PH 206: Electromagnetic theory

Problem Set 2

- 1. In this problem you will figure out the effect of the curvature of the surface of a conductor on the electric field just above it. Consider three different conductors; 1) an infinite sheet, 2) an infinite cylinder of radius R_c and 3) a sphere of radius R_s . All of them have a uniform surface charge density σ . From the discussion in class, it is clear that the electric field E at any point just above the surface of any of the three conductors is σ/ϵ_0 and normal to the surface.
 - (a) Calculate the normal derivative $\frac{\partial E}{\partial n}$ just above the surface in each case and show that it depends on the shape of the conductor.
 - (b) Show that in general at a point just above the surface of a conductor,

$$\frac{\partial E}{\partial n} = -E\left(\frac{1}{R_1} + \frac{1}{R_2}\right),\,$$

where R_1 and R_2 are the principle radii of curvature at the surface. (Hint: Use the fact that $\nabla \cdot \mathbf{E} = 0$ just above the surface.)

- (c) Verify that $\frac{\partial E}{\partial n}$ that you have obtained in (b) matches what you have obtained in (a) for the three cases.
- (d) Is the result derived in (b) valid only for conductors or any object whose surface is an equipotential?
- 2. Show that for a potential that satisfies Laplace's equation everywhere inside a sphere, its value at the origin is equal to its average over the surface of the sphere. (Hint: $V(0) = \int_{sphere} V(\mathbf{r})\delta(\mathbf{r}) \ d^3\mathbf{r}$ and $\nabla \cdot \left(\frac{\hat{r}}{r^2}\right) = 4\pi\delta(\mathbf{r})$.)
- 3. Consider a set of N conductors such that the i^{th} conductor with surface \mathbb{S}_i has charge Q_i . There are no other charges.
 - (a) Show that the electrostatic energy of the configuration is

$$\epsilon = \frac{\epsilon_0}{2} \int_{\Omega'} |\mathbf{E}|^2 d^3 \mathbf{r},$$

where Ω' is the volume of all space excluding the volumes of the conductors.

- (b) Now, assume that the charges on each surface \mathbb{S}_i are arranged in such a way that it is not an equipotential. Show that this yields a a larger value of ϵ , where ϵ is given in the previous part. (Hint: Assume that the new configuration corresponds to an electric field \mathbf{E}' in Ω' . Show that $\Delta \epsilon = \int_{\Omega'} (|\mathbf{E}'|^2 |\mathbf{E}|^2) d^3\mathbf{r} > 0$ using vector identities to manipulate the integrand.)
- 4. A balloon made of a conducting material of surface tension T is initially completely deflated (has zero volume). The balloon is then slowly charged until the charge on it is q. Assume that the balloon is always spherical during the charging process.
 - (a) What is the radius of the balloon after it has been fully charged?
 - (b) What is the total electrostatic energy ϵ calculated according to the relations

$$\epsilon = \frac{\epsilon_0}{2} \int_{allspace} \mathbf{E}^2 d\mathbf{r}$$

and

$$\epsilon = \frac{1}{2} \int \rho V d\mathbf{r},$$

where the symbols have their usual meanings? Does the energy obtained from the two expressions agree with each other?

(c) What is the total work done W to charge the balloon?

- (d) Does W obtained in part (c) agree with the values of ϵ obtained in part (b)? If not, how will you resolve the discrepancy?
- 5. A cube of side a with no charges inside has two opposite faces at potentials V_1 and V_2 and all other faces at zero potential. Calculate the potential everywhere inside the cube.
- 6. The northern and southern hemispheres of a spherical shell have uniform surface charge density σ and σ respectively. Let $V(r, \theta, \phi)$ in spherical polar coordinates with the origin at the origin of the sphere.
 - (a) What is the leading order term in the potential as $r \to \infty$? Calculate the first three sub-leading order terms.
 - (b) What is the leading order term in the potential as $r \to 0$? Calculate the first three sub-leading order terms.