

PHYSICS 320: Assignment No. 6
 Due: November 4, 2009

1. Consider a three-dimensional system of electrons with a uniform neutralizing background of positive charge (Jellium model) at $T = 0$. Assume the electrons to be non-interacting in parts (a)-(d).
 - (a) Express the total kinetic energy of the system as a function of the (uniform) density ρ of the electrons.
 - (b) Let $V(\mathbf{r})$ be an external potential that makes the system inhomogeneous. Using the Thomas-Fermi approximation, relate the local density $\rho(\mathbf{r})$ to $V(\mathbf{r})$.
 - (c) Use the result of part (a) to express the total kinetic energy as a functional of the (now inhomogeneous) local density $\rho(\mathbf{r})$. Assume that $V(\mathbf{r})$, and therefore, the local density $\rho(\mathbf{r})$ are slowly varying in space, so that gradient corrections can be neglected. Also, express the total potential energy in terms of $V(\mathbf{r})$ and $\rho(\mathbf{r})$.
 - (d) Minimize the total energy with respect to $\rho(\mathbf{r})$ to obtain a relation between $\rho(\mathbf{r})$ and $V(\mathbf{r})$. Show that the result is the same as that obtained in part (b).
 - (e) Generalize both the density functional and the Thomas-Fermi treatments to include the exchange energy. Use the Hartree-Fock form for the exchange energy. Compare the two resulting relations between $\rho(\mathbf{r})$ and $V(\mathbf{r})$.
2. Obtain the equations that determine the phonon frequencies and polarization vectors for a two-dimensional harmonically coupled crystal with one atom per unit cell of a triangular lattice. Evaluate the expressions you find for two special symmetry directions in the Brillouin zone. Assume only nearest-neighbor interactions of the form

$$V(\vec{R}_1, \vec{R}_2) = \frac{1}{2}K(|\vec{R}_1 - \vec{R}_2| - a)^2,$$

where a is the lattice spacing.

3. According to Lindemann's law of melting, a solid melts if the root-mean-square displacement, $\sqrt{\langle |\mathbf{u}|^2 \rangle}$, of an atom from its equilibrium position exceeds a fraction, $1/\alpha$, of the interatomic distance ($\alpha \approx 10$). Consider a simple cubic lattice of spacing a . Each site is occupied by an atom of mass M . Assuming a Debye spectrum for the phonons, calculate the melting temperature of the solid in terms of the Debye temperature Θ_D , M , a , α and fundamental constants. You may assume that the values of M and a are such that the melting temperature $T_M \gg \Theta_D$.

4. The Debye-Waller factor appearing in the theory of the scattering of neutrons by a solid (see Ashcroft and Mermin, Appendix N) is defined as $e^{-2W(\mathbf{q})}$ where

$$2W(\mathbf{q}) = \langle [\mathbf{q} \cdot \mathbf{u}]^2 \rangle.$$

Here \mathbf{u} is the displacement of an ion from its equilibrium position, and $\langle \dots \rangle$ represents a thermal average.

- (a) Obtain an expression for $W(\mathbf{q})$ in terms of phonon frequencies and polarization vectors. This should involve an integral over all the phonon modes.
- (b) Show that $e^{-2W(\mathbf{q})} = 0$ in one and two dimensions. (Hint: consider the behaviour of the integrand of the \mathbf{k} -integral in part (a) for small values of k .) What are the implications of this result for the possible existence of one- or two-dimensional crystalline ordering?

5. Consider a linear monatomic chain with only nearest-neighbour interactions. First, assume that the interaction between nearest neighbours is purely harmonic.

- (a) Show that the phonon dispersion relation for this system is given by

$$\omega(k) = \omega_0 |\sin(ka/2)|,$$

where the constant ω_0 is the maximum frequency (this occurs for k on the zone boundary) and a is the spacing between nearest neighbors.

- (b) Calculate the phonon density of states $g(\omega)$ for this system. In particular, show that $g(\omega)$ has a van Hove singularity at $\omega = \omega_0$. Find the form of this singularity.
- (c) Calculate the temperature-dependence of the phonon part of the specific heat of this system at low temperatures.
- (d) Now consider the more general situation where the interaction between nearest neighbors is no longer assumed to be purely harmonic. Let $\phi(r)$ be the pair potential that describes the interaction between nearest neighbors. Define the Grüneisen parameter for the phonon mode with wavenumber k as

$$\gamma(k) = -\frac{\partial \ln \omega(k)}{\partial \ln L}$$

where $L = Na$ is the length of the chain [N is the number of atoms in the chain]. Show that $\gamma(k)$ is in fact independent of k , and is given by

$$\gamma = -\frac{a}{2} \frac{\phi'''(a)}{\phi''(a)}.$$