
PH 206: Electromagnetic theory

Problem Set 5

Due date: Wed. Mar. 28 2012

1. The most general linear relation between the D and E vectors of an isotropic linear dielectric is

D(r, t) =

∫
dr′

∫
dt′ϵ(r− r, t− t′)E(r′, t′).

The magnetic permeability of the dielectric is µ0.

(a) Write down Maxwell’s equation in Fourier space, i.e. write them down in terms of E(k, ω), B(k, ω), ϵ(k, ω),
ρf (k, ω) and Jf (k, ω), which are the Fourier transforms of the electric field, magnetic field, permittivity,
free charge density and free current density.

(b) If self-sustaining transverse electric and magnetic fields (i.e. transverse fields which are non-zero even in
the absence of free charges and currents) exist in the dielectric at wavevector k and frequency ω, what is
the equation that relates k and ω?

(c) If self-sustaining longitudinal electric field waves exist at wavevector k and ω, what is the relation between
k and ω? Such waves are called longitudinal plasma waves. What is the magnetic field in such a wave?

(d) Can longitudinal magnetic field waves be set up? If so, how? If not, why?

2. Now, consider an anisotropic linear dielectric which obeys the following relation

Dα(r, t) = ϵαβEα(r, t).

Here α and β take on the values x, y and z and the permittivity ϵαβ is thus a second rank tensor. Further, let
ϵxx = ϵyy = ϵ1, ϵzz = ϵ2 and ϵxy = ϵyx = ϵyz = ϵzy = ϵzx = ϵxz = 0. The permeability is µ0.

(a) Work out the dispersion relation between the wavevector k and the frequency ω. Show that there are two
distinct dispersion relations.

(b) Suppose a light wave propagates with a wavevector kx̂. What are the two possible frequencies and what is
the polarization associated with each?

(c) Repeat the above exercise for a wave with wavevector kẑ.

(d) Suppose light of frequency ω travelling in the x̂ direction in the dielectric has an electric field vector that
oscillates in the direction cos θŷ + sin θẑ at x = 0. What is the direction of the electric field vector’s
oscillations at x = a?

3. Consider a rectangular wave guide of side lengths a and b. Obtain all the components of the electric and
magnetic fields in the transverse magnetic TMm,n mode. What is the cutoff frequency for each mode?

4. Calculate the Green’s function for the d’Alembertian operator �2. Remember that the Green’s function is
defined as

�2G(r, t; r′, t′) = −4πδ(r− r′)δ(t− t′).

The simplest way to proceed is to use Fourier transforms. Show that one can obtain both the retarded and
advanced Green’s functions in this way.

5. In class we argued that the equation

|r− r0(t
′)| = c(t− t′),

arising in the calculation of the Liénard-Wiechert potentials of a point charge q cannot have more than one
solution for the retarded time t′ in terms of r and t for a given trajectory r0(t). However, it is possible that
there are no solutions for a given trajectory at certain values of r and t. An example of such a trajectory is

r0(t) =
√
a2 + c2t2ẑ,

with −∞ < t < ∞.
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(a) Consider r = zẑ. Show that for every value of z, there is a value of time τ(z) such that there are no
solutions for t < τ(z). Calculate τ(z). Remember, we are only interested in solutions for t′ which obey
t′ < t (otherwise causality would be violated). This problem does not require complicated algebra. Draw
the trajectory of the particle on a graph of z vs. ct. From each point on the trajectory draw light rays
that move forward in time but in either direction is space. The points of intersection of such lines with a
line at fixed z (which is where the potentials are going to be calculated) will give you the function τ(z).

(b) The potentials at r = zẑ are zero for t < τ(z) since no “signal” from the point charge has reached. Calculate
the potentials ϕ and A for t > τ(z).

6. A particle of mass m and charge q is released from infinity with speed v in the direction of another point charge
Q, which is held stationary. The interaction between the two charges is repulsive. Calculate the total energy
radiated during the motion of the charge from infinity to the point of closest approach. Assume that the particle
moves non-relativistically.


