

PHYSICS 320: Problem Set No. 5
 Due: Mon. Oct. 26 2009

Only problems 1-4 need to be turned in for credit. Problem 5 is optional.

1. Consider a two-site Hubbard model with the Hamiltonian

$$H = -t \sum_{\sigma} c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} + U [n_{1\uparrow} n_{1\downarrow} + n_{2\uparrow} n_{2\downarrow}].$$

If there are two electrons and $|t/U| \ll 1$, show that second order perturbation theory generates a Hamiltonian of the form $H = J\mathbf{S}_1 \cdot \mathbf{S}_2$ between the spins of the electrons on the two sites. What is the value of J ?

2. Consider the Hubbard model

$$H = U \sum_i n_{i\uparrow} n_{i\downarrow}$$

without the hopping term and $U > 0$.

(a) At $T = 0$, the chemical potential is the energy required to add a particle to the system, i.e. $\mu = E(N+1) - E(N)$, where $E(N)$ is the energy of the system with N particles. Calculate the chemical potential as a function of the filling n .

(b) Now consider $T \neq 0$. Once again calculate μ as a function of n . It will help to use the partition function in the grand canonical ensemble. Show that you obtain the same value of μ as part (a) in the limit $T \rightarrow 0$.

3. In this problem, you will calculate the energy spectrum and degeneracy of an electron in a magnetic field in a gauge invariant form (i. e. you will not choose a value for $\nabla \cdot \mathbf{A}$ where \mathbf{A} is the magnetic vector potential). The field B is constant and in the \hat{z} direction and the electron's motion is confined to the $x - y$ plane. The Hamiltonian is of the form $H = \frac{1}{2m_e} (\Pi_x^2 + \Pi_y^2)$, where $\Pi_{\alpha} = p_{\alpha} + \frac{e}{c} A_{\alpha}$.

(a) Show that $[\Pi_x, \Pi_y] = iC$, is a gauge invariant quantity and C is a constant that depends on B and fundamental constants. Use this fact to show that the allowed energy eigenvalues have the form $E_n = (n + 1/2)\hbar\omega$, where ω is the cyclotron frequency. You need not carry out the full calculation. Just use an analogy with a simple one dimensional quantum mechanical problem.

(b) Show that you can construct operators X_0 and Y_0 with dimensions of length as linear combinations of the operators in the set (x, y, Π_x, Π_y) such that $[X_0, Y_0] = il^2$ (l is the magnetic length) and $[X_0, H] = [Y_0, H] = 0$.

(c) Use the commutation relations derived in part (b) to argue that there is a degenerate set of states at each energy E_n that can be labelled by an integer m . (Hint: Define raising and lowering operators a^{\dagger} and a that commute with H .)

(d) Calculate the degeneracy of each energy level for a system of area $L_x L_y$ in the following way: Since $[X_0, Y_0] = il^2$, X_0 and Y_0 can be thought of as canonically conjugate variables in a semi-classical approximation. Compute the number of states within a phase space area $\Delta X_0 \Delta Y_0$. The ranges of X_0 and Y_0 are L_x and L_y respectively. Show that this gives you the same degeneracy for each Landau level as obtained in class by making a gauge choice.

4. In class we used the method of adiabatic pumping to show that a single electron is transferred from one edge to another upon threading a quantum of flux when *all* Landau levels are filled in a clean sample (the Laughlin gauge argument). This gives a Hall resistance $R_H = -h/e^2 = -B/nec$, where B is the field and n , the density of electrons. Apply the method of adiabatic pumping to a *partially filled* Landau level to show that in this case too $R_H = -B/nec$. Thus, argue that quantum mechanically too one obtains the classical result $R_H = -B/nec$ for any filling n for a clean sample.

5. The Laughlin gauge argument relies on the fact that upon threading a flux quantum, the Hamiltonian of a system remains unchanged. Thus, energy levels that move can only take up the positions of other energy levels.

This conclusion applies more generally than to a system of non-interacting electrons in a magnetic field. Show that a general Hamiltonian of N particles of the form

$$H = \frac{1}{2m} \sum_{i=1}^N \left(\mathbf{p}_i - \frac{e}{c} \mathbf{A}_i \right)^2 + V(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n),$$

with periodic boundary conditions in the x direction remains invariant upon threading a flux quantum. Here $V(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n)$ represents any combination of one, two, \dots, N body interactions. A flux quantum can be threaded by making the transformation $\mathbf{A}_i \rightarrow \mathbf{A}_i + \frac{\Phi_0}{L_x} \hat{x}$. $\Phi_0 = hc/e$ and L_x is the length in the x direction. It might help to consider H in second quantized form.