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PHYSICS 320: Problem Set No. 2
Due: Friday Aug. 28 2009

1. In this problem you will calculate the matrix element of a single particle operator between bosonic occupation
number states. As we showed in class, an occupation number state of N bosons has the following form

|n1, n2, . . . , nM 〉 =

(∏M
i=1 ni!
N !

)1/2 ∑

P ({pj})
|p1〉1|p2〉2 . . . |pN 〉N .

Here, M is the total number of single particle states and ni is the occupancy of the ith single particle state.
|pj〉j is the single particle state the jth particle is in. Thus, the possible range of values of pj is 1 to M . P ({pj})
is the set of all possible pj ’s such that n1 of them are equal to 1, n2 equal to 2 and so on.

Now, consider two states where one is obtained from the other by moving a boson from the kth single particle
state to the ith state. The two states are thus of the form

|A〉 = |n1, n2, . . . , ni, . . . , nk, . . . , nM 〉 = NA

∑

PA({pj})
|p1〉1 |p2〉2 . . . |pN 〉N ,

|B〉 = |n1, n2, . . . , ni + 1, . . . , nk − 1, . . . , nM 〉 = NB

∑

PB({p′j})
|p′1〉1 |p′2〉2 . . . |p′N 〉N .

Here NA and NB are the appropriate normalization factors for the two states and PA and PB , the appropriate
sets of allowed values of the pj ’s and p′j ’s. A single body operator can be written as

F (1) =
N∑

l=1

fl,

where fl acts only on the lth particle and all the fl’s act in the same way on the corresponding particles (since
we are describing a system of identical particles).

(a) Consider a particular fl and

〈B|fl|A〉 = NANB

∑

PA({pj}),PB({p′j})
(1〈p′1| 2〈p′2| . . . N 〈p′N |) fl (|p1〉1 |p2〉2 . . . |pN 〉N ) .

How many terms in the sum are non-zero? What are their values?
(b) Using the above information and the actual values of NA and NB , calculate 〈B|fl|A〉. What is thus, the

value of 〈B|F (1)|A〉?
(c) Repeat the above procedure to calculate the diagonal matrix element 〈A|F (1)|A〉.

2. Consider the tight binding Hamiltonian on a 1D lattice

H = −t
∑

i

a†iai+1 + h.c.,

where h.c. denotes the Hermitian conjugate and i labels the lattice sites and {ai} and {a†i} are either bosonic
or fermionic operators. In class we obtained the single particle energy band for this model. Now, assume that
every alternate particle is moved a little to its left so that the hopping parameter is alternately t + ε and t− ε.

(a) What is the unit cell of the new lattice? What is the first Brillouin zone? How many bands of single
particle states are there?

(b) Calculate the band structure and show that you recover the original band structure for uniform hopping
by taking the appropriate limit.

3. Define bosons whose creation and annihilation operators {ai} and {a†i} on a lattice (of sites labelled by i) obey
the usual commutation relations

[ai, aj ] = [ai, a
†
j ] = 0, ∀i 6= j,

but whose occupancy at each site is restricted to a maximum of 1. Such bosons are called hard core bosons.
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(a) Show that this implies that [ai, a
†
i ] 6= 1 but {ai, a

†
i} = 1 in the allowed Fock space. Also, show that

a2
i =

(
a†i

)2

= 0.

(b) Thus, the operators defined are bosonic as far as the relation between pairs on different sites is concerned
but fermionic for pairs on the same site. In 1D, it is possible to define a new set of operators {ci} in terms
of {ai} and {a†i},

ci = (−1)φi ai,

where φi =
∑

j<i a†jaj . Show that the operators {ci} and {c†i} satisfy the regular fermionic anticommutation
relations.

(c) Now, consider the tight binding model for hard core bosons,

H = −t
∑

i

a†iai+1 + h.c.

on an infinite 1D chain. Certain systems of bosons in optical lattices can be described by Hamiltonians
similar to this. What is the ground state energy when the density of bosons is n? (Hint: Express the
operators {ai} and {a†i} in terms of {ci} and {c†i}. What is φi in terms of {ci} and {c†i}?)

4. Consider the ground state of a non-interacting 3D gas of electrons with Fermi momentum kF .

(a) The density operator

ns(r) = Ψ†s(r)Ψs(r),

where s is the spin and Ψ†s(r) and Ψs(r) are the field operators defined in class. Calculate the follow-
ing quantities: 〈n↑(r)〉, 〈n↓(r)〉, 〈n↑(r)n↑(r′)〉, 〈n↓(r)n↓(r′)〉 and 〈n↑(r)n↓(r′)〉, where 〈. . . 〉 denotes the
expectation value in the ground state. Why is 〈n↑(r)n↓(r′)〉 different from 〈n↑(r)n↑(r′)〉 and 〈n↓(r)n↓(r′)〉?

(b) With Coulomb interactions, the exact ground state is no longer like that of a non-interacting gas of
electrons. Qualitatively, how do you expect the quantity 〈n↑(r)n↓(r′)〉 to be different in this case from
what you calculated for the non-interacting system?

5. The density matrix in the grand canonical ensemble can be written as an operator in the occupation number
formalism as

ρ =
1

Tr
[
e−β(H−µN)

]e−β(H−µN).

Here N is the operator that counts the total number of particles in the system (the number operator), β = 1/kBT ,
where T is the temperature and µ is the chemical potential.

(a) If the Hamiltonian

H =
∑
α

εαa†αaα,

where εα is the energy of a single particle state α, calculate the occupation 〈nα〉 when the particles are (i)
bosons and (ii) fermions.

(b) Now suppose that the particles are spin 1/2 fermions and the Hamiltonian is

H =
∑
α,s

εαa†α,saα,s,

where s is the spin and can take on the values ↑ and ↓. Further, suppose that a given state α cannot
simultaneously have an ↑ and ↓ electron. What is 〈nα〉 = 〈nα,↑〉+ 〈nα,↓〉? This sort of situation occurs for
dopant levels of n type semiconductors.

Remember that for any operator A, 〈A〉 = Tr(ρA).
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6. It was shown in class that a general Hamiltonian with one and two body terms can be written as

H =
∫

drΨ†(r)
[
− ~

2

2m
∇2 + U (1)(r)

]
Ψ(r) +

∫
drdr′Ψ†(r)Ψ†(r′)U (2)(r, r′)Ψ(r′)Ψ(r),

where Ψ† and Ψ are the field operators. We can define a time dependent version of Ψ(r) as

Ψ(r, t) = e−iHt/~Ψ(r)eiHt/~.

(a) Derive the equation of motion for Ψ(r, t) (i.e. calculate ∂Ψ(r, t)/∂t) when the field operators are bosonic
and fermionic. (Hint: You will need to calculate commutators of the sort [AB, C] and [ABCD,E] where
A, B, C, D and E are field operators. Express these commutators as sums of products of terms containing
only commutators (in the bosonic case) or anticommutators (in the fermionic case) of two field operators.)

(b) When there is only one particle, show that the equation of motion just gives you the regular Schrödinger
equation

i~
∂ψ(r, t)

∂t
=

[−~2

2m
∇2 + U (1)(r)

]
ψ(r, t),

where ψ(r, t) is the wavefunction.


