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PHYSICS 320: Problem Set No. 5
Due: Mon. Oct. 26 2009

Only problems 1-4 need to be turned in for credit. Problem 5 is optional.

1. Consider a two-site Hubbard model with the Hamiltonian

H = −t
∑

σ

c†1σc2σ + c†2σc1σ + U [n1↑n1↓ + n2↑n2↓] .

If there are two electrons and |t/U | ¿ 1, show that second order perturbation theory generates a Hamiltonian
of the form H = JS1.S2 between the spins of the electrons on the two sites. What is the value of J?

2. Consider the Hubbard model

H = U
∑

i

ni↑ni↓

without the hopping term and U > 0.

(a) At T = 0, the chemical potential is the energy required to add a particle to the system, i.e. µ = E(N +
1)−E(N), where E(N) is the energy of the system with N particles. Calculate the chemical potential as
a function of the filling n.

(b) Now consider T 6= 0. Once again calculate µ as a function of n. It will help to use the partition function
in the grand canonical ensemble. Show that you obtain the same value of µ as part (a) in the limit T → 0.

3. In this problem, you will calculate the energy spectrum and degeneracy of an electron in a magnetic field in
a gauge invariant form (i. e. you will not choose a value for ∇.A where A is the magnetic vector potential).
The field B is constant and in the ẑ direction and the electron’s motion is confined to the x − y plane. The
Hamiltonian is of the form H = 1

2me

(
Π2

x + Π2
y

)
, where Πα = pα + e

cAα.

(a) Show that [Πx, Πy] = iC, is a gauge invariant quantity and C is a constant that depends on B and
fundamental constants. Use this fact to show that the allowed energy eigenvalues have the form En =
(n + 1/2)~ω, where ω is the cyclotron frequency. You need not carry out the full calculation. Just use an
analogy with a simple one dimensional quantum mechanical problem.

(b) Show that you can construct operators X0 and Y0 with dimensions of length as linear combinations of
the operators in the set (x, y, Πx, Πy) such that [X0, Y0] = il2 (l is the magnetic length) and [X0,H] =
[Y0, H] = 0.

(c) Use the commutation relations derived in part (b) to argue that there is a degenerate set of states at each
energy En that can be labelled by an integer m. (Hint: Define raising and lowering operators a† and a
that commute with H.)

(d) Calculate the degeneracy of each energy level for a system of area LxLy in the following way: Since
[X0, Y0] = il2, X0 and Y0 can be thought of as canonically conjugate variable in a semi-classical approxi-
mation. Compute the number of states within a phase space area ∆X0∆Y0. The ranges of X0 and Y0 are
Lx and Ly respectively. Show that this gives you the same degeneracy for each Landau level as obtained
in class by making a gauge choice.

4. In class we used the method of adiabatic pumping to show that a single electron is transferred from one edge
to another upon threading a quantum of flux when all Landau levels are filled in a clean sample (the Laughlin
gauge argument). This gives a Hall resistance RH = −h/e2 = −B/nec, where B is the field and n, the density
of electrons. Apply the method of adiabatic pumping to a partially filled Landau level to show that in this case
too RH = −B/nec. Thus, argue that quantum mechanically too one obtains the classical result RH = −B/nec
for any filling n for a clean sample.

5. The Laughlin gauge argument relies on the fact that upon threading a flux quantum, the Hamiltonian of a
system remains unchanged. Thus, energy levels that move can only take up the positions of other energy levels.
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This conclusion applies more generally than to a system of non-interacting electrons in a magnetic field. Show
that a general Hamiltonian of N particles of the form

H =
1

2m

N∑

i=1

(
pi − e

c
Ai

)2

+ V (r1, r2, . . . rn) ,

with periodic boundary conditions in the x direction remains invariant upon threading a flux quantum. Here
V (r1, r2, . . . rn) represents any combination of one, two, . . . N body interactions. A flux quantum can be
threaded by making the transformation Ai → Ai + Φ0

Lx
x̂. Φ0 = hc/e and Lx is the length in the x direction. It

might help to consider H in second quantized form.


