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PHYSICS 320: Problem Set No. 4
Due: Wed. Sep. 30 2009

Only problems 1-4 need to be turned in for credit. The other two problems are optional. <e(z) and =m(z) stand for
the real and imaginary parts of z respectively.

1. Consider a free Fermi gas with Fermi momentum kF and corresponding Fermi energy EF . The ground state
is a Fermi sea with single particle states of energy εk ≤ EF occupied. An excitation about the ground state is
produced by moving a single fermion from inside the Fermi sea to an unoccupied state outside. This leaves a
hole in the state from which the electron was moved and the excitation is thus called a particle-hole excitation.
The momentum of the system changes by q in the process and its energy by ~ω.

(a) For what values of the combination (ω, |q|) do such excitations exist? Make a sketch on a plot of |q|/2kF

and ~ω/EF . Show that it agrees with the plot we obtained in class from the condition =m[ε̃(q, ω)] = 0.

(b) How is the case of one dimension qualitatively different from two and three dimensions?

2. Consider the Kubo formula for the complex permittivity derived in class,

ε̃(q, ω) = 1− 4πe2

q2

∑

k

f0(εk+q)− f0(εk)
εk+q − εk + ω + iδ

,

with δ → 0+. Here f0(εk) is the occupancy of the single particle state of a free fermion with momentum k and
energy εk.

(a) Obtain an expression for =m[ε̃(q, ω)] in the limit ω À (|q|, kF |q|/m). You can leave the expression as
a sum/integral over momenta. This is the Landau damping term responsible for damping out plasma
oscillations at large wave number. You can see that only particles with specific values of k contribute to
the damping of a particular (q, ωq) plasma mode. What is the velocity of these particles in the direction
of q?

(b) It was shown in class that plasma oscillations were longitudinal oscillations of the electric field. Transverse
oscillations give rise to regular EM waves. What is the condition on <e[ε̃(q, ω)] for EM waves to propagate?
What is the dispersion relation for these waves at small q?

(c) At large values of q, longitudinal plasma oscillations undergo Landau damping. What happens to transverse
EM waves? (Hint: Use the condition on the velocity of the particles contributing to Landau damping from
part (a).)

3. In class, we calculated the paramagnetic spin susceptibility of a Fermi liquid. This involved applying a magnetic
field and creating an unequal population of up and down spin quasiparticles resulting in a non-zero magneti-
zation. Now assume that in this configuration, we flip the spin of a quasiparticle from down (lower Zeeman
energy) to up (higher Zeeman energy). This will change the magnetization of the system but if we demand that
the magnetization does not change, there will have to be a transfer of quasiparticles from the up state to the
down state. This will cause a net increase δN↓ in the number of down spin quasiparticles. The effective g factor
g∗ can be defined in this way. It is given by the equation g∗µB = ∆E, where ∆E is the difference in energy of
the state before and after the flip holding magnetization constant.

(a) What is the relation between ∆E and δN↓? This expression will involve the bare Zeeman energy and the
Fermi liquid parameters fs,a

l .

(b) Identifying g∗ as the effective g factor also means that δN↓ = N∗(0)
2

g∗µB
2 . What is the value of g∗/g in terms

of F s,a
l ? Write down the expression for χ/χ0 in terms of m∗/m and g∗/g where χ(χ0) is the paramaganetic

susceptibility for the Fermi liquid (free Fermi gas).

4. The scattering rate of a electron out of a state labelled by momentum k and spin σ slightly above the Fermi
surface is given by the following expression according to the Fermi golden rule:

1
τkσ

=
2π

~
∑

k′,σ′,q

|V (q)|2nk′σ′ (1− nk′+qσ′) (1− nk−qσ) δ (εk′+qσ′ + εk−qσ − εk′σ′ − εkσ) .
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Physically, this corresponds to the electron in state (k, σ) interacting with one in state (k′, σ′) and the pair
getting scattered into states (k− q, σ) and (k′ + q, σ′) conserving energy and momentum. εkσ is the energy of
the single particle state labelled by k and spin σ and nkσ its occupancy. V (q) is the Fourier component of the
two body potential V (|r1 − r2|). Calculate the scattering rate in the following way.

(a) Show that

1
τkσ

=
∑
q

q2

2~e2
|V (q)|2 (1− nk−qσ)

=m[ε̃(q, ωkqσ)]
1− eβωkqσ

,

where ωkqσ = εk−qσ − εkσ. Remember that the occupancies {nkσ} obey the Fermi-Dirac distribution at
temperature T = 1/kBβ.

(b) Take the limit T → 0. Convert the sum into an integral over q. What is the volume over which the
integrand is non-zero? Since |k| ≈ kF , this volume is small and consequently so are the values of |q|.
Use the expressions for V (q) from Thomas-Fermi theory and =m[ε̃(q, ωkqσ)] in the RPA in this limit to
calculate 1/τkσ.

5. (Not for credit) Consider again the expression for the complex permittivity given in problem #2,

(a) Calculate ε̃(q, ω) in the limit ω → 0 first and then q → 0. Show that in this limit, the permittivity agrees
with the result from the linearized version of the Thomas-Fermi approximation.

(b) Now, consider the opposite limit q → 0 and then ω → 0 and calculate ε̃(q, ω). Show that the expression for
the complex conductivity σ̃(q, ω) = iω(ε̃(q, ω) − 1) in this limit agrees with the one from ordinary Drude
theory with the relaxation time τ → 0.

6. (Not for credit) Calculate the Landau parameters εk,σ, fs(k,k′) and fa(k,k′) in the Hartree-Fock approximation
for the jellium model.

(a) To calculate εk,σ, consider the state of the system with a filled Fermi sphere of Fermi momentum ~kF and
a single electron with momentum ~k and spin σ.

(b) Now consider the case where you have a filled Fermi sphere and two electrons with momentum and spin
values (~k, σ) and (~k′, σ′). fs(k,k′) and fa(k,k′) are given by the interaction energy between the two
electrons. Show using the equation for the effective mass in Fermi liquid theory that it goes to zero at the
Fermi surface.


