
PH 206: Electromagnetic theory

Problem Set 5

1. (a) Show that the magnetic field B(r) due to a loop of arbitrary shape carrying a current I is given by

B(r) =
µ0I

4π
∇Ω(r),

where Ω(r) is the solid angle subtended by the loop at the point r. Start with the Biot-Savart law for the
magnetic field due to a current carrying loop and recall that the solid angle subtended by an area element
dS is given by

dΩ =
dS.r̂

r2
,

where r is the vector from the area element to the point at which the solid angle is subtended.

(b) Now, consider an infinitely long right cylindrical solenoid of arbitrary cross section with its axis along ẑ.
Imagine that the solenoid has been created by stacking coils of the shape of the cross section, each carrying
a current I. Assume that the number of coils per unit length along the axis is N and they are sufficiently
dense that you can assume that the solenoid is a current carrying sheet. Use the result of (a) to show that
the field B at any point inside the solenoid is equal to

B = µ0NIẑ.

Also show that the magnetic field anywhere outside the solenoid is zero. (Hint: Recall that the total solid
angle subtended by a closed surface at point is 4π if the point is enclosed by the surface and zero otherwise.
Also, since the solenoid is infinitely long, you can consider the point O at which the field has to be calculated
to be in the plane z = 0 without loss of generality and with coordinates x′ and y′. Let Ω(x′, y′, z) be the solid
angle subtended at O by the coil at coordinate z. What is the relation between Ω(x′, y′, z) and Ω(x′, y′,−z)?
Use this to obtain the required result.)

2. In this problem you will investigate the uniqueness of the magnetic field B and magnetic vector potential A.
Imagine that the usual equations of magnetostatics ∇×B = µ0J and ∇.B = 0 are specified in a volume Ω with
given current density J. The surface of Ω is ∂Ω

(a) Show that the magnetic field is uniquely determined by specifying the normal component of B on ∂Ω.

(b) Show that the magnetic field can also be uniquely determined by either specifying the tangential component
of B or the tangential component of A on ∂Ω.

(c) The conditions in (b) determine B uniquely but not A. Show that A can be determined uniquely if in
addition the normal component of A is specified on ∂Ω. (Hint: Assume two solutions A1 and A2 with
corresponding fields B1 and B2. Define δA = A1−A2 and δB = B1−B2. Consider

∫
Ω
δA. (∇×δB) d3r.

Why is this quantity zero? Using vector identities show that this implies that ∇×δA = 0 and ∇.δA = 0
everywhere in Ω.)

3. Consider two identical circular loops of radius R. One of them has its centre at z = a and the other at z = −a
and both are oriented perpendicular to the z axis. Further, both of them carry the same current I flowing in
the same direction. This direction can be assumed to be counterclockwise looking down at both loops. You
will calculate the magnetic field B(ρ, z) close to the origin in this problem, where ρ and z are cylindrical polar
coordinates. There is no dependence on the angle coordinate ϕ because of axial symmetry.

(a) Calculate the magnetic field at the origin B(0, 0).

(b) Show that Bϕ(ρ, z) is zero everywhere. (Hint: Consider the Taylor expansion of Bϕ about the origin and
argue that all derivatives are zero.)

(c) Calculate B(ρ, z)−B(0, 0) to lowest order in ρ and z.

(d) Now, assume that the currents carried by the two loops are in opposite senses. The one at z = a carries a
counterclockwise current looking down at it and the one at z = −a, a clockwise current. Work out (a), (b)
and (c) for this case.
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(e) Is it possible for the lowest order correction to B(ρ, z)−B(0, 0) to be zero in both cases? If so, what is the
condition on a and R for this to happen?

4. Prove that ∫
(r.r′)J(r′)dr′ = −

∫
r′ [r.J(r′)] dr′,

for a current density J(r′) localized to a volume which producing a static magnetic field. The integrals are
over all space. Recall that this is the relation we had used to derive the magnetic dipole term in the multipole
expansion for the magnetic vector potential.

5. In this problem, you will obtain the multipole expansion for magnetostatics using a scalar potential instead of
a vector potential. Consider a current distribution J(r′) which is confined to a finite region Ω of space.

(a) Show that

∇2 (r.B) = −µ0r.∇×J.

(b) Perform a multipole expansion for the quantity r.B starting from the above equation just as you do for
the potential in electrostatics.

(c) We wish to evaluate the magnetic field B(r) due J at a point r outside Ω. Since the current density at r
is zero, we have

∇×B = 0,

∇.B = 0,

at r. We can thus define a scalar potential ϕm outside Ω such that B = −∇ϕm. What is r.B in terms of
ϕm? Obtain the multipole expansion for ϕm from (b) analogous to the what you obtain for the potential
in electrostatics. What is the effective “charge density” in this multipole expansion?

(d) Show that the monopole moment is zero and the dipole moment is given by the usual expression for
magnetostatics obtained in class. Obtain an expression for the quadrupole moment and verify that it is a
symmetric traceless second rank tensor.


