PH 206: Electromagnetic theory

Midterm exam: Wed. Feb 272013

Total points: 30

You are not allowed to consult any written, printed or electronic material. Attempt all questions. All the best.

1. Two semi-infinite grounded conducting planes making an angle θ meet along the z axis. The lines of intersection of the two planes with the $x y$ plane are bisected by the x axis as shown in the figure below. A charge q is placed on the x axis at a distance d from the origin. ($\mathbf{1 0}$ points)

(a) If the potential in the region between the two planes can be calculated using n image charges, argue that n is odd. What is the value of the angle θ given n ? (3 points)
(b) What are the charges and positions of the image charges for a given n ? Express the positions in cylindrical polar coordinates r, ϕ and z. What is the total induced charge on each grounded plane? (4 points)
(c) What are the appropriate limits to take for n and d so that the problem reduces to that of a point charge q equidistant from two parallel infinite conducting planes separated by a distance d^{\prime} ? (3 points)
2. Consider an infinite right circular cylinder of radius R made of a uniform linear dielectric material of permittivity ϵ. Let its axis be along \hat{z}. The quantities $\mathbf{E}, \mathbf{P}, \mathbf{D}$ and ρ_{b} have their usual meanings and σ_{b} is the charge density on the curved surface of the cylinder. ($\mathbf{1 0}$ points)
(a) Calculate $\mathbf{E}, \mathbf{P}, \mathbf{D}$ inside and outside the cylinder when it is placed in a previously uniform field $E_{0} \hat{z}$. Also calculate ρ_{b} and σ_{b}. (3 points)
(b) Now, calculate the same quantities for a previously uniform field $E_{0} \hat{x}$. (7 points)

It might help to perform the calculation in terms of cylindrical polar co-ordinates ρ, ϕ and z. The gradient, divergence and Laplacian in terms of these coordinates are

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial \rho} \hat{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\phi}+\frac{\partial f}{\partial z} \hat{z} \\
\nabla \cdot \mathbf{V} & =\frac{1}{\rho} \frac{\partial\left(\rho V_{\rho}\right)}{\partial \rho}+\frac{1}{\rho} \frac{\partial V_{\phi}}{\partial \phi}+\frac{\partial V_{z}}{\partial z} \\
\nabla^{2} f & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

Also, remember that the general solution to Laplace's equation $\nabla^{2} f=0$, when f has no dependence on z is

$$
f(\rho, \phi)=\sum_{n=0}^{\infty}\left(A_{n} \rho^{n}+B_{n} \rho^{-n}\right)\left(C_{n} \cos n \phi+D_{n} \sin n \phi\right),
$$

where n is an integer.
3. Calculate the magnetic field at all points in space due to each of the following: ($\mathbf{1 0}$ points)
(a) A very thin wire carrying current I along the z axis from $z=\infty$ to $z=-\infty$. (This is not a trick question!) (2 points)
(b) A uniform current per unit length $K \hat{x}$ flowing in the $x y$ plane. (3 points)
(c) A very thin wire carrying current I along the z axis from $z=\infty$ to the origin. At the origin, the current spreads out uniformly and radially along the $x y$ plane. (5 points).

