periodic or antiperiodic depending on whether M is odd or
even.)

(e) Calculate the energy spectrum analytically for Hb and Hf for general N and M (you may leave the energy
in terms of single particle energy eigenvalues and the occupation numbers of single particle levels). Show
that the expressions that you get agree with the numerical answers for N = 4 and M = 1, 2 and 3 from
(b).


