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Preface

There is a growing consensus that life-threatening cardiac arrhythmias like ven-

tricular tachycardia (VT) or ventricular fibrillation (VF) arise because of the forma-

tion of spiral waves of electrical activation in cardiac tissue; unbroken spiral waves

are associated with VT and broken ones with VF. Several experimental studies

have shown that inhomogeneities in cardiac tissue can have dramatic effects on

such spiral waves.

In this thesis we focus on spiral-wave dynamics in mathematical models of hu-

man ventricular tissue which contain (a) conduction inhomogeneities, (b) ionic in-

homogeneities, (c) fibroblasts, (d) Purkinje fibers. We also study the effect of a

periodic deformation of the simulation domain on spiral wave-dynamics. Chapter

2 contains our study of “Spiral-Wave Dynamics and Its Control in the Presence

of Inhomogeneities in Two Mathematical Models for Human Cardiac Tissue”; this

Chapter follows closely parts of a paper we have published [1]. Chapter 3 contains

our study of “Spiral-wave dynamics in a Mathematical Model of Human Ventricu-

lar Tissue withMyocytes and Fibroblasts ”; this chapter follows closely a paper that

we have submitted for publication. Chapter 4 contains our study of “Spiral-wave

Dynamics in Ionically Realistic Mathematical Models for Human Ventricular Tis-

sue: The Effects of Periodic Deformation”; this chapter follows closely a paper that

we have submitted for publication. Chapter 5 contains our study of “Spiral-wave

dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes

and Purkinje fibers”; this chapter follows closely a paper that we will submit for

publication soon.

In Chapter 2, we study systematically the APmorphology for the TNNP04model

of cardiac tissue; we also look at the contribution of individual ionic currents to the

AP by partially or completely blocking ion channels associated with the ionic cur-

rents. We then carry out systematic studies of plane-wave and circular-wave dy-

namics in the TNNP04 model for cardiac tissue model. We present a detailed and

systematic study of spiral-wave turbulence and spatiotemporal chaos in two math-

ematical models for human cardiac tissue, namely, the TNNP04 model and the

TP06 model. In particular, we use extensive numerical simulations to elucidate

the interaction of spiral waves in these models with conduction and ionic inhomo-

geneities. Our central qualitative result is that, in all these models, the dynamics

of such spiral waves depends very sensitively on such inhomogeneities. A major

goal here is to develop low-amplitude defibrillation schemes for the elimination of
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VT and VF, especially in the presence of inhomogeneities that occur commonly in

cardiac tissue. Therefore, we study a control scheme that has been suggested for

the control of spiral turbulence, via low-amplitude current pulses, in such mathe-

matical models for cardiac tissue; our investigations here are designed to examine

the efficacy of such control scheme in the presence of inhomogeneities in biophysi-

cal realistic models. We find that a scheme that uses control pulses on a spatially

extended mesh is more successful in the elimination of spiral turbulence than other

control schemes. We discuss the theoretical and experimental implications of our

study that have a direct bearing on defibrillation, the control of life-threatening

cardiac arrhythmias such as ventricular fibrillation.

In Chapter 3, we study the role of cardiac fibroblasts in ventricular tissue; we

use the TNNP04 model for the myocyte cell, and the fibroblasts are modelled as

passive cells. Cardiac fibroblasts, when coupled functionally with myocytes, can

modulate their electrophysiological properties at both cellular and tissue levels.

Therefore, it is important to study the effects of such fibroblasts when they are

coupled with myocytes. Chapter 3 contains our detailed and systematic study of

spiral-wave dynamics in the presence of fibroblasts in both homogeneous and in-

homogenous domains of a state-of-the-art mathematical model for human ventric-

ular tissue due to ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model).

We carry out extensive numerical studies of such modulation of electrophysiologi-

cal properties in mathematical models for (a) single myocyte-fibroblast (MF) units

and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones

and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units

elucidate the dependence of the action-potential (AP) morphology on parameters

such as Ef , the fibroblast resting-membrane potential, the fibroblast conductance

Gf , and the MF gap-junctional coupling Ggap. Furthermore, we find that our MF

composite can show autorhythmic and oscillatory behaviors in addition to an ex-

citable response. Our 2D studies use (a) both homogeneous and inhomogeneous

distributions of fibroblasts, (b) various ranges for parameters such as Ggap, Gf , and

Ef , and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided

connections of fibroblasts with myocytes. We show, in particular, that the plane-

wave conduction velocity CV decreases as a function of Ggap, for zero-sided and

one-sided couplings; however, for two-sided coupling, CV decreases initially and

then increases as a function of Ggap, and, eventually, we observe that conduction

failure occurs for low values of Ggap. In our homogeneous studies, we find that the

rotation speed and stability of a spiral wave can be controlled either by controlling

Ggap or Ef . Our studies with fibroblast inhomogeneities show that a spiral wave
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can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a

low-amplitude control scheme, which has been suggested for the control of spiral-

wave turbulence in mathematical models for cardiac tissue, in our MF model both

with and without heterogeneities.

In Chapter 4, we carry out a detailed, systematic study of spiral-wave dynamics

in the presence of periodic deformation (PD) in two state-of-the-art mathematical

models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06

model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model). To

the best of our knowledge, our work is the first, systematic study of the dynamics

of spiral waves of electrical activation and their transitions, in the presence of

PD, in such biophysically realistic mathematical models of cardiac tissue. In our

studies, we use three types of initial conditions whose time evolutions lead to the

following states in the absence of PD: (a) a single rotating spiral (RS), (b) a spiral-

turbulence (ST) state, with a single meandering spiral, and (c) an ST state with

multiple broken spirals for both these models. We then show that the imposition

of PD in these three cases leads to a rich variety of spatiotemporal patterns in

the transmembrane potential including states with (a) an RS state with n-cycle

temporal evolution (here n is a positive integer), (b) rotating-spiral states with

quasiperiodic (QP) temporal evolution, (c) a state with a single meandering spiral

MS, which displays spatiotemporal chaos, (d) an ST state, with multiple broken

spirals, and (e) a quiescent state SA in which all spirals are absorbed. For all

three initial conditions, precisely which one of the states is obtained depends on the

amplitudes and the frequencies of the PD in the x and y directions. We also suggest

specific experiments that can test the results of our simulations. We also study, in

the presence of PD, the efficacy of a low-amplitude control scheme that has been

suggested, hitherto only without PD, for the control of spiral-wave turbulence, via

low-amplitude current pulses applied on a square mesh, in mathematical models

for cardiac tissue. We also develop line-mesh and rectangular-mesh variants of this

control scheme. We find that square- and line-mesh-based, low-amplitude control

schemes suppress spiral-wave turbulence in both the TP06 and TNNP04 models

in the absence of PD; however, we show that the line-based scheme works with PD

only if the PD is applied along one spatial direction. We then demonstrate that

a minor modification of our line-based control scheme can suppress spiral-wave

turbulence: in particular, we introduce a rectangular-mesh-based control scheme,

in which we add a few control lines perpendicular to the parallel lines of the line-

based control scheme; this rectangular-mesh scheme is a significant improvement
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over the square-mesh scheme because it uses fewer control lines than the one based

on a square mesh.

In Chapter 5, we have carried out detailed numerical studies of (a) a single unit

of an endocardial cell and Purkinje cell (EP) composite and (b) a two-dimensional

bilayer, which contains such EP composites at each site. We have considered bio-

physically realistic ionic models for human endocardial cells (Ecells) and Purkinje

cells (Pcells) to model EP composites. Our study has been designed to elucidate

the sensitive dependence, on parameters and initial conditions, of (a) the dynamics

of EP composites and (b) the spatiotemporal evolution of spiral waves of electrical

activation in EP-bilayer domains. We examine this dependence on myocyte pa-

rameters by using the three different parameter sets P1, P2, and P3; to elucidate

the initial-condition dependence we vary the time at which we apply the S2 pulse

in our S1-S2 protocol; we also investigate the dependence of the spatiotemporal

dynamics of our system on the EP coupling Dgap, and on the number of Purkinje-

ventricular junctions (PVJs), which are measured here by the ratio R, the ratio of

the total number of sites to the number of PVJs in our simulation domain.

Our studies on EP composites show that the frequency of autorhythimic activity

of a P cell depends on the diffusive gap-junctional conductance Dgap. We perform

a set of simulations to understand the source-sink relation between the E and P

cells in an EP composite; such a source-sink relation is an important determinant

of wave dynamics at the tissue level. Furthermore, we have studied the restitution

properties of an isolated E cell and a composite EP unit to uncover this effect on

wave dynamics in 2D, bilayers of EP composites.

Autorhythmicity is an important property of Purkinje cell; it helps to carry elec-

trical signals rapidly from bundle of His to the endocardium. Our investigation

of an EP composite shows that the cycle length (CL) of autorhythimic activity de-

creases, compared to that of an uncoupled Purkinje cell. Furthermore, we find that

the APD increases for an EP composite, compared to that of an uncoupled P cell.

In our second set of simulations for an EP-composite unit, we have obtained the

AP behaviors and the amount of flux that flows from the E to the P cell during the

course of the AP. The direction of flow of this flux is an important quantity that

identifies which one of these cells act as a source or a sink in this EP composite.

We have found that the P cell in an EP composite acts as a stimulation-current

source for the E cell in the depolarization phase of the AP, when the stimulus is

applied to both cells or to the P cell only. However, the P cell behaves both as a

source and a sink when the stimulus is applied to the E cell only. In our third

set of simulations for an EP composite unit, we have calculated the restitution of
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the APD; this plays an important role in deciding the stability of spiral waves in

mathematical models for cardiac tissue. Our simulation shows that, for the EP

composite with high coupling (Dgap = Dmm/10), the APDR slope decreases, relative

to its value for an isolated E cell, for parameter sets P1 and P2, and first increases

(for 50 ≤DI ≤ 100ms) and then decreases for the parameter set P3 ; however, for low

coupling (Dgap = Dmm/100), the variation of the APD as function of DI, for an EP

comppsite, shows biphasic behavior for all these three parameter sets. We found

that the above dynamics in EP cable type domains, with EP composites, depends

sensitively on R.
We hope our in silico studies of spiral-wave dynamics in a variety of state-of-the-

art ionic models for ventricular tissue will stimulate more experimental studies

that examine such dynamics.
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Chapter 1

An Overview of Mathematical Models of Cardiac

Tissue and Mechanisms of Ventricular Fibrillation

1.1 Introduction

Cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation

(VF) [1,2], are a leading cause of sudden cardiac death in industrialized countries.

Estimates indicate that (a) more than one million people die per year because of

such arrhythmias and (b) VF is the main reason for death in 30% of the cases

in which heart failure occurs [3, 4]. Despite decades of research, the underlying

mechanisms of cardiac arrhythmias, such as VT and VF, are still not clearly un-

derstood. However, the general consensus is that the abnormal propagation of a

wave of electrical activation across the ventricles might be the principal reason for

such arrhythmias. Both experimental [5–8] and computational [8, 9] studies have

suggested spiral or scroll waves of electrical activation in cardiac tissue or mathe-

matical models thereof are associated with VT, whereas, when these waves break

to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF. In

the absence of medical intervention, VF makes the heart incapable of pumping

blood, so a patient dies roughly two-and-a-half minutes after the initiation of VF.

Thus, studies of spiral- and scroll-wave dynamics in cardiac tissue pose important

challenges for in vivo and in vitro experimental studies and for in silico, numerical

studies of mathematical models for cardiac tissue. This thesis is devoted to several

such in silico studies. Before we give a summary of the numerical studies we carry

out of spiral-wave dynamics in a variety of state-of-the-art mathematical models

for cardiac tissue, we provide an overview of waves of excitation in cardiac tissue

and mathematical models for such tissue.

The properties of mammalian hearts and cardiac tissue, such as shape, size,

physiology, and coupling between cells, vary from species to species; there is some

1



1.2. Anatomy, mechanical function, and conduction systems of mammalian hearts 2

variation even within a particular species. These variations leads to challenges

for experimental studies that try to elucidate the mechanisms behind cardiac ar-

rhythmias. Thus, computational studies of mathematical models for cardiac tis-

sue play an important, complementary role in investigations of the dynamics of

spiral and scroll waves, which are the mathematical analogues of arrhythmias.

Computational studies are well-suited for detailed investigations of the effects of

heterogeneities and special conduction systems, such as Purkinje fibers, on spiral-

wave dynamics; heterogeneities can arise in cardiac tissue because of scar tissues,

blood vessels, connective tissue, or nonmyocyte cells (e.g., fibroblasts). In subse-

quent Chapters, we study various mathematical models that allow for such hetero-

geneities and Purkinje fibers.

The remaining part of this Chapter is organized as follows: In Sec. 1.2, we give a

short overview of the anatomy of a human heart, its electrical conduction system,

and its mechanical function. In Sec. 4.2, we illustrate how to develop mathematical

model for cardiac tissue. In Sec. 1.4, we present a summary of models for various

types of cardiac cells. In Sec. 1.5, we list a number of ventricular models that have

been developed so far; and we discuss the most commonly used ones. In Sec. 1.6,

we present the experimental background that is required for our studies of wave

dynamics in cardiac tissue. In Sec. 1.7, we give an overview of the hypotheses

for the underlying causes for VF to motivate investigations of wave dynamics in

experimental and computational studies. Section 1.8 contains a synopsis of the

studies we carry out in subsequent Chapters.

1.2 Anatomy, mechanical function, and conduction systems

of mammalian hearts

1.2.1 Anatomy of the heart

A human heart is a muscular organ, whose weight is between 200 to 425 grams [10–

12], and it varies with the age and sex of a person. The size of a human heart is

roughly the size of a clenched fist [12]; the hearts of smaller (larger) mammals,

e.g., rabbits (elephants) are considerable smaller (larger) [13]. The heart is lo-

cated in between the lungs and is enclosed by a double-layered membrane called

the pericardium [12]. The heart has four chambers: the upper two are atria and

lower two are the ventricles; the important parts of a human heart are shown by

a schematic diagram in Fig. 1.1(a). The left and right atria, and the left and right

ventricles, are separated by a wall of muscle called the septum. Each chamber of
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Figure 1.1: Schematic diagrams showing (a) the heart anatomy and (b) its conduction

systems. Images taken from: http://www.texasheartinstitute.org/HIC/Anatomy/anatomy2.cfm,

http://mdmedicine.wordpress.com/2011/04/24/heart-conduction-system/.

the heart is composed mainly of a special muscle called the myocardium; the inner,

middle, and outer layers are called the endocardium, the mid-myocardium, and

the epicardium, respectively. The left atrium, right atrium, left ventricle, and right

ventricle wall thicknesses are typically, 3, 2, 8 − 15, and 3 − 5 mm [14, 15]; the left-

ventricle wall is thicker than those of the other chambers of the heart and, because

of that, it can generate sufficient mechanical force to pump the blood into various

parts of the body. A healthy human heart in normal physiological conditions, beats

periodically, on an average, 72 times per minute. This generates the necessary me-

chanical force to pump blood out of the heart. Each heart beat is generated by a

wave of electrical stimulation, which spreads across the heart.

1.2.2 Heart conduction system

The electrical excitation waves, which arise from single-cell action potentials (APs),

originate from the natural pacemaker of the heart, namely, the sino-atrial node

(SAN), which lies at the top of the right atrium. The SAN has capable to fire

trains of APs automatically, between 72 to 100 times per minute [16], at regular

intervals, in a normal, healthy, human heart. There are other types of cardiac cells,

which have potential to fire APs rhythmically. In particular, the atrio-ventricular

node (AVN) and Purkinje fibers are well known for their authorhythmic activities;

the AVN can fire 40 − 60 pulses per minute and Purkinje fibers 10 − 20 pulses per
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minute [16,17]. However, in a healthy, working heart, they normally do not exhibit

their autorhthmic activities, because of the higher firing rate of the SAN dominates

the autorhythmic activities of both the SAN and Purkinje fibers. The excitations

generated at the SAN travels to Brachman’s Bundle (Fig. 1.1b) and the internodal

tracts, which are, roughly speaking, the electrical conducting wires of the right

and left atria, respectively. The excitation reaches at the AVN with a delay time

0.2 s via the the three internodal tracts (Fig. 1.1(b)); then the waves travel to the

lower part of the heart conduction system, namely, the Purkinje fibers through the

Bundle branch. Such Purkinje fibers form a network-type structure, which spreads

over the interior of the ventricular heart walls and helps to excite the entire left

and right ventricular muscles . The time required to activate the whole network of

the heart-conduction system is roughly 0.8 s.

1.2.3 Mechanical function of the heart

The electrical activities of the heart are coupled with its mechanical activities [18],

i.e., the electrical excitations generate the mechanical force that is required to

pump blood from the left ventricle to the whole body. Heart tissue has muscle

fibers, whose orientation leads to anisotropy in the tissue; this anisotropy helps to

generate the force required to push blood from the heart to the organs of the body.

The mechanical activities of the heart start from the two upper chambers, atria,

followed by the two lower chambers, ventricles. Note that the contraction and ex-

pansion phases occur in a coherent way in the upper chambers followed by those

in the lower chambers; the loss of such coherent process leads to dysfunction of the

heart.

The contraction of the right atrium helps to push blood to the right ventricle

through the tricuspid valve; the opening of the mitral valve allows the flow of blood

from the left atrium to the left ventricle. De-oxygenated blood comes from various

parts of the body; it is received by the right atrium via the superior and inferior

vena cavae (see Fig 1.1(a)); it flows into the right ventricle, because of the contrac-

tion of the right atrium. When the right ventricle contracts, the pulmonary valve

opens and allows the de-oxygenated blood to flow from the right ventricle to the

lungs via the pulmonary artery; the de-oxygenated blood is mixed with oxygen and

returns to the left atrium; when the right atrium contracts, the blood enters to the

left ventricle; this whole process, called a cardiac cycle, takes approximately 0.8

sec.
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Figure 1.2: (a) A schematic diagram describing the ion movement through voltage-gated ion chan-

nels; it has 6 components of nonlinear current, 4 components of linear current and 2 source cur-

rents [41], (b) an equivalent electrical circuit.

1.3 Modelling Cardiac Tissue

The membrane of a cardiac cell can be thought of in terms of an equivalent elec-

trical circuit [19–21] in which the cell membrane behaves like a capacitor because

of the charge accumulation across it. The potential across the membrane, because

of the gradient of an ionic concentration, is called the Nernst potential for that

ionic species. These Nernst potentials are represented by batteries; and the ion-

selective channels by resistors, which are connected in parallel with the capacitor.

Figure. 1.2 shows schematic diagrams of a cardiac cell and its RC-circuit analog.

If we inject an external current Iext into the extra-cellular space of the cell, then

Kirchhoff’s current law yields

Iext = IC + IR, (1.1)

where IC and IR are, respectively, the currents shown in Fig. 1.2(b). Equa-

tion (1.1) can be rewritten as

Cm

dVm

dt
= −∑

k

Ik + Iext, (1.2)

where Cm is the cell capacitance per unit surface area, the transmembrane po-

tential Vm is the voltage difference between intra- and extra-cellular space , and

∑
k

Ik is the sum of all ionic currents that cross the cell membrane. Thus, a sin-

gle cardiac cell with realistic physiological variables can be modelled by using the

following set of equations [22]:

Cm

∂Vm

∂t
= −∑

k

Ik; (1.3)
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Figure 1.3: (a) A schematic diagram shows the flow of axial and transmembrane currents in a

cable; the cable is discretized to small pieces with length ∆x. (b) The equivalent electrical circuit

of the cable; the transmembrane of each piece of cable is represented by an RC circuit and they are

connected to each other parallelly by axial resistance ra∆x. Here Ia is the axial current, Im is the

membrane current per unit length, ra is the axial resistance per unit length, rm is the membrane

resistance per unit length, and cm is the membrane capacitance per unit length.

The current density Ik depends on Vm in a complicated manner; this can be

represented by following equation:

Ik = Gkx
1
sx

2
s . . . x

n
s (Vm − Vk); (1.4)

here, xi
k, for 1 ≤ i ≤ n, is the gating variable of a particular ion channel of species

k; such variables control the ionic dynamics across the cell membrane. Gk is the

conductance associated with a particular ion channel, for the kth ion species, Vk is

the equilibrium potential of the ion species k. The gating variables evolve according

to the following ordinary differential equations

dxk

dt
=
xk∞(Vm) − xk

τk(Vm)
(1.5)

where xk∞ is the steady-state value of a single gating variable xk (i.e. its value for

dx/dt = 0, and τk is a time constant describing the return of x to its steady-state

value x∞ following a voltage perturbation. The voltage dependence of both x∞ and
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τx can be determined from experimental data.

d[k]
dt
= ∑

i

I ik(Vm, k) (1.6)

here [k] represents the concentration of ion species k.

The set of equations in 1.3, 1.4, 1.5, and 1.3 can explain the electrophysiological

properties, at the cellular level, such as cardiac AP, AP morphology, and action

potential restitution.

Cardiac cells are coupled via gap junctions [20, 21, 23], which are networks of

protein channels that allows the passage of ions, hormones, and neurotransmit-

ters, from cell to cell. The propagation of biological signals, such as, electrical

excitation, from cell to cell can be modelled by a continuum model that is called

the cable equation, derived by Lord Kelvin in 1855 in the context of the flow of

electricity in a leaky cable [24]. Cardiac cells are roughly cylindrical, with length

≃ 100 µm and radius ≃ 10 − 30 µm [20, 21], so a strand of such cells can be approx-

imated as a cylindrical cable (Fig. 1.3(a)); here, the membrane of a subcylindrical

part of a cable, with length ∆x, corresponds to a parallel RC circuit (see Eq. 1.2).

The total current through this membrane patch of each piece of cable is Im(xi)∆x,

where Im(xi) is the membrane current per unit length. Note that the membrane

current varies with distance x down the cylinder, therefore, if we multiply Im(xi)
by ∆x we obtain the total current that passes across the membrane. Similarly, by

multiplying ∆x with the membrane capacitance per unit length, cm, and the axial

resistance per unit length, ra, we get the total capacitance and the axial resistance

of the subcylindrical part of the cable. If we now assume ohmic resistance, the axial

current Ia(xi) is
Vm(xi) − Vm(xi+1) = Ia(xi)ra∆x. (1.7)

Current conservation law now yields

Ia(xi) − Ia(xi−1) = −Im(xi)∆x. (1.8)

If we take the limit, ∆x→ 0, Eqs. 1.7 and 1.8 become

lim
∆x→0

Vm(xi+1) − Vm(xi)
∆x

= −Ia(xi)ra, (1.9)

or
∂Vm

∂x
= −Iara, (1.10)

and

lim
∆x→0

Ia(xi) − Ia(xi−1)
∆x

= −Im(xi), (1.11)
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or
∂Ia

∂x
= −Im. (1.12)

By combining Eqs. 1.10 and 1.12 we get

1

ra

∂2Vm

∂2x
= Im. (1.13)

According to Eq. 1.2, the total transmembrane current is the sum of the capaci-

tive and resistive currents, i.e.,

Im = cm
∂Vm

∂t
+ iion (1.14)

If we combine Eqs. 1.13 and 1.14,

1

ra

∂2Vm

∂2x
= cm

dVm

dt
+ iion, (1.15)

where ra, iion, and cm are the axial resistance, membrane ionic current, and the

capacitance per unit length of the fiber. Experiments yield Ra, Iion, and Cm, which

are the specific axial resistance (kΩ− cm), the membrane current density (µA/cm2),

and the capacitance density (µF /cm2). The relation between the normalized and

the measured variables are given below:

ra =
Ra

πa2
,

cm = 2πaCm,

iion = 2πaIion, (1.16)

where a is the fiber radius.

From Eqs. 1.15 and 1.16, we obtain the following cable equation

1

Ra(2πa/πa2)Cm

∂2Vm

∂2x
=
∂Vm

∂t
+ Iion (1.17)

or

∂Vm

∂t
=D

∂2Vm

∂2x
−
Iion

Cm

(1.18)

where, D is a diffusion coefficient in the above equation that is of the Reaction-

Diffusion type. In principle, D should be a tensor rather than a scalar, so

dV

dt
= ∇.D∇V −

Iion

Cm

. (1.19)
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Equation 1.19 is derived by assuming that the extracellular space is more con-

ducting than the intra cellular space, therefore, the contribution of the extra-

cellular potential (Ve) to the transmembrane potential (Vm = Vi − Ve) is effectively

zero. The model described above is based on a single domain, in which we neglect

the contribution of the extra-cellular space; thus, Eq. 1.19 is called a monodomain

model.

In fact, the cardiac cell is not a single domain. When we take into account the

contribution of the extra-cellular space (i.e., Ve is no more negligible), we have to

use a bidomain model; which was first proposed by Schimtt, et al. [25] and the

mathematical formulation for this model was developed by several groups [26–28].

More discussions about this model can be found in Ref. [29]. The model is based on

the following set of two partial-differential-equations:

∂Vm

∂t
= −

Iion

Cm

+
1

AmCm

[∇.(σi∇Vm) +∇.(σi∇Ve)] ,
∇. [(σi + σe)∇Ve] = −∇.(σi∇Vm), (1.20)

where Vm is the transmembrane potential, Ve is the extracellular potential, Am

is the surface to volume ratio, Cm is the membrane capacitance per unit area, σi is

the intracellular conductivity tensor, and σe is the extracellular conductivity tensor.

We will not use bidomain models in this thesis; a recent study in Ref. [30] have

shown that there are no significant qualitative differences between bidomain and

monodomain models.

1.4 Mathematical Models of Cardiac Cells

A cardiac cell, called a myocyte, is excitable [20,21] in the sense that sub-threshold

perturbations decay, whereas, super-threshold ones lead to an action potential

(AP). Once excited, the medium cannot be reexcited for a certain period of time

known as the refractory period [20,21]. A typical AP, generated from a mathemat-

ical model of a myocyte cell is shown in Fig. 5.2. The specific model that we have

used here is the TNNP04 and the TP06 models that is derived completely in the

next Section and the Appendix. Similar models have been developed for Purkinje,

atria, sino-atrial node (SAN), and atrio-ventricular node cells [35]; among these

cells, the SAN, the AVN, and the Purkinje cells are autorhythimic, whereas, the

atrial and ventricular cells are excitable. Apart from these cells, there are other

type of non-myocyte cells that can be found in mammalian hearts. Fibroblasts are

among such cells; these cells play an important role in cardiac remodelling after
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Figure 1.4: An example of a cardiac action potential generated by using the TNNP04 model (see

Appendix) for a human ventricular cell: (1) The action potential upstroke or rapid depolarization,

(2) rapid repolarization, (3) the plateau stage, (4) the final stage of repolarization, and (5) the resting

state.

injuries or a myocardial infarction [31, 32]; they also contribute to generating me-

chanical force in heart. Such nonexcitable cells can be modelled by passive RC

circuits [33, 34]. A list of models for various parts of the heart conduction system

can be found in Ref. [35].

1.5 Mathematical Models of Ventricular Cell

In Sec. 4.2 we have derived a set of mathematical equations that can be used to

develop mathematical models for cardiac cells; these set of Eqs. 1.3, 1.4, 1.5, and

1.3 describe the dynamics of electrophysiological properties at cellular and tissue

levels. A large number of ventricular-cell models have been developed to study the

dynamics at cellular, tissue, and organ levels. There are also many complex ven-

tricular models with details of ion-channel kinematics and ionic-concentration dy-

namics; these have been developed for both human and other mammalian species



1.5. Mathematical Models of Ventricular Cell 11

to understand the role of ion-channel-blocking drugs on electrophysiological prop-

erties, and thereby, their effects on fibrillation, whose mathematical analogs are

spiral and scroll waves in mathematical models. We give a brief overview of such

ionic models, starting from simple, two-variable models to complex physiologically

realistic ionic models for ventricular cells.

The first attempt was made, about three-and-half decades ago, by Beeler and

Reuter [36] (the BR model). They constructed an ionic model for a ventricular cell

by fitting the ionic-current data, available at that time from voltage-clamp mea-

surements; their ionic-current formulation for the model was based on Hodgkin-

Huxley-type equations. The model consists of 4 ionic currents, namely, the in-

ward sodium current, INa, the slow, inward current, Is, carried by calcium ions,

the time-independent, outward current due to potassium, IK1, and voltage- and

time-dependent currents due to potassium, IX1. It uses 8 variables: (a) 1 for the

transmembrane potential Vm, (b) 6 for the ion-channel gates, namely, m, h, j, d, f ,

and x1, and (c) 1 for Ca2+ ion concentration dynamics. The BR model is the first

ionic model, which was used to reproduce an action potential (AP), computationally,

for a ventricular cell.

A realistic ionic model for a ventricular cell has been developed by Luo and

Rudy [37] (the LR-I model) in 1991 for a guinea pig. This model is an improvement

over the BR model because it includes more ionic currents and uses intracellular

calcium dynamics. The model includes 6 components of ionic current: (a) the fast

sodium current INa, (b) the slow inward current Isi, (c) the time-dependent potas-

sium current IK , (d) the time-independent potassium current IK1, (e) the plateau-

potassium current IpK , and (f) the background current Ib; it uses 8 variables: (a)

one for Vm, (b) 6 for ion-channel gates, namely, m, h, j, d, f , and x1, and (c) one for

intracellular calcium dynamics.

An improved version of the LR-I model was developed by Luo and Rudy in their

second phase calculation in 1994 [38]; this model includes an ion exchanger, an

ion pump, and detailed dynamics of intracellular calcium ions; it is generally re-

ferred to as the Luo-Rudy phase 2 model (the LRII model). This model consists

of 13 components of ionic current: (a) the fast sodium current INa, (b) the three

components of current through L-type Ca2+ channel, namely, ICa due to Ca2+, ICaK

due to K+, and ICaNa due to Na+, (c) the time-dependent K+ current IK , (d) the

time-independent K+ current IK1, (e) the Na+ − Ca2+ exchanger current INaCa, (f)

the Na+ −K+ pump current INaK , (g) the plateau K+ current IpK , (h) the sarcolem-

mal Ca2+ pump current IpCa, (i) the nonspecific Ca2+-activated current InsCa which

has two components, namely, InsK and InsNa, (j) the Na+ background current IbNa,



1.5. Mathematical Models of Ventricular Cell 12

(k) the Ca2+ background current IbCa. In the LRI model there are 3 components of

currents, which are purely voltage dependent and time independent, IK1, IpK , and

Ib; but, in the LRII model, there are 6 components of purely voltage-dependent and

time-independent currents, IK1, IpK , IbNa, IbCa, INaK , and IpCa. It uses 11 variables:

(a) 1 for Vm, (b) 6 for ion-channel gates, namely, m, h, j, d, f , and x1, and (c) 3 for

Ca2+ ion concentration dynamics, namely, Cai, CaJSR, and CaNSR. The model in-

cludes various compartments, which can regulate the intracellular Ca2+ dynamics;

these are the sarcoplasmic reticulum (SR), which is further divided into two sub-

compartments, namely, the network SR (NSR) and the junctional SR (JSR), and

the myoplasm compartment.

The first mathematical model for a human ventricular cell was published in

2002 by Priebe and Beuckelmann (the PB model) [39]. The PB model is a second-

generation model, like the LRII model, which contains five major ionic currents

based on human-myocyte experimental data; and the remaining currents are adopted

from LR-II model by scaling such a way to fit human cell data. The model consists

of 10 components of ionic current (a) the fast sodium current INa, (b) the L-type

Ca2+ current channel ICa, (c) the transient outward K+ current Ito, (d) the delayed

rectifier K+ current, IK , which has two components, namely, the fast delayed recti-

fier IKr and the slow delayed rectifier IKs, (e) the inward rectifier K+ current IK1,

(f) the Na+ −Ca2+ exchanger current INaCa, (g) the Na+ −K+ pump current INaK , (h)

the background current which has two components, namely, the Na+ background

current IbNa and the Ca2+ background current IbCa; the model does not have plateau

currents. It uses 13 variables: (a) 1 for Vm, (b) 9 for ion-channel gates, namely, m,

h, j, d, f , r, t, Xs and Xr, and (c) 3 for Ca2+ ion-concentration dynamics, namely,

Cai, CaJSR, and CaNSR.

The reduced version of the original PB model, developed by Bernus-Wilders-

Zemlin-Verschelde-Panfilov in 2002 [40] (the redPB), achieved computational effi-

ciency without losing any basic properties (e.g., the AP morphology, the restitution

of APD, and the conduction velocity CV). The reformulated PB model reduced 16

variables of the PB model to 6 variables: (a) 1 for Vm and (b) 5 for ion-channel gates,

namely, m, v, f , t, and X; it excluded the dynamics of intacellular concentrations

by approximating the variables by suitable constants. The redPB model consists

of 9 components of ionic current: (a) the fast sodium current INa, (b) the L-type

Ca2+ current channel ICa, (c) the transient outward K+ current Ito, (d) the delayed

rectifier K+ current IK , (e) the inward rectifier K+ current IK1, (f) the Na+ − Ca2+

exchanger current INaCa, (g) the Na+ −K+ pump current INaK , (h) the background

current, which has two components, namely, the Na+ background current IbNa and
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the Ca2+ background current IbCa. For more details, we refer the reader to Bernus,

et al [40].

The realistic models we study are the ones introduced recently by ten Tusscher,

Noble, Noble, and Panfilov [41] (the TNNP04 model) and the one due to ten Tuss-

cher and Panfilov [42] (the TP06 model). These are based on experimental data ob-

tained from human-ventricular cells. The TNNP04 model allows for variations of

intracellular ion concentration, as in other second-generation models, contains 12

ionic currents, 12 gating variables, one ion pump, and an ion exchanger. All major

ionic currents are included in the TNNP model, e.g., the fast inward sodium cur-

rent INa, the L-type calcium current ICaL, the transient outward potassium current

Ito, the slow, potassium, delayed, rectifier current IKs, the rapid, potassium, de-

layed, rectifier current IKr, and the inward, rectifier potassium current IK1. These

and other currents and the details of the dynamics of calcium ions are given in

Section (A.1) of the Appendix A. The TP06 model [42] is an improvement over the

TNNP04 model; in particular, it includes more calcium dynamics to make it more

realistic than the TNNP04 model. The TP06 model uses 12 ionic currents and 20

variables: The ionic currents INa, Ito, IKr, IK1, INaCa, INaK , IpCa, IpK , IbNa, and IbCa

remain the same as they are in the TNNP04 model; only ICaL and IKs are changed.

The TP06 model includes 3 compartments, namely, the cytoplasm (CY), the sar-

coplasmic reticulum (SR), and the diadic subspace (SS), to explain the dynamics of

the intracellular Ca2+ ion concentration; in contrast, the TNNP04 model does not

have the SS compartment.

In Table 1.1 we list a number of mathematical models that have been developed

for a variety of mammalian ventricular myocytes [36–56] to study the AP morpho-

logical behavior for a myocyte and fibrillation in ventricular tissue. The models

given in the table can be classified into the following four categories: (a) generic

models, (b) first-generation models, (c) second-generation models, and (d) reduced

models.

Generic models contain at least two variables, namely, slow and fast variables;

the fast variable explains the activation process, whereas, slow variable explains

the recovery process for the excitable media including cardiac tissue. There are

models that have three variables; these can be included in the category of generic

models. The model developed by FitzHugh and Nagumo, et al. [44] (FHN model),

Panfilov, et al. [43] (Panfilov model) are familiar examples of the generic-model

class. Example of three-variable models include those of Fenton, et al. [45] (FK

model). Such generic models are useful for exploring generic features of spiral-

wave dynamics in cardiac tissue models.
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Model Year total ionic total ion species model type

currents variables dynamics

BR 1977 4 8 absent – general

LRI 1991 6 9 absent pig first generation

Panfilov 1993 – 3 absent – general

LRII 1994 – – present pig second generation

FK 1998 – 3 absent – general

PB 1998 10 16 present human second generation

PCGD 2001 – – – rat –

redPB 2002 9 6 absent human reduced

MSKON 2003 – – – pig –

BSBKR 2004 – – present mouse –

HR 2004 29 – present canine second generation

SWPWB 2004 – – – rabbit –

IMW 2004 – – present human second generation

TNNP 2004 12 17 present human second generation

redTNNP 2006 12 9 absent human reduced

TP06 2006 12 19 present human second generation

OCF 2008 – 3 absent human 3 variable

MS 2008 – – – rabbit –

GPB 2010 – – absent human 3 variable

HVVR 2011 – – present human second generation

Table 1.1: List of mathematical models for ventricular myocytes. BR: Beeler-Reuter [36];

LRI: Luo-Rudy phase 1 [37]; LRII: Luo-Rudy phase 2 [38]; FK: Fenton-Karma [45]; PB:

Priebe-Beuckelmann [39]; PCGD: :Pandit-Clark-Giles-Demir [46]; redPB: Bernus-Wilders-

Zemlin-Verschelde-Panfilov [40]; MSKON: Matsuoka-Sarai-Kuratomi-Ono-Noma [47]; BSBKR:

Bondarenko-Szigeti-Bett-Kim-Rasmusson [48]; HR: Hund-Rudy [49]; SWPWB: Shannon-Wang-

Puglisi-Weber-Bers [50]; IMW: Iyer-Mazhari-Winslow [51]; TNNP: ten Tusscher-Noble-Noble-

Panfilov [41]; redTNNP: ten Tusscher-Panfilov [52]; TP06: ten Tusscher-Panfilov [42]; MS:

Mahajan-Shiferaw-Sato et al. [54]; OCF: Orovio-Cherry-Fenton [53]; GPB: Grandi-Pasqualini-

Bers [55]; and HVVR: Hara-Virag-Varro-Rudy [56];

The first-generation of ventricular models [36, 37] were developed to study the

AP morphology, such as, the maximum rate of depolarization, the repolarization,

the APD, the resting membrane potential, etc, based on animal cardiac tissue ex-

periments. Ion pumps, exchangers, and intracellular ion dynamics were not in-

cluded in first-generation models, but there were then considered in the second-

generation of the ventricular-cell models [38–41,51] to make them more realistic.

The second-generation models account for detailed intracellular sodium, cal-

cium, and potassium ion concentrations dynamics, with more calcium subspace,

ion pumps, ion exchangers, and more state variables for ionic currents than first-



1.6. Experimental Overview: 15

generation models. Therefore, the models that belong to this second category

are biophysically more realistic than first-generation model. The aim of develop-

ing such complex models is to study the restitution properties and electrical, and

calcium-ion alterations, and their roles in spiral break up. The LRII [38], PB [39],

IMW [51], TNNP [41], and TP06 [42] are familiar examples of second-generation

model. These models are computationally expensive, especially, if we want to study

the details of the spiral- and scroll-wave dynamics. As we will show in subsequent

Chapters, we must work with high-performence computing clusters and use parel-

lel programming to study such models numerically.

Reduced models are the reduced versions of second-generation models; these

are obtained by normalizing intracellular ion concentrations to constant values

and eliminating those variables which do not have significant effects on the ac-

tion potential (AP) and its morphology. These reduced models aim at improving

computational efficiency without losing any basic tissue properties such as the AP,

AP morphology, the restitution of action potential duration, and the restitution of

conduction velocity. However, the models of this class can not be used for the inves-

tigation of calcium-related dynamics. The models developed by Bernus et al. [40]

(the redPB model), ten Tusscher et al. [52] (the redTNNP model), Orovio et al. [53]

(the OCF model), and Grandi et al. [55] (the GPB model) are examples of reduced

models.

Mathematical details of several such models will be given in subsequent Chap-

ters. Analogous models have been developed for cardiac fibroblasts and Purkinje-

fiber cells, as we will discuss in Chapters 3 and 5, respectively.

1.6 Experimental Overview:

A mammalian heart pumps blood because of rhythmical contraction of the atria

and ventricles, which is maintained by the regular electrical activity generated by

the SAN. The atria are electrically insulated from the ventricles except, in a re-

gion known as atrioventricular node (AVN), a specilized conduction path between

the atria and ventricles. The electrical activation generated by the SAN spreads

to the atria and then into the ventricles through the bundle of His and Purkinje

fibers. Any irregularities of this synchronized process affect the pumping action

of the heart and, in extreme cases it ceases to pump blood. This may occur due

to a conduction block between the atria and ventricles, irregular activities in the

atria (atrial fibrillation AF), irregular activities in ventricles (ventricular tachycar-

dia (VT) and ventricular fibrillation VF), or some other reason. Despite decades
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of research, the underlying mechanism of cardiac arrhythmias, such as VF, is still

remains unclear. Ventricular fibrillation (VF), the incoherent activities of ventric-

ular fibers, is the most dangerous among all types of arrhythmias, is believed to

be associated with multiple wandering waves of electrical activation. However, the

recent application of nonlinear dynamics and high-resolution optical mapping tech-

niques [57] have revealed that VF is a self organized phenomena triggered by the

reentrant activities of cardiac excitation. Depending on the nature of reentry, it can

be of two types; (1) anatomical reentry, if there is a relationship of the reentry path-

way to the underlying tissue structure, and (2) functional reentry, with reentrant

circuits at random locations and no clearly defined anatomical circuit. Anatomical

reentry was studied by G. Mines in 1913 by generating a reentrant excitation in a

ring of cardiac muscle obtained from a dog heart [58,59]; this showed that a stim-

ulation at one point on the ring led to the development of a stable circulating wave

in the ring, if the period of excitation wave exceeded the refractory period. Hence

the excitation wavelength (λ), which is roughly the product of the refractory period

(t) and the conduction velocity (v), must be shorter than the entire length (l) of the

anatomically defined reentrant path for a complete rotation. The reexcitation can

be ensured only when there exits a zone called, the excitable gap, which separates

the head of the wave from its own tail. In the presence of an excitable gap, a stable

circulation wave can be seen for more than one hour in the ring. When λ is longer

than l, the wave front collides with its own refractory tail or attempt to move to

the region that has not yet recovered; this produces a conduction block. At inter-

mediate values (i.e., λ ∼ l) waves with unstable rotation periods and with complex

dynamics can be seen. It has been observed that the change of the propagation

velocity (v), within the reentrant circuit, gives a complex relation between the ro-

tation period and the excitable gap. The presence and extent of the excitable gap

is important in the termination of the reentrant activity in the circuit. When a lo-

cal stimulus is applied at the correct position and time, it can capture the tail and

head of the reentrant wave and thus terminate the rotating wave in the circuit.

This idea of terminating, by local pacing, is a great achievement if the arrhythmias

is associated with one-dimensional reentry.

In 1924, a description of reentry phenomena without an anatomical obstacle

was given by Garrey [20, 60]. The first direct experiment on such functional reen-

try was carried out by Allessie in 1973. He used an isolated, left-atrial tissue of

a rabbit [61]. In his experiment, the transmembrane-potential recordings showed

that the cells at the center of the core were not excited. A possible explanation

of this observation was that the depolarization front, which continuously rotate
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around the area, makes it refractory to some extent and leaves the area function-

ally inexcitable.

Excitability is an important property of cardiac tissue; this allows it to support

various spiral waves. It can support a single spiral, whose core emits electrical

activation or multiple spirals that may annihilate or regenerate by random colli-

sion with each other. It has been shown experimentally, a self-sustained single

spiral whose core is stationary leads to monomorphic VT, whereas a drifting spi-

ral is the cause of polymorphic tachycardia [6]. Experiments on slices of dog and

sheep ventricular epicardial muscle revealed that a drifting spiral occasionally at-

tached to small local inhomogeneity in its path in which the electrocardiographic

(ECG) pattern changes from polymorphic to monomorphic by rotating the spiral

around the inhomogeneity [5, 6]. Furthermore, it was also observed the drifting

spiral core drifted towards border of tissue and self-terminated. It is still un-

clear whether a single drifting spiral or multiple spirals are responsible for fib-

rillation. Experimental studies on a rabbit heart, using a high-resolution elec-

tronic cameras and voltage-sensitive dyes have shown that a single, rapidly mov-

ing three-dimensional spiral (i.e., scroll wave), whose tip trajectory wanders in

the medium can produce complex patterns in the ECG; these patterns are indis-

tinguishable from those accompany fibrillation [62]. Similar behaviors have been

observed in a sheep heart [63] during ventricular fibrillation. Multiple spirals have

been detected at the time of fibrillation in experiments on dog, rabbit, and sheep

hearts [7, 64, 65]. These experiments have shown that frequent wave-front colli-

sion and wave breaks are dominant features during the early phase of fibrillation;

and there is also a high degree of temporal and spatial organization of spiral ac-

tivations. Recent experiments on human heart which have used a data-mapping

technique for the ventricular epicardium have revealed that both the periodic and

multiple sources exist in the fibrillation phase [66,67].

Despite decades of research on VF, the precise mechanisms of fibrillation are

not completely clear. The main reason is that the currently available data record-

ing techniques can either record the electrical activation from the surface of the

body or the epicardial surface. Therefore, it is not possible to characterize and dis-

tinguish clearly the spatiotemporal pattern of cardiac activities during the onset

of arrhythmias. These may arise from an abnormal, localized focus or a reentry

pathway or a combination of both.
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1.7 Mechanisms of Ventricular Fibrillation

As we have mentioned above the mechanisms of VF is still unclear; so it is not

possible to develop a concrete theory [68, 69] that can explain the mechanisms of

VF. It is for this reason that computational studies of mathematical models for

cardiac tissue, of the type that we carry out in the subsequent Chapters of this

thesis, play an important in developing and understanding of cardiac arrhythmias.

Such in silico computational studies complement in vitro and in vivo studies of

cardiac arrhythmias. Before we give an overview of our computational studies, we

sketch the four leading hypotheses for mechanisms behind VF. These are the (a)

critical-mass, (b) multiple-wavelet, (c) focal-source, and (d) restitution hypotheses.

1.7.1 Critical mass hypothesis

The critical-mass hypothesis was first proposed by Garrey in 1914 [70,71] and then

investigated by various groups [72–74]. According to this hypothesis a critical mass

of cardiac tissue is required to sustain fibrillation; this critical mass depends on the

refractory period of spiral waves in cardiac tissue. Spiral-wave activation is termi-

nated if the size of the tissue is less than the critical size. Recent studies [75, 76]

have reevaluated the role of tissue size in fibrillation and, thereby, the critical-mass

hypothesis. For example, studies in Qu, et al. [75] have evaluated the importance

of this hypothesis in fibrillation by focusing on the transient time, the size, and the

shape of tissue. And Byrd, et al. [76] have investigated the relationship between

tissue geometry and atrial fibrillation (AF) for a canine heart.

1.7.2 Multiple wavelet hypothesis

Themultiple-wavelet hypothesis was suggested byMoe, almost five decades ago [77,

78]. According this hypothesis, multiple spirals are responsible for fibrillation,

which is maintained by the spontaneous creation and annihilation of spiral waves.

A direct test of this hypothesis was performed by Allessie et al. [79], by record-

ing ECG from fibrillating canine atria simultaneously; the activation pattern from

their studies was compatible with the multiple-wavelet hypothesis.

Recent experimental and computational studies [67, 80, 81] have investigated

the role of multiple waves in fibrillation. For example, Wu, et al. [80] have found

the existence of multiple waves on the epicardial surface of a rabbit heart; Nash

et al. [67] have found the existence of multiple waves during VF on the epicar-

dial surface of a human heart. Among computational studies, Wu, et al. [80] have
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studied the maintenance of fibrillation because of multiple waves in their three-

dimensional (3D) tissue-slab simulation; Keldermann, et al. [81] have studied the

role of multiple waves in ventricular fibrillation in an anatomically realistic geom-

etry for human ventricles, with an ionic model developed by ten Tusscher et al. [41]

(the TNNP04 model). For an overview of such computational studies see Ref. [22].

1.7.3 Focal source hypothesis

The focal-source hypothesis suggests that a single, rapidly firing focal source is re-

sponsible for the maintenance of VF in cardiac tissue. This focal source appears

normally in two ways: (a) because of a group of abnormal cells, which are capa-

ble to firing action potentials periodically, or (b) because of a single rotating spiral,

known as the mother rotor which has a core that emits electrical waves in the

form of spiral arms. Source (a) is widely used in studies of AF [82–85] to under-

stand the mechanisms of AF and, therefore, to control AF by suppressing the focal

sites by ablation procedures [86–89]. For example, recent studies by Haı̈ssaguerre,

et al. [86], have shown that pulmonary veins are an important source of ectopic

beats; and these foci are responsible in triggering and maintaining AF; these au-

thors have shown that AF can be removed from the atria by suppressing these foci

by using radio-frequency ablation. For other similar studies see Refs. [87,88]. Ex-

periments on ventricular tissue [80,90,91] have also suggested that a rapidly firing

focal source from abnormal sites, has the capability to maintain VF.

Fibrillation maintained by a mother rotor, known as the motor-rotor hypothe-

sis [67,69,92–94], was first proposed by Lewis [95], and later by Gurvich [96]. The

importance of such a rotor in VF is described systematically in the review article by

Jalife et al. [71]. According this hypothesis single rotating spiral- or scroll-waves of

electrical activation are responsible for maintaining fibrillation. Such rotors can be

(a) anchored to an anatomic heterogeneity, or (b) can exist without a heterogeneity.

Both types of rotors emit electrical wave fronts that spread across the myocardium;

these wave fronts may break up, to generate temporally unstable rotors, called

daughter rotors, which exist for short durations and do not have any regular, re-

peating activation sequences, like the mother rotor. A mother rotor attached to an

anatomical heterogeneity has been investigated in both experimental [5–8,97] and

computational studies [8,9,97]. For example, Davidenko et al. [5], have studied spi-

ral waves in thin slices of dog and sheep ventricular epicardial muscle and found

the anchoring of a spiral wave around the small arteries or bands of connective

tissue; similar studies by Pertsov et al. [6], have found that a rotor attached to a

small arteries or other heterogeneities; Wu et al. [80] have found the existence of a
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mother rotor anchored to the papillary muscle of the left ventricle of a rabbit heart;

Lim et al. [98] have studied the electrical activation of spiral waves in in culture

monolayer of neonatal rat cardiomyocytes and they have found that a spiral wave

can be attached to an anatomical heterogeneity, such as an obstacle. A mother ro-

tor without an anatomic heterogeneity has also been investigated in experiments.

For example, Gray, et al. [62] have shown the existence of a rapidly moving rotor on

the surface of the isolated rabbit heart during VF; Samie, et al. [97] have studied

Langendorff-perfused guinea-pig hearts and showed that the existence of mother

rotor located on the anterior left ventricular wall; Nash et al. [67] have found the

existence of mother rotor during VF on the epicardial surface of a human heart.

Computational studies have also shown that spiral waves can be attached to het-

erogeneities in mathematical models of cardiac tissue; e.g., Shajahan et al. [99],

have investigated the spiral-wave dynamics in cardiac-tissue model. For other il-

lustrative computational studies we refer the readers to Refs. [6, 62, 80, 81, 97].

Such experimental and computational studies have suggested that the existence of

mother rotors in cardiac tissue and elucidated their important role in fibrillation.

1.7.4 Restitution hypothesis

Recently developed advanced techniques can easily carry out in cell-culture experi-

ments in pure homogeneous systems, which do not have any pre-existing disorders.

And now computer simulation is a powerful tool for performing numerical exper-

iments on mathematical models for cardiac tisuue with realistic models several

biophysical details. Such studies reveal that VF is possible in a completely ho-

mogeneous systems. Whether VF occurs in such systems can be determined by

studying (a) the restitution of the action potential duration (APDR) and (b) the

restitution of the conduction velocity (CVR) as explained in Refs. [42,100–105]. We

will use this in Chapter 5.

1.8 A summary of the problems studied in this Thesis

In this thesis we focus on spiral-wave dynamics in mathematical models of human

ventricular tissue which contain (a) conduction inhomogeneities, (b) ionic inhomo-

geneities, (c) fibroblasts, (d) Purkinje fibers. We also study the effect of a periodic

deformation of the simulation domain on spiral wave-dynamics. Chapter 2 contains

our study of “Spiral-Wave Dynamics and Its Control in the Presence of Inhomo-

geneities in Two Mathematical Models for Human Cardiac Tissue”; this Chapter

follows closely parts of a paper we have published [99]. Chapter 3 contains our
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study of “Spiral-wave dynamics in a Mathematical Model of Human Ventricular

Tissue with Myocytes and Fibroblasts ”; this chapter follows closely a paper that

we have submitted for publication. Chapter 4 contains our study of “Spiral-wave

Dynamics in Ionically Realistic Mathematical Models for Human Ventricular Tis-

sue: The Effects of Periodic Deformation”; this chapter follows closely a paper that

we have submitted for publication. Chapter 5 contains our study of “Spiral-wave

dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes

and Purkinje fibers”; this chapter follows closely a paper that we will submit for

publication soon.

In Chapter 2, we study systematically the APmorphology for the TNNP04model

of cardiac tissue; we also look at the contribution of individual ionic currents to the

AP by partially or completely blocking ion channels associated with the ionic cur-

rents. We then carry out systematic studies of plane-wave and circular-wave dy-

namics in the TNNP04 model for cardiac tissue model. We present a detailed and

systematic study of spiral-wave turbulence and spatiotemporal chaos in two math-

ematical models for human cardiac tissue, namely, the TNNP04 model and the

TP06 model. In particular, we use extensive numerical simulations to elucidate

the interaction of spiral waves in these models with conduction and ionic inhomo-

geneities. Our central qualitative result is that, in all these models, the dynamics

of such spiral waves depends very sensitively on such inhomogeneities. A major

goal here is to develop low-amplitude defibrillation schemes for the elimination

of VT and VF, especially in the presence of inhomogeneities that occur commonly

in cardiac tissue. Therefore, we study a control scheme [106, 107] that has been

suggested for the control of spiral turbulence, via low-amplitude current pulses, in

such mathematical models for cardiac tissue; our investigations here are designed

to examine the efficacy of such control scheme in the presence of inhomogeneities

in biophysical realistic models. We find that a scheme that uses control pulses

on a spatially extended mesh is more successful in the elimination of spiral tur-

bulence than other control schemes. We discuss the theoretical and experimental

implications of our study that have a direct bearing on defibrillation, the control of

life-threatening cardiac arrhythmias such as ventricular fibrillation.

In Chapter 3, we study the role of cardiac fibroblasts in ventricular tissue; we

use the TNNP04 model for the myocyte cell, and the fibroblasts are modelled as

passive cells. Cardiac fibroblasts, when coupled functionally with myocytes, can

modulate their electrophysiological properties at both cellular and tissue levels.

Therefore, it is important to study the effects of such fibroblasts when they are

coupled with myocytes. Chapter 3 contains our detailed and systematic study of
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spiral-wave dynamics in the presence of fibroblasts in both homogeneous and in-

homogenous domains of a state-of-the-art mathematical model for human ventric-

ular tissue due to ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model).

We carry out extensive numerical studies of such modulation of electrophysiologi-

cal properties in mathematical models for (a) single myocyte-fibroblast (MF) units

and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones

and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units

elucidate the dependence of the action-potential (AP) morphology on parameters

such as Ef , the fibroblast resting-membrane potential, the fibroblast conductance

Gf , and the MF gap-junctional coupling Ggap. Furthermore, we find that our MF

composite can show autorhythmic and oscillatory behaviors in addition to an ex-

citable response. Our 2D studies use (a) both homogeneous and inhomogeneous

distributions of fibroblasts, (b) various ranges for parameters such as Ggap, Gf , and

Ef , and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided

connections of fibroblasts with myocytes. We show, in particular, that the plane-

wave conduction velocity CV decreases as a function of Ggap, for zero-sided and

one-sided couplings; however, for two-sided coupling, CV decreases initially and

then increases as a function of Ggap, and, eventually, we observe that conduction

failure occurs for low values of Ggap. In our homogeneous studies, we find that the

rotation speed and stability of a spiral wave can be controlled either by controlling

Ggap or Ef . Our studies with fibroblast inhomogeneities show that a spiral wave

can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a

low-amplitude control scheme, which has been suggested for the control of spiral-

wave turbulence in mathematical models for cardiac tissue, in our MF model both

with and without heterogeneities.

In Chapter 4, we carry out a detailed, systematic study of spiral-wave dynamics

in the presence of periodic deformation (PD) in two state-of-the-art mathematical

models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06

model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model). To

the best of our knowledge, our work is the first, systematic study of the dynamics

of spiral waves of electrical activation and their transitions, in the presence of

PD, in such biophysically realistic mathematical models of cardiac tissue. In our

studies, we use three types of initial conditions whose time evolutions lead to the

following states in the absence of PD: (a) a single rotating spiral (RS), (b) a spiral-

turbulence (ST) state, with a single meandering spiral, and (c) an ST state with

multiple broken spirals for both these models. We then show that the imposition

of PD in these three cases leads to a rich variety of spatiotemporal patterns in
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the transmembrane potential including states with (a) an RS state with n-cycle

temporal evolution (here n is a positive integer), (b) rotating-spiral states with

quasiperiodic (QP) temporal evolution, (c) a state with a single meandering spiral

MS, which displays spatiotemporal chaos, (d) an ST state, with multiple broken

spirals, and (e) a quiescent state SA in which all spirals are absorbed. For all

three initial conditions, precisely which one of the states is obtained depends on the

amplitudes and the frequencies of the PD in the x and y directions. We also suggest

specific experiments that can test the results of our simulations. We also study, in

the presence of PD, the efficacy of a low-amplitude control scheme that has been

suggested, hitherto only without PD, for the control of spiral-wave turbulence, via

low-amplitude current pulses applied on a square mesh, in mathematical models

for cardiac tissue. We also develop line-mesh and rectangular-mesh variants of this

control scheme. We find that square- and line-mesh-based, low-amplitude control

schemes suppress spiral-wave turbulence in both the TP06 and TNNP04 models

in the absence of PD; however, we show that the line-based scheme works with PD

only if the PD is applied along one spatial direction. We then demonstrate that

a minor modification of our line-based control scheme can suppress spiral-wave

turbulence: in particular, we introduce a rectangular-mesh-based control scheme,

in which we add a few control lines perpendicular to the parallel lines of the line-

based control scheme; this rectangular-mesh scheme is a significant improvement

over the square-mesh scheme because it uses fewer control lines than the one based

on a square mesh.

In Chapter 5, we have carried out detailed numerical studies of (a) a single unit

of an endocardial cell and Purkinje cell (EP) composite and (b) a two-dimensional

bilayer, which contains such EP composites at each site. We have considered bio-

physically realistic ionic models for human endocardial cells (Ecells) [42] and Purk-

inje cells (Pcells) [108] to model EP composites. Our study has been designed to

elucidate the sensitive dependence, on parameters and initial conditions, of (a) the

dynamics of EP composites and (b) the spatiotemporal evolution of spiral waves

of electrical activation in EP-bilayer domains. We examine this dependence on

myocyte parameters by using the three different parameter sets P1, P2, and P3;
to elucidate the initial-condition dependence we vary the time at which we apply

the S2 pulse in our S1-S2 protocol; we also investigate the dependence of the spa-

tiotemporal dynamics of our system on the EP coupling Dgap, and on the number of

Purkinje-ventricular junctions (PVJs), which are measured here by the ratioR, the
ratio of the total number of sites to the number of PVJs in our simulation domain.
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Our studies on EP composites show that the frequency of autorhythimic activity

of a P cell depends on the diffusive gap-junctional conductance Dgap. We perform

a set of simulations to understand the source-sink relation between the E and P

cells in an EP composite; such a source-sink relation is an important determinant

of wave dynamics at the tissue level. Furthermore, we have studied the restitution

properties of an isolated E cell and a composite EP unit to uncover this effect on

wave dynamics in 2D, bilayers of EP composites.

Autorhythmicity is an important property of Purkinje cell; it helps to carry elec-

trical signals rapidly from bundle of His to the endocardium. Our investigation

of an EP composite shows that the cycle length (CL) of autorhythimic activity de-

creases, compared to that of an uncoupled Purkinje cell. Furthermore, we find that

the APD increases for an EP composite, compared to that of an uncoupled P cell.

In our second set of simulations for an EP-composite unit, we have obtained the

AP behaviors and the amount of flux that flows from the E to the P cell during the

course of the AP. The direction of flow of this flux is an important quantity that

identifies which one of these cells act as a source or a sink in this EP composite.

We have found that the P cell in an EP composite acts as a stimulation-current

source for the E cell in the depolarization phase of the AP, when the stimulus is

applied to both cells or to the P cell only. However, the P cell behaves both as a

source and a sink when the stimulus is applied to the E cell only. In our third

set of simulations for an EP composite unit, we have calculated the restitution of

the APD; this plays an important role in deciding the stability of spiral waves in

mathematical models for cardiac tissue. Our simulation shows that, for the EP

composite with high coupling (Dgap = Dmm/10), the APDR slope decreases, relative

to its value for an isolated E cell, for parameter sets P1 and P2, and first increases

(for 50 ≤DI ≤ 100ms) and then decreases for the parameter set P3 ; however, for low

coupling (Dgap = Dmm/100), the variation of the APD as function of DI, for an EP

comppsite, shows biphasic behavior for all these three parameter sets. We found

that the above dynamics in EP cable type domains, with EP composites, depends

sensitively on R.
We hope our in silico studies of spiral-wave dynamics in a variety of state-of-the-

art ionic models for ventricular tissue will stimulate more experimental studies

that examine such dynamics.
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Chapter 2

Spiral-Wave Dynamics and Its Control in the

Presence of Inhomogeneities in Two Mathematical

Models for Human Cardiac Tissue

This Chapter is based to a large extent on the following paper: Shajahan TK,

Nayak AR, Pandit R (2009) Spiral-wave turbulence and its control in the presence

of inhomogeneities in four mathematical models of cardiac tissue. PLoS One 4(3):

e4738. This paper reports our work on Spiral-wave turbulence and its control in the

presence of inhomogeneities in four different models of cardiac tissue, namely, Pan-

filov [1], Luo-Rudy Phase I (LRI) [2], reduced Priebe-Beuckelmann (rPB) [4], and

the TNNP04 [3] models. The calculation on the TNNP04-model part of this paper

were carried out by me and they are discussed in this Chapter. In addition, I have

carried out similar calculations with the TP06 model [5] for human ventricular tis-

sue; this is even more sophisticated than the TNNP04 model. These results for the

TP06 model are reported in this thesis for the first time.

2.1 Introduction

Regular electrical activation waves in cardiac tissue lead to the rhythmic contrac-

tion and expansion of the heart, which that ensures blood supply to the whole body.

Irregularities in the propagation of these activation waves can result in cardiac ar-

rhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF) [6,7],

which are major causes of death in the industrialised world. Despite decades of re-

search, the underlying mechanism of cardiac arrhythmias, such as VT and VF, is

still not clearly understood. Experimental studies over the past decade or so have

suggested that VT is associated with an unbroken spiral wave of electrical activa-

tion on cardiac tissue but VF with broken spiral waves [8–10]. There is growing

34
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consensus [11, 12] that the analogs of VT and VF in mathematical models for car-

diac tissue are, respectively, (a) a single rotating spiral wave in two dimensions

(2D) or a scroll wave in three dimensions (3D) and (b) spiral-wave or scroll-wave

turbulence [13–15]. It is imperative, therefore, to study spiral- and scroll-wave

turbulence systematically in such mathematical models.

There are several mathematical models for ventricular tissue have been devel-

oped, so far, for both non-human and human species [2, 3, 5, 16–18] (see, Table 1.1

in Chapter 1). However, to the best of our knowledge, none of the studies had in-

vestigated systematically spiral wave-dynamics in (a) a homogeneous domain, and

(b) a domain with heterogeneities, especially, conduction and ionic-type inhomo-

geneities in ionically realistic models for cardiac tissue until our study in Ref. [31]

on which we base this Chapter.

We study two biophysically realistic mathematical models of human ventricu-

lar tissue, namely, the models due to (a) ten-Tusscher, Noble, Noble, and Panfilov

(the TNNP04 model) [3] and (b) ten-Tusscher and Panfilov (the TP06 model) [5];

in particular, we look at the interaction of spiral waves with conduction and ionic

inhomogeneities. Such heterogeneities arise in cardiac tissue in the form of (1) epi-

cardial coronary arteries, (2) papillary muscles, (3) transmural sites with abrupt

fiber-orientation changes, (4) increased fibrosis from cardiomyopathy, (5) a myocar-

dial infarction that leads to ischemia, the subsequent damage or death of the af-

fected cardiac cells, and, in the latter case, the formation of scar tissue that is

nonconducting, (7) chronic heart failure, (8) genetic disorders, (9) the presence of

major blood vessels, (10) intercalated disc, and (11) non-myocyte cells. Before we

present the central results of our numerical calculation, we give a brief overview of

some of the important studies that are related to various types of heterogeneities

in cardiac tissue; and we discuss their role in VT and VF.

Conduction inhomogeneities in cardiac tissue can affect spiral waves in several

ways. Experimental studies [19–21] have found that such inhomogeneities can an-

chor a spiral wave or, in some cases, can even eliminate it completely [9]. Studies

of the dependence of such anchoring on the size of the obstacle [19–21] reveal that

the larger the obstacle the more likely is the anchoring; however, even if the ob-

stacle is large, the wave might not attach to it; furthermore, small obstacles can

anchor spiral waves, albeit infrequently [21]. Such behaviors have also been seen

in numerical simulations of spiral-wave turbulence in models for cardiac tissue:

In particular, Xie, et al. [22], have studied the dynamics of spiral waves in the

LRI model in a two-dimensional (2D) circular domain with a circular hole in the

middle: The parameters and initial condition are so chosen that, without the hole,
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spiral waves break up in the simulation domain. By shrinking the radius of the

hole, the system is changed continuously from a 1D ring to 2D tissue with an ob-

stacle, and, finally, to homogeneous 2D tissue [the hole radius is changed from that

of the simulation domain (≃ 9.2 cm) to zero]. When the radius of the hole is very

large, the system is effectively a 1D ring; the wave just goes around this ring. As

the radius of the hole is decreased, the wave appears as a spiral anchored on the

hole but rotating around it periodically, if the hole is large. As the hole radius is

decreased, a transition occurs first to a quasiperiodically rotating spiral wave and,

eventually, to spiral-wave break up and spatiotemporal chaos [22], with the spirals

not attached to the hole.

ten Tusscher et al. [23] have studied the Panfilov model with nonexcitable cells

distributed randomly in it. In particular, they investigate spiral-wave dynamics as

a function of the percentage of the simulation domain covered by such nonexcitable

cells and find that, when this percentage is high, spiral-wave break up can be

suppressed.

A detailed numerical and analytical study of the interaction of excitation waves

with a piecewise linear obstacle has been carried out in Ref. [24]. This study finds

that, if the excitability of the medium is high, the wave moves around the obstacle

boundary, rejoins itself, and then proceeds as if it had not encountered any obsta-

cles in its path. However, if the excitability is low, the two ends of this wavefront

are unable to join, so two free ends survive, curl up, and then develop into two

spiral waves, which can in turn break up again. In addition, apart from the ex-

citability of the medium and the local curvature of the wave front, the shape of the

obstacle also affects the attachment of spiral waves to it. Shajahan et al. [25] have

carried out a detailed numerical study of spiral-wave dynamics in the presence of

conduction inhomogeneities in the Panfilov and LRI models; they have shown that

the dynamics of spiral waves depends very sensitively on the position of a conduc-

tion inhomogeneity.

Ionic inhomogeneities, formed say by local modifications of the maximal con-

ductance of calcium ion channels, affect the action potential of a cardiac cell; in

particular, the action potential duration (APD) and other time scales, such as the

extent of the plateau region and the refractory period [26] are modified by these in-

homogeneities and affect spiral-wave dynamics in turn. For example, the stability

of a spiral wave, in homogeneous, two-dimensional cardiac tissue depends on the

maximal amplitude of the slow inward calcium current (governed by the conduc-

tance Gsi) as illustrated by the numerical study of Qu et al. [27] for the LRI model:

As they increased Gsi, they first observed a rigidly rotating spiral wave, then one
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in which the spiral tip meandered quasiperiodically, and eventually chaotically; fi-

nally they obtained spiral turbulence with broken spiral waves. Furthermore, the

numerical studies of Refs. [25,28] have found that ionic heterogeneities can play an

important role in the initiation and break up of spiral waves; and Ref. [25] has pre-

sented preliminary studies of the Panfilov-model analog of ionic inhomogeneities.

We present a detailed and systematic study of spiral-wave turbulence and spa-

tiotemporal chaos in two mathematical models for human cardiac tissue, namely,

the TNNP04 model and the TP06 model. In particular, we use extensive numer-

ical simulations to elucidate the interaction of spiral waves in these models with

conduction and ionic inhomogeneities. Our central qualitative result is that, in

all these models, the dynamics of such spiral waves depends very sensitively on

such inhomogeneities. A major goal here is to develop low-amplitude defibrillation

schemes for the elimination of VT and VF, especially in the presence of inhomo-

geneities that occur commonly in cardiac tissue. Therefore, we study a control

scheme [29, 30] that has been suggested for the control of spiral turbulence, via

low-amplitude current pulses, in such mathematical models for cardiac tissue; our

investigations here are designed to examine the efficacy of such control scheme

in the presence of inhomogeneities in biophysical realistic models. We find that a

scheme that uses control pulses on a spatially extended mesh is more successful in

the elimination of spiral turbulence. We discuss the theoretical and experimental

implications of our study that have a direct bearing on defibrillation, the control of

life-threatening cardiac arrhythmias such as ventricular fibrillation.

This Chapter is organized as follows: In Sec. 5.2 we present the models and nu-

merical methods that we use in our study. In Sec. 5.3 we present our results on

studies of wave dynamics, especially, in the presence of conduction and ionic in-

homogeneities; we also give a brief overview of various control schemes that have

been proposed to control cardiac chaos in the mathematical models of cardic tis-

sue; we then describe the low-amplitude control scheme, which we have developed

earlier [29,30], for the elimination of spiral-wave turbulence in models for cardiac

tissue and examine its efficacy in our 2D tissue of biophysical realistic models in (a)

homogeneous domain and (b) a domain with conduction and ionic inhomogeneities.

Section 5.4 contains a discussion of our results and the limitations of our study. The

Supporting Information contains a list of animations of our numerical simulations

of the TNNP04 and the TP06 models. Analogous studies for the Reduced Priebe

Beuckelmann model [4], carried out by T.K. Shajahan, are contained in my joint

paper with him and Rahul Pandit in the Supplementary Material S1 of Ref. [31].
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2.2 Model and Methods

2.2.1 Model

The cell membrane of a cardiac myocyte is modelled by the following ordinary dif-

ferential equation (ODE) [32,33]:

Cm

∂Vm

∂t
= −Iion + Iext, (2.1)

where Cm is the membrane capacitance density, Vm is the transmembrane poten-

tial, i.e., the voltage difference between intra- and extra-cellular spaces, Iion is the

sum of all the ionic currents that cross the cell membrane, and Iext is the externally

applied current. We use two biophysically realistic ionic models for human cardiac

myocytes: (a) the ten Tusscher, Noble, Noble, and Panfilov model (the TNNP04

model) [3], and (b) the ten Tusscher and Panfilov model (the TP06 model) [5]; these

have been developed recently. In these models the total ionic current

Iion = INa + ICaL + Ito + IKs + IKr + IK1 (2.2)

+INaCa + INaK + IpCa + IpK + IbNa + IbCa,

where INa is the fast, inward Na+ current, ICaL the L-type, slow, inward Ca2+ cur-

rent, Ito the transient, outward current, IKs the slow, delayed, rectifier current,

IKr the rapid, delayed, rectifier current, IK1 the inward, rectifier K+ current, INaCa

the Na+/Ca2+ exchanger current, INaK the Na+/K+ pump current, IpCa and IpK the

plateau Ca2+ and K+ currents, and IbNa and IbCa the background Na+ and Ca2+

currents, respectively.

Physical units used in the model are as follows: time (t) is in milliseconds, the

voltage (Vm) in millivolts, the current densities (Ix) in picoamperes per picofarad,

the conductances (Gx) in nanosiemens per picofarad, and the intracellular and ex-

tracellular ionic concentrations (Xi, Xo) in millimoles per liter. Area and capaci-

tance are related since the specific capacitance of cardiac tissue is of the order of

1 µA/cm2. The full sets of equations for these models, including the ordinary dif-

ferential equations for the ion-channel gating variables and the ion dynamics, are

given in the Appendix.

The transmembrane potential Vm of a two-dimensional (2D) sheet of cardiac tis-

sue can be modelled by using the reaction-diffusion-type partial-differential equa-

tion (PDEs):
∂Vm

∂t
+
Iion

Cm

=D∇2Vm; (2.3)
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here D is the diffusion coefficient, which is related to conductivity [3] and responsi-

ble for the coupling between different cardiac cells; for an anisotropic medium the

diffusion term along x and y directions are different, i.e., Dx ≠Dy.

We introduce conduction inhomogeneities, which we also refer to as obstacles, in

the simulation domains of the models described above by making the conductivity

constant D = 0 in the region of the obstacle; in most of our studies we use a square

shape obstacle. When we set D = 0 we decouple the cells inside the obstacle from

those outside it. Furthermore, we use Neumann (i.e., no-flux) boundary conditions

on the boundaries of the obstacle; we have checked in representative cases that,

even if we do not impose Neumann boundary conditions on the obstacle boundaries,

our results are not changed qualitatively.

We insert ionic inhomogeneities into our simulation domains by changing the

values of the maximal conductances of Na+ and Ca2+ channels, in the region of the

inhomogeneity. In most of our studies we use square, ionic inhomogeneities in two

dimensions.

2.2.2 Methods

To integrate the partial-differential-equation (PDE), we use the forward-Euler method

in time t, with a time step δt = 0.02ms, and a finite-difference method in space, with

step size δx = 0.225 mm for the TNNP04 model and 0.25 mm for the TP06 model,

and five-point stencils for the Laplacian.

For these two models that we study, we use Neumann (no-flux) boundary condi-

tions. The parameter sets we use for the model studies are given in the Appendix.

For numerical efficiency, these simulations have been carried out on parallel com-

puters with MPI codes that we have developed for all these models.

We use a thin, cable-type simulation domain, with 16 × 4096 grid points (gpts) to

study plane-wave propagation, i.e., a cable of size Lx = 4 mm and Ly = 1024 mm.

We use square simulation domains consisting of N = 600 gpts and N = 1024 gpts,

respectively, for the TNNP04 and TP06 models (i.e., with side L = 135 mm and

L = 256 mm), to study spiral-wave dynamics.

As suggested in Ref. [34], it is useful to test the accuracy of the numerical scheme

used by varying both the time and space steps of integration. We illustrate this for

the TNNP04 model by measuring the conduction velocity (CV) of a plane wave,

which is injected into the medium by stimulating the left boundary of our simula-

tion domain. We find that, with δx = 0.0225 cm CV, increases by 1.3% as we decrease

δt from 0.02 to 0.01ms; if we use δt = 0.02ms and decrease δx from 0.0225 to 0.015 cm,
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then CV increases by 3.3%; such changes are comparable to those found in earlier

studies [3,34].

To examine the spatiotemporal evolution of the transmembrane potentials for a

homogeneous domain, we obtain the local time series of Vm(x, y, t), from the repre-

sentative point (x = 90 mm, y = 90 mm) for the TNNP04 model and (x = 125 mm, y =
125 mm) for the TP06 model that is shown by an asterisk in all pseudocolor plots of

Vm. To obtain the plots of the inter-beat interval ibi, we use this local time series

with 2 × 105 data points after removing the initial 0.488 × 105 data points; for the

power spectra E(ω), we use the local time series of Vm with 2×105 data points, after

the initial 0.488 × 105 data points have been removed to eliminate transients. Fur-

thermore, we show animations of pseudocolor plots of transmembrane potentials

as videos, which have 10 frames per second and in which each pseudocolor plot is

separated from its predecessor by 8 ms.

2.2.3 Computational Benchmark
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Figure 2.1: (a) Schematic diagram of our MPI simulation, here n represents to the number of

processor; (b) A plot of computing time versus the inverse of the number of processors for our MPI

code for the TNNP04 model (600 × 600 domain).

For numerical efficiency, the simulations have been carried out on parallel com-

puters with an MPI code that we have developed for both the TNNP04 and the

TP06 models. The MPI code divides the whole simulation domain n columns,

i.e., each processor carries out the computations for N × (N/n) grid points (see

Fig. 2.1(a)). To compute the Laplacian at the interface of processor boundaries we

use two extra temporal grid lines which can send and receive the data from left
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and right neighbour processor. The Neumann boundary condition is taken care of

by adding an extra layer of grid points on the boundaries of the simulation domain

of each processor.

We have tested our MPI code on various high-performance computing (HPC)

platforms. These are (a) the SGI Altix 350 with Intel Intanium processors oper-

ating at 1.5 GHz, (b) the IBM Regatta P690 with IBM POWER-4 processors op-

erating at 1.3 GHz, (c) the IBM Cluster P720 with IBM Power-5 processors oper-

ating at 1.65 GHz, (d) the IBM P575 with IBM Power-5 processors operating at

1.9 GHz, and (e) the IBM Blue Gene/L with IBM PowerPC processors operating

at 700 MHz [35]. To check the performances of various HPC cluster, we use 4,000

iteration steps with 600 × 600 grid points in our simulation domain and 8 proces-

sors. Our computational results show that the times taken by each processor of

the P690, P720, P575 clusters are 3369.71, 3183.16 and 2805.50 seconds, respec-

tively. We have also studied the performances of the clusters in the following three

ways: (1) by changing the number of processors and keeping all other simulation

parameters fixed; (2) by changing the system size and keeping all other simula-

tion parameters fixed; (3) by changing the number of iteration steps and keeping

all other simulation parameters fixed. In the first case, we have used a 600 × 600
simulation domain, 4,000 iteration steps and used 4, 6, 8, and 10 processors for

P575 and P720 clusters. The time required for the processors to finish the jobs are

4892.47, 3613.95, 2805.50, 2235.31 seconds, respectively, for the P575 processor

and 6313.06, 4277.31, 3183.16, 2531.92 seconds, respectively for the P720 proces-

sor. Hence the computation time decreases roughly linearly as we increase the

number of processors. The other two cases also show a similar linear dependence

of computing time on the parameter that is being varied (see Fig. 2.1(b)). In all

these cases we noticed that processors of the P565 cluster take less time for the

computation than the P720 and P690 clusters. The studies reported here were

carried out several years ago. [Our more recent studies, which are reported in sub-

sequent Chapters, have been carried out on cluster computers with more advanced

processors.]

2.3 Results

2.3.1 Single-cell studies

Cardiac tissue is excitable in the sense that sub-threshold perturbations decay,

whereas super-threshold ones lead to an action potential AP. Therefore, to get an

AP, the membrance potential Vm of a cardiac cell must be above its threshold po-
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Figure 2.2: The threshold of a cardiac cell can be measured by elevating the resting membrane

potential; we find Vthreshold for the TNNP04 model is −62.4 mV.

tential Vthreshold. We measure Vthreshold by elevating Vm slowly so that the cell can

generate an AP automatically. Our numerical results show that Vthreshold for the

TNNP04 model is ≃ −62.4 mV as shown in Fig. 2.2. Note that, here, Vm ≤ −52.4 mV

leads to an unsuccessful attempt to generate an AP.

An injection of external current (see Eq. 2.1 on Sec. 5.1) can produce an AP. To

generate an AP we apply a current stimulus of density Istim = 52 pA/pF for the

time 1 ms as shown in Fig. 5.2. In Figs. 2.4(a), (b), (c), (d), (e), and (f) we show,

respectively, major ionic currents, namely, the fast-inward sodium current INa, the

L-type calcium current ICaL, the transient outward current Ito, the slow delayed

rectifier current IKs, the rapid delayed rectifier current IKr, and the inward rectifier

current IK1 that associated to the AP in Fig. 5.2; similarly, in Figs. 2.4(g), (h), (i),

(j), (k), and (l), we show the minor currents, namely, INaCa the Na+/Ca2+ exchanger

current, INaK the Na+/K+ pump current, IpCa and IpK the plateau Ca2+ and K+

currents, and IbNa and IbCa the background Na+ and Ca2+ currents, respectively.

Comparing the scales of these ionic-current plots, we conclude that the sodium

current INa is the dominant one in the early phase of the AP (Fig. 5.2(a)), i.e., AP

depolarization phase, that is responsible for the AP upstroke. By contrast, the

calcium current ICaL is significant in the plateau regime of the AP (Fig. 5.2(b)). In



2.3. Results 43

0 100 200 300 400
−100

−50

0

50

t [ms]

V m [m
V

]

Figure 2.3: An AP generated by stimulating a cell of the TNNP04 model by a current density

stimulus of strength 52 pA/pF for 1 ms.
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Figure 2.4: Major and minor currents associated with the AP during the course of the action po-

tential (Fig. 5.2) for the TNNP04 model. Negative currents move into the cell and positive currents

move out of the cell.
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Figure 2.5: Initial ionic concentrations associated with AP during the course of the action potential

(Fig. 5.2) for the TNNP04 model.
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Figure 2.6: Action potential (top panel) and ionic currents associated to it when the INa ionic con-

ductance GNa is changed. The symbols that are used in these plots are as follows: (a) the blue, filled

circles represent the channel conductance without blocking, (b) the red, filled diamonds represent

the channel conductance at half the maximal conductance, and (c) the channel conductance blocked

completely is represented by black, filled squares.
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Fig. 2.5 we show the ionic concentrations associated with AP during the course of

the action potential.

As suggested in Refs. [36–39], the contribution of individual ionic currents to the

AP properties, such as, the maximum AP amplitude, Vmax, the AP notch, Vnotch, the

maximum of the plateau potential, Vplateau, the AP duration, APD, and the resting

membrane potential, Vrest, can be examined by a partial or complete blocking of the

corresponding ion channel. Therefore, we examine, for an isolated myocyte, how

the AP changes as we modify the major ionic currents, namely, the fast-inward

sodium current INa, the L-type calcium current ICaL, the transient outward cur-

rent Ito, the slow delayed rectifier current IKs, the rapid delayed rectifier current

IKr, and the inward rectifier current IK1; we carry out these studies by changing

the associated channel conductance. We also give a set of plots to examine the time-

dependence of the ionic currents INa, ICaL, Ito, IKs, IKr, IK1, INaCa, INaK , IpCa, IpK , IbNa,

and IbCa, when we block either partially or completely of a major ionic current con-

ductance.

In Fig. 2.6, we show plots of the AP, major ionic currents (INa, ICaL, Ito, IKs, IKr,

and IK1), and minor ionic currents (INaCa, INaK , IpCa, IpK , IbNa, and IbCa), when we

vary the maximal conductance GNa associated with the INa ionic current. We apply

a stimulus of current density 52 pA/pF for t = 1 ms to achieve such an AP and

ionic currents associated with it. The symbols that are used in these plots are

as follows: (a) the blue, filled circles represent the channel conductance without

blocking, (b) the red, filled diamonds represent the channel conductance at half

of the maximal conductance, and (c) the channel conductance blocked completely

is represented by black, filled squares. The Figs. 2.7, 2.8, 2.9 2.10, and 2.11 are

the analogs of Fig. 2.6 for the channel conductances GCaL, Gto, GKs, GKr, and GK1,

respectively. We do not give all the details of this study because it is akin to those

presented in Refs. [36–39]; a short summary follows: We find that (a) Vmax depends

principally on INa, (b) Vnotch depends mainly on Ito, (c) the maximum of the plateau

region Vplateau is maintained by a balance between ICaL and IKs, (d) the final phase

of repolarization, which determines the APD, depends primarily on IKr and IKs,

(e) the diastolic or resting phase, which decides the value of Vrest, is maintained

predominantly by IK1, and (f) all gating variables, which determine the opening

and closing of ion channels, depend on Vm and, therefore, the contribution of the

ionic currents to the morphology of the AP is modified as Vm changes.
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Figure 2.7: The analogs of the plots of Fig 2.6 when GCaL, that is associated with the ICaL ionic

current, is not block (blue, filled circles) , partially block (red, filled diamonds), and completely block

(black, filled squares).
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Figure 2.8: The analogs of the plots of Fig 2.7 when Gto, that is associated with the Ito ionic current,

is varied.
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Figure 2.9: The analogs of the plots of Fig 2.7 when GKr, that is associated with the IKr ionic

current, is varied.
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Figure 2.10: The analogs of the plots of Fig 2.7 when GKs, that is associated with the IKs ionic

current, is varied.
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Figure 2.11: The analogs of the plots of Fig 2.7 when GK1, that is associated with the IK1 ionic

current, is varied.

2.3.2 Plane-wave propagation

We study plane-wave propagation in a thin, cable-type simulation domain, con-

sisting of 2000 × 20 grid points, with spacing ∆x = 0.225 mm, i.e., edge lengths

Lx = 450 mm and Ly = 4.5 mm (see Sec. 5.2). A plane wave is injected in this

cable type domain by stimulating the left boundary with a current pulse of ampli-

tude 150 pA/pF for 3 ms. This leads to the formation of a plane wave that then

propagates through the conduction domain as shown in Fig. 2.12. The animations

in Video S01 show the spatiotemporal evolution of Vm; the top and bottom panels

show 2D and 3D views of Vm, respectively. We then measure the conduction veloc-

ity CV and the wave length λ, in this cable-type domain, by recording the positions

of the wave front at times t and t + δt and by using CV = δx/δt, where δx is the

distance traveled by the wave front in the time interval δt. We locate the position

of the wave front by finding the value of x at which Vm ≃ 0 mV; we define the po-

sition of the wave back as the point, behind the wave front, at which a secondary

action potential can just be initiated by an additional stimulus (this turns out to

occurs at a value of Vm ≃ 75% of the repolarization phase of the AP). We obtain λ

by measuring the distance between the wave front and the wave back at time t.

We find that, with the diffusion coefficient D = 0.00154 cm2/ms, CV ≃ 67.8 cm/s and
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Figure 2.12: Illustrative plots of Vm at time t = 400 ms in a thin strip of cardiac tissue with dimen-

sion, Lx = 45 cm and Ly = 0.45 cm, which is basically, a one dimensional cable: (a) pseudo color plots

of Vm in 2D; (b) Vm plots in 3D; the animations in Video S01 show the spatiotemporal evolution of

Vm for this case. The wave length, λ, is the distance between wave front (AP upstroke) and wave

back (AP repolarization) of the propagating wave.

λ ≃ 18.9 cm for the TNNP04 model, and CV ≃ 70.6 cm/s and λ ≃ 21.6 cm for the TP06

model.

In Figs. 2.13(a)-(f), we show pseudocolor plots of the transmembrane potential

Vm at time t = 300 ms in our cable-type domain with diffusion coefficients (a) D =
0.125 ×Dmodel, (b) D = 0.5 ×Dmodel, (c) D = Dmodel, (d) D = 2 ×Dmodel, (e) D = 3 ×Dmodel,

and (f)D = 4×Dmodel. It is known that the propagation velocity of reaction-diffusion-

type equation is directly proportional to the square root of the diffusion coefficient

(D) [32]. To confirm this relation in the TNNP04 model, we measure CV by using

different values of D and by injecting a plane wave into the cable-type domain.

In Fig 2.13(g) we show the plot of CV versus the normalized diffusion coefficient

Dnormalized, i.e., the ratio of D and its maximal value Dmax = 0.00154 cm2/ms. The

data, shown by black, filled circles in Fig. 2.13(g), are fitted using nonlinear curve

fitting technique with a power-low function of the form CV = ADα; the curve is

shown by a blue, solid line. We find that, A ≃ 67.65 and α ≃ 0.55; this is consistent

with CV ∝
√
D. For a plane wave in a medium, CV and λ are related by, λ = APD×

CV [40], where APD is the action potential duration, which is roughly related to

its single-cell value. To verify such a relation, we calculate λ by using the same
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Figure 2.13: Pseudocolor plots of Vm at time t = 300 ms in the cable with diffusion coefficients (a)

D = 0.125×Dmax, (b) D = 0.5×Dmax, (c) D =Dmax, (d) D = 2×Dmax, (e) D = 3×Dmax, (f) D = 4×Dmax.

(g) A plot of the normalized diffusion coefficientDnormalized versus the conduction velocity CV ; here,

we obtain Dnormalized by taking ratio of D for the simulation and its maximal or normal value of

Dnormal = 0.00154 cm2/ms. The curve (shown by a solid line) is fitted using a power function, i.e.,

Y = AXα, where A ≃ 67.65 and α ≃ 0.55; it is consistent with CV ∝
√
D; (h) plot of wave length

λ versus the normalized diffusion coefficient Dnormalized, i.e., the ratio of D and its maximal value

Dmax = 0.00154 cm2/ms; the solid line indicates a fit of the form CV = ADα; we find A ≃ 189.15 and

α ≃ 0.5, which is consistent with CV ∝
√
D. Furthermore, the estimated value of APD from the

relation, λ = APD ×CV , is 279.6 ms.

technique that we have used for CV . In Fig. 2.13(h), we show a plot for λ similar

to Fig. 2.13(g); we find that A ≃ 189.15 and α ≃ 0.5 for λ; this is also consistent with

λ∝
√
D. We estimate the value of APD, from the relation, λ = APD ×CV , and find

APD ≃ 279.6 ms; this is consistent with the APD of a single cell [3].
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2.3.3 Circular-wave propagation

An application of a point stimulus leads to an outward expanding wave with a

circular wave front for a 2D, homogeneous simulation domain. The wave front

can deviate substantially from a circular wave as a consequence of numerical arti-

facts [34], and this leads to unphysical wave dynamics.

Figure 2.14: Pseudocolor plots of the transmembrane potential Vm in a square simulation domain

of side L = 135 mm for the TNNP04 model; here, a point stimulus of strength 450 pA/pF is applied

for 3 ms at the center of the simulation domain (x = 67.5 mm, y = 67.5 mm). The time evolutions

of Vm are shown via 2D plots in (a), (b), and (c) at time, t, 0.04 ms, 0.2 s, and 0.4 s, respectively;

there corresponding 3D plots are shown in (d), (e), and (f). The animations in Video S02 show the

spatiotemporal evolution of Vm for this case.

Reference [34] suggests that we must have Dδt/(δx2) < 1/2d for numerical sta-

bility, where d is the dimension of the simulation domain. For the TNNP04 model,

with diffusion coefficients D = 0.00154 cm2/ms [3], time step δt = 0.02 ms, and space

step δx = 0.225 mm (see Sec. 5.2), the value of Dδt/(δx)2 is ≃ 0.06; and for the TP06

model, with diffusion coefficients D = 0.00154 cm2/ms [5], time step δt = 0.02ms, and

space step δx = 0.25 mm (see Sec. 5.2), the value of Dδt/(δx)2 is ≃ 0.05; for the 2D

domain for both the models, the quantity 1/2d = 0.25, i.e., we have numerical sta-

bility because Dδt/(δx)2 < 1/2d. As we discussed above, our results can be shown

to be free from numerical artifacts by checking the spatiotemporal evolution of an

expanding wave front that emerges from a point stimulus. Therefore, we carry out

a simulation for a 2D square domain of side L = 135 mm, with TNNP04 model,

to verify numerical stability. A point stimulus of strength 450 pA/pF for 3 ms is
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applied at the center of the domain. In Figs. 2.14(a)-(c), we show the time evolu-

tion of pseudocolor plots of Vm in 2D for the TNNP04 model at times t = 0.04 ms,

t = 0.2 s, and t = 0.4 s, respectively; the corresponding 3D plots are shown in (d),

(e), and (f). The animations in Video S02 show the spatiotemporal evolution of Vm

(pseudocolor plots in 2D (left panel), contour plots (middle panel), and pseudocolor

plots in 3D (right panel)). The Fig. 2.14 and Video S02 we show that fronts of the

expanding wave do not deviate substantially from circles. We have also obtained

similar results for the TP06 model.
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Figure 2.15: Pseudocolor plots of Vm illustrating that a plane wave (a)-(c) propagates faster than

a convex wave (d)-(f). Thus, curvature plays an important role in wave propagation. The eikonal

relation for a highly dispersive media isCV = CV0−hκD, here, CV , CV0, κ, andD, are the conduction

velocity of circular wave, plane wave, curvature, and diffusivity, respectively. In (g) we show this

relation between CV and κ, when a stimulus of strength 450 pA/pF is applied at center of the

simulation domain for 3 ms. The factor, h ≃ 1, for the Zykov limit [47] and h > 1 for the dispersive

situation; we have obtained h ≃ 9 because of high dispersion and high curvature in our study.
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It is well known that the curvature at a wave front plays an important role in the

propagation of waves in excitable media. In particular, as suggested in Refs. [41,

42], the curvature plays an important role with CV = CVo − κD, where, CV , CVo, κ,

and D, are the CV at the front of any type of wave, CV at the front of a plane wave,

curvature of the wave front, and diffusion coefficient, respectively. For a concave

wave κ is negative and convex wave κ is positive, therefore, CV > CV0 for a concave

wave and CV < CV0 for a convex wave, because, for concave wave the flux carried

by a wave front converges, so fast conduction occurs, where as for a convex wave

the flux carried by wave front diverges, therefore, slow conduction occurs. We study

propagating plane and circular waves, which have zero and negative curvatures,

in our 2D square domain of side L = 135 mm for the TNNP04 model to study the

effects of curvature on the propagation speed. We apply a line stimulus of strength

450 pA/pF for 3 ms along the entire left boundary of the domain to inject a plane

wave; and we apply a point stimulus of the same strength and duration at the

middle of the left boundary to inject the circular wave. In Figs. 2.15(a)-(c), we show

pseudocolor plots of Vm at times t = 0.04 ms, t = 0.1 s, and t = 0.18 s, respectively;

plots, similar to Figs. 2.15(a)-(c), are shown in Figs. 2.15(d)-(f) for a circular wave.

By comparing the wave fronts from these plots in Figs. 2.15(a)-(f), we conclude that

the convex wave, which has negative curvature, propagates slowly compared to the

plane wave.

The relation between CV and κ, called the eikonal equation, has been studied

well in various excitable media [43–46]. It shows that CV = CV0 − κD, and is valid

for small curvatures. However, for highly dispersive media this relation is not

valid [44, 47, 48], and the corrected relation is CV = CV0 − hκD. Here the factor,

h ≃ 1 for the Zykov limit and h > 1 for the dispersive situation. The deviation of

eikonal relation from the Zykov limit has been seen in both two-variable and ionic

models for cardiac tissue. For example, Pertsov et al. [47] have shown that the

correction factor can be h ≃ 2.1 for a two-variable model; Qu et al. [44] have found

h ≃ 0.9 for the LR-I ionic model for cardiac tissue.

To estimate the correction factor h for the TNNP04 model we apply a point stim-

ulus of a strength 450 pA/pF at the center (x = 67.5 mm, y = 67.5 mm) of a square

domain of side L = 135 mm for 3 ms. An expanding circular wave front travels away

from this point source as shown via contour plots in Video S02; this allows allows

us to locate the wave-front position at a given time and thus to measure CV and

κ. We considered the propagation across an annulus of inner radius ri = 78.75 mm

and outer radius ro = 123.75 mm, which is wide enough to obtain the wave speed

as a linear function of κ, which is obtained by κ = 1/r, where r is the radius of the
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expanding circular wave front at a given time t; and CV = r/t. In Fig. 2.15(g) we

show plots of CV versus κ; from this plot we find h ≃ 9 for the TNNP04 model.

2.3.4 Spiral-wave dynamics

Spiral waves in homogeneous domains

Figure 2.16: Initiation of spiral waves in the TNNP model by S1-S2 parallel protocol (see text)

illustrated via pseudocolor plots of the transmembrane potential Vm. We use the configuration

shown in (c) as our initial condition to study spiral-waves dynamics in this model.

Generally, two methods are used to initiate spiral waves in simulations [3,4,31,

49] and experiments [9, 49], namely, (1) the S1-S2 cross-field protocol and (2) the

S1-S2 parallel-field protocol. In the cross-field method, a super-threshold stimulus

S2 is applied at the boundary that is perpendicular to the S1 stimulus, whereas,

in the parallel-field method, S2 is applied parallel to the refractory tail of the S1

stimulus, but not over the entire length of the domain.

We use an S1-S2 parallel-field protocol to initiate a spiral wave in a 2D square

domain of side L = 135 cm for the TNNP04 model. We inject a plane wave into the

domain via an S1 stimulus of strength 150 pA/pF for 3 ms at the left boundary. We

choose D to be 0.000385 cm2/ms (approximately 1/4th of its original value, 0.00154

cm2/ms) in the beginning of our simulation to initiate a spiral wave. We then apply

an S2 stimulus of strength 450 pA/pF for 3 ms, after 560 ms, and just behind the

refractory tail of S1 (x = 360, 1 ≤ y ≤ 550). As the first wave moves further towards

the right (Fig. 2.16(a)), the free end of the new stimulus is able to move into the area

behind the first wave; a hook-like proto spiral appears at this free end (Fig. 2.16(b)).

We then reset the conductivity to its original value after 880 ms. This procedure

yields the fully developed spiral wave shown in Fig. 2.16(c) at t = 976 ms; and this

state is used as the initial condition for our subsequent studies.

We now study the properties of the AP and its morphology for an isolated my-

ocyte cell as we vary the maximal conductances, GCaL, Gto, GKs, GKr, and GK1,
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Figure 2.17: The rotating spiral (RS) state in the TNNP model with the parameter set P0 (see

Table 2.1). We start with the initial condition of Fig. 2.16(c); pseudocolor plots of Vm are shown

in (a), (b), and (c); the animation (a) in Video S03 shows the spatiotemporal evolution of Vm for

this case. These psudocolor plots and the animation show the existence of a single rotating spiral

in the domain. (d) The local time series for Vm from a sample of 2 × 105 iterations taken from the

representative point (90 mm, 90 mm) marked by an asterisk in (c) (see Methods Section) ; and plots

of (e) the inter-beat interval (ibi) versus the beat number n from a sample time series of 2 × 105
iterations, and (f) the power spectrum of Vm obtained from a time series of length 2× 105 iterations,

which shows discrete peaks at the fundamental frequency ωf = 3.75 Hz and its harmonics. The

periodic behavior of the ibi and discrete peaks in the power spectrum are characteristic of the RS

state.

which are associated with the major ionic currents INa, ICaL, Ito, IKs, IKr, and IK1,

respectively. We then carry out systematic studies of spiral-wave dynamics, as we

tune the maximal conductances of major ionic currents. The parameter sets, given

in Table 2.1, are chosen by modifying one of the major ionic conductance; and these

parameter sets are used to study spiral-wave dynamics in the TNNP04 2D model.

We present below our detailed results for two representative cases.

In Figs. 2.17(a)-(c), we show pseudocolor plots of Vm at times t = 0 s, t = 2 s,

and t = 4 s, respectively, for the parameter set P0 (see Table 2.1) in the TNNP04

model; this initial configuration evolves to a state with a rotating spiral (RS) in

the medium; the animation (a) in Video S03 shows the spatiotemporal evolution of

Vm for this case. The local time series of Vm(x, y, t), from the representative point

(x = 90 mm, y = 90 mm) (the asterisk in Fig. 2.17(c)), is shown in Fig. 2.17(d) for

0 s ≤ t ≤ 4 s; a plot of the inter beat interval (ibi) is given in Fig. 2.17(e), which
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Figure 2.18: The state with three rotating spirals in the TNNP model with parameter set P7 (see

Table 2.1). We start with the initial condition of Fig. 2.16(c); pseudocolor plots of Vm are shown

in (a), (b), and (c); the animation (c) in Video S04 shows the spatiotemporal evolution of Vm for

this case. These pseudocolor plots and the animation show the existence of three rotating spirals

(two clockwise and one anti clockwise) in the domain. (d) The local time series for Vm, from a

sample of 2 × 105 iterations taken from the representative point (90 mm, 90 mm) marked by an

asterisk in (c) (see Methods Section) ; and plots of (e) the inter-beat interval (ibi) versus the beat

number n from a sample time series of 2×105 iterations, which shows the average rotation period of

spirals τrot ≃ 135 ms; and (f) the power spectrum of Vm obtained from a time series of length 2 × 105
iterations, which shows a first dominant peak at the frequency ωf ≃ 7.75 Hz; this is consistent with

the average rotation period measured via the ibi (ωf = 1/τrot).

shows that the spiral wave rotates periodically with an average rotation period

T ≃ 262 ms. In Fig. 2.17(f), we plot the power spectrum E(ω), which we have

obtained from the local time series of Vm mentioned above; discrete peaks in E(ω)
appear at the fundamental frequency ωf ≃ 3.75 Hz and its harmonics. The periodic

nature of the local time series of Vm, the flattening of the ibi, and the discrete peaks

in E(ω) show that the temporal evolution of the spiral wave is periodic.

In Figs. 2.18(a)-(g) we show, for the parameter set P7 (see Table 2.1) in the

TNNP04 model, the exact analogs of Figs. 2.17(a)-(g); and the animation (c) in

Video S04 shows the spatiotemporal evolution of Vm for this case. This animation,

the pseudocolor plots of Vm show two clockwise and one anti clockwise rotating

spirals in the domain. The local time series of Vm(x, y, t), from the representative

point (x = 90 mm, y = 90 mm) (the asterisk in Fig. 2.18(c)), is shown in Fig. 2.18(d) for

0 s ≤ t ≤ 4 s; a plot of the inter beat interval (ibi) is given in Fig. 2.18(e), which shows
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that the spirals in the medium rotate nearly periodically with an average rotation

period τrot ≃ 135 ms. In Fig. 2.18(f), we plot the power spectrum E(ω), which we

have obtained from the local time series of Vm mentioned above; which shows first

dominant peaks at the frequency ωf ≃ 7.75 Hz; this is consistent with the average

measured ibi (ω = 1/τrot).
The complete spatiotemporal behavior of our system is summarized for different

parameter sets in Table 2.1. And we present the spatiotemporal evolution of Vm by

a series of Videos (S03-S08) of its pseudocolor plots; all these videos use 10 frames

per second and each frame is separated from the succeeding frame by 8 ms.

To initiate a spiral wave in square homogeneous domain of size, L = 256 mm,

for the TP06 model, we use a slightly modified version of the S1-S2 cross-field

protocol. We inject a plane wave into the domain via an S1 stimulus of strength

150 pA/pF for 3 ms at the left boundary. Then, we apply an S2 stimulus of the

same strength and duration from the bottom boundary the middle of the medium

(0 mm < Ly ≤ 125 mm). This procedure yields a fully developed spiral wave.

Figure 2.19: Spatiotemporal evolution of Vm for the parameter set P1 for the TP06 model: (a)-

(c)Pseudocolor plots of Vm at times t = 0 s, t = 2 s, and t = 4 s, respectively, showing the evolution

towards a state with a rotating spiral (RS); the animation (a) in Video S09 shows the spatiotemporal

evolution of Vm for this case. (d) The local time series of Vm(x, y, t), from the representative point

(x = 125 mm, y = 125 mm) (the asterisk in (c)) for 0 s ≤ t ≤ 4 s; (e) a plot of the inter beat interval

(ibi), which we obtain from this time series, of length 2 × 105 iterations; (f) the power spectrum

E(ω), obtained from the local time series of (d), with discrete peaks at the fundamental frequency

ωf ≃ 4.75 Hz and its harmonics.
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Figure 2.20: Spatiotemporal evolution of Vm for the parameter set P2 for the TP06 model: (a)-(f)

show, for the parameter set P2, the exact analogs of Figs. 4.4; and the animation (b) in Video S09

shows the spatiotemporal evolution of Vm for this case. This animation, the pseudocolor plots of Vm

((a)-(c)), the representative local time series of Vm (d), the plot of the ibi (e), and the power spectrum

E(ω) (f) show that the parameter P1 leads to spatiotemporal chaos and spiral turbulence (ST) with

a single spiral meandering chaotically in the simulation domain (SMST).

We also explore the spatiotemporal behavior of Vm by modifying the maximal

conductances of major ionic current of the TP06 model. However, for a particular

combination of one or more ionic conductances, with a time constant associated

with the ICaL ionic current, leads to three major types of spiral-wave states, namely,

(a) RS, (b) SMST, and (c) MST states. We list these variables in Table 2.2. We

present below detailed results for the parameter sets P1, P2, and P3, for the TP06

model.

In Figs. 4.4(a)-(c), we show pseudocolor plots of Vm at times t = 0 s, t = 2 s,

and t = 4 s, respectively, for the parameter set P1 in the TP06 model; this initial

configuration evolves to a state with a rotating spiral (RS) in the medium; the

animation (a) in Video S09 shows the spatiotemporal evolution of Vm for this case.

The local time series of Vm(x, y, t), from the representative point (x = 125 mm, y =
125 mm) (the asterisk in Fig. 4.4(c)), is shown in Fig. 4.4(d) for 0 s ≤ t ≤ 4 s; a plot

of the inter beat interval (ibi) is given in Fig. 4.4(e), which shows that, after initial

transients (roughly the first 10 beats), the spiral wave rotates periodically with

an average rotation period T ≃ 210 ms. In Fig. 4.4(f), we plot the power spectrum

E(ω), which we have obtained from the local time series of Vm mentioned above;
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Figure 2.21: Spatiotemporal evolution of Vm for the parameter set P3 for the TP06 model: (a)-

(f) show, for the parameter set P3, the exact analogs of Figs. 4.4(a)-(f); and the animation (c) in

Video S09 shows the spatiotemporal evolution of Vm for this case. This animation, the pseudocolor

plots of Vm ((a)-(c)), the representative local time series of Vm (d), the plot of the ibi (e), and the

power spectrum E(ω) (f) show that the parameter set P3 leads to spatiotemporal chaos and spiral

turbulence (ST) with multiple broken spirals in the simulation domain (MST).

discrete peaks in E(ω) appear at the fundamental frequency ωf ≃ 4.75 Hz and its

harmonics. The periodic nature of the local time series of Vm, the flattening of the

ibi, and the discrete peaks in E(ω) show that the temporal evolution of the spiral

wave is periodic.

In Figs. 4.5(a)-(g) we show, for the parameter set P2, the exact analogs of Figs. 4.4(a)-

(g); and the animation (b) in Video S09 shows the spatiotemporal evolution of Vm

for this case. This animation, the pseudocolor plots of Vm (Figs. 4.5(a)-(c)), the rep-

resentative local time series of Vm (Fig. 4.5(d)), the plot of the ibi (Fig. 4.5(e)), the

power spectrum E(ω) (Fig. 4.5(f)), and the spiral-tip trajectory (the white curve in

Fig. 4.5(c) and the blue one in Fig. 4.5(g)) show that the parameter set P2 leads to

spatiotemporal chaos and spiral turbulence (ST), with a single spiral meandering

chaotically in the simulation domain (SMST).

In Figs. 4.6(a)-(f) we show, for the parameter set P3, the exact analogs of Figs. 4.4(a)-

(f); and the animation (c) in Video S09 shows the spatiotemporal evolution of Vm

for this case. This animation, the pseudocolor plots of Vm (Figs. 4.6(a)-(c)), the rep-

resentative local time series of Vm (Fig. 4.6(d)), the plot of the ibi (Fig. 4.6(e)), and

the power spectrum E(ω) (Fig. 4.6(f)) show that the parameter set P3 leads to spa-
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tiotemporal chaos and spiral turbulence (ST) with multiple broken spirals in the

simulation domain (MST).

Spiral wave with conduction inhomogeneity

Conduction inhomogeneities (also referred as obstacles) in cardiac tissue can affect

spiral wave dynamics in several ways. Experimental studies show that a drifting

spiral can attach to an obstacle in its path and continue anchored around it [9,

19–21, 49] for an indefinite period of time. Therefore, an obstacle can cause the

transition from an irregular activity (drifting spiral) to regular activity (anchored

spiral). It is also observed that, in some cases, the obstacle can eliminate the spiral

wave completely. Studies of the dependence of such anchoring on the size of the

obstacle [19,21] reveal that the larger the obstacle, the more likely is the anchoring;

however, even if the obstacle is large, the wave might not attach to it. An obstacle

can also convert multiple spirals to an anchored spiral [20].

We introduce an obstacle in the simulation domains of both the TNNP04 and

TP06 models described above by making the conductivity constant D = 0 in the

region of the obstacle. We use square obstacles in most of our 2D studies. When

we set D = 0, we decouple the cells inside the obstacle from those outside it. Fur-

thermore, we use Neumann (i.e., no-flux) boundary conditions on the boundaries

of the obstacle; we have checked in representative cases that, even if we do not

impose Neumann boundary conditions on the obstacle boundaries, our results are

not changed qualitatively.

We first examine the dependence of spiral-wave dynamics on the size of an ob-

stacle by fixing its position and changing its size (cf., Ikeda et al. [19] for similar

experiments).

In Figs. 2.22, we show the pseudocolour plots of Vm at time, t = 0.4 s, for the

TNNP04 model with the P1 parameter set, with a square conduction inhomogene-

ity whose top-left corner is fixed at (x = 67.5 mm, y = 90 mm). The square obstacle

has a side of length ℓ = 0, i.e., a homogeneous domain (Fig. 2.22(a)), ℓ = 22.5 mm

(Fig. 2.22(b)), ℓ = 27 mm (Fig. 2.22(c)), ℓ = 31.5 mm (Fig. 2.22(d)), ℓ = 36 mm

(Fig. 2.22(e)), ℓ = 40.5 mm (Fig. 2.22(f)), ℓ = 45 mm (Fig. 2.22(g)), and ℓ = 49.5 mm

(Fig. 2.22(h)). The Video S10 has four panels that show the spatiotemporal evo-

lution of pseudocolor plots of Vm for 2 s ≤ t ≤ 3 s for a homogeneous domain with

no inhomogeneities (top left panel) and the simulation domains for Figs. 2.22 (c),

(e), and (g) (top right, bottom left, and bottom right panels, respectively). These

pesudocolor plots and animations show that the smallest obstacle that can anchor
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Figure 2.22: Pseudocolour plots of Vm at time, t = 400 ms, for the parameter set P1 in the TNNP04

model, with a square shape conduction inhomogeneity whose top-left corner is fixed at (67.5 mm,

90 mm): (a) ℓ = 0, i.e., myocytes absence of inhomogeneity; (b) ℓ = 22.5 mm; (c) ℓ = 27 mm; (d) ℓ = 31.5
mm; (e) ℓ = 36 mm; (f) ℓ = 40.5 mm; (g) ℓ = 45 mm; and (h) ℓ = 49.5 mm. The animations (a), (b), (c),

and (d) show the spatiotemporal evolution of Vm for the cases of plots (a), (c), (e), and (g), respec-

tively. The local data recorded from a representative point (x = 112.5 mm, y = 112.5 mm), shown

by asterisks. Here, ℓ = 27 mm is the smallest size of inhomogeneity that require to anchor a spiral

around it. Figure (i) shows the rotation period of a stable spiral that attached to inhomogeneity.

a spiral wave has ℓ = 27 mm. Figure 2.22(i), a plot of the rotation period τrot, of such

an anchored spiral wave, versus ℓ, shows how τrot increases with ℓ.

The analogs of Figs. 2.22(a)-(i) and Video S10 are shown in Figs. 2.23(a)-(i) and

Video S11, respectively, for the P7 parameter set for the TNNP04 model; here we

fix the top-right corner of the obstacle at (x = 90 mm, y = 90 mm) rather than top-

left corner as in Fig. 2.22; and we observe that the smallest inhomogeneity which

is required to anchor a spiral around it, has ℓ = 22.5 mm.

In Fig. 2.24, we show our results for the TP06 model with P1 parameter set

(these are the exact analogs of our TNNP04 model results (Fig.2.23)) for a domain
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Figure 2.23: Pseudocolour plots of Vm at time, t = 400 ms, for the parameter set P7 in the TNNP04

model, with a square shape conduction inhomogeneity whose top-right corner is fixed at (90 mm,

90 mm): (a) ℓ = 0, i.e., myocytes absence of inhomogeneity; (b) ℓ = 22.5 mm; (c) ℓ = 27 mm; (d) ℓ = 31.5
mm; (e) ℓ = 36 mm; (f) ℓ = 40.5 mm; (g) ℓ = 45 mm; and (h) ℓ = 49.5 mm. The local data recorded

from a representative point (x = 112.5 mm, y = 112.5 mm), shown by asterisks. Here, ℓ = 22.5 mm is

the smallest size of inhomogeneity that require to anchor a spiral around it. Figure (i) shows the

rotation period of a stable spiral that attached to inhomogeneity.

with side L = 512 mm with a square obstacle whose top-left corner is fixed at (x =
50 mm, y = 125 mm); here, we observe that the smallest inhomogeneity which is

required to anchor a spiral around it, has ℓ = 25 mm.

We now check the dependence of spiral-wave dynamics on the position of the

obstacle for a fixed size. Shajahan, et al. [25] have studied the dependence of an

MST state on the positions of obstacles for the Panfilov and LRI models. In our

previous studies [31], we have carried out systematic studies of such dependene

for (a) an RS state and (b) an MST state, for the RPB and TNNP04 models. These

studies have found that, for the parameter set for which the system evolves to

an MST in the absence of an obstacle, we can obtain one of the following cases:
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Figure 2.24: Pseudocolour plots of Vm at time, t = 400 ms, for the parameter set P1 in the

TP06 model, with a square shape conduction inhomogeneity whose top-left corner is fixed at

(50 mm,125 mm): (a) ℓ = 0, i.e., myocytes absence of inhomogeneity; (b) ℓ = 25 mm; (c) ℓ = 30 mm; (d)

ℓ = 35 mm; (e) ℓ = 40 mm; (f) ℓ = 45 mm; (g) ℓ = 50 mm; and (h) ℓ = 55 mm. The local data recorded

from a representative point (x = 200 mm, y = 200 mm), shown by asterisks. Here, ℓ = 25 mm is

the smallest size of inhomogeneity that require to anchor a spiral around it. Figure (i) shows the

rotation period of a stable spiral that attached to inhomogeneity.

(a) an MST state can persist; (b) the MST state can be replaced by an RS state

anchored to the obstacle; (c) the MST can be replaced by a state SA where spirals

are absorbed by the boundaries. We have also obtained these three types of states

in the presence of an obstacle, if the parameter set evolves to an RS state rather

than an MST in the absence of an obstacle as presented in our previous joint work

in Ref. [31].

We turn now to check such obstacle-position dependence of spiral-wave dynam-

ics for the TP06 model. We have found that, the parameter set P3, for which the

system evolves to an MST in the absence of an obstacle, we can obtain one of the
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Figure 2.25: The spiral-turbulence (ST) state in the TP06 model with a square obstacle of side

ℓ = 50 mm at (150 mm, 150 mm) in a square simulation domain with L = 256 mm. We use the

parameter set P3 with initial configuration (a); pseudocolor plots of Vm are shown in (a), (b), and (c)

at 0, 2, and 4 s, respectively. (d) The local time series for Vm from a sample of 2×105 iterations taken
from the representative point (50 mm, 200 mm), shown by an asterisk in (b) and (c); and plots of (e)

the inter-beat interval (ibi) versus the beat number n from a sample time series of 2×105 iterations,
and (f) the power spectrum of Vm obtained from a time series of length 2 × 105 iterations; the non-

periodic behavior of the ibi and the broad-band nature of the power spectrum are characteristic of

the spiral-turbulence state.

following states in the presence of an obstacle: (a) an MST state; (b) an RS state

anchored to obstacle; (c) an SA state. We obtain similar results if we use the P1

parameter set, for which the system evolves to an RS state in the absence of an

obstacle. We present below our results for the P3 parameter set in the presence of

square obstacle.

In Figs. 2.25(a)-(c), we show pseudocolor plots of Vm at times t = 0 s, t = 2 s, and

t = 4 s, respectively, for the parameter set P3 in the TP06 model with a square

obstacle of side ℓ = 50 mm and bottom left corner is fixed at (150 mm, 150 mm); this

initial spiral configuration, with P3 parameter set, evolves to an MST state in the

absence of an obstacle as shown in Fig. 4.6. The local time series of Vm(x, y, t), from
the representative point (x = 50 mm, y = 200 mm) (the asterisk in Figs. 2.25(b) and

(c)), is shown in Fig. 2.25(d) for 0 s ≤ t ≤ 4 s. A plot of the inter-beat interval (ibi) and

power spectrum E(ω) of a sample of 2 × 105 data points are shown in Figs. 2.25(e)
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Figure 2.26: Pseudocolor plots of Vm for the TP06 model showing a spiral wave attached to a square

obstacle of side 50 mm placed at (50 mm, 100 mm) and (a) t = 0 s, (b) t = 2 s, and (c) t = 4 s. This

wave leads to periodic temporal evolution as can be seen from plots of (d) the time series of Vm from

a sample of 2 × 105 iterations taken from the representative point (50 mm, 200 mm), shown by an

asterisk, in the square simulation domain of side L = 256 mm, (e) the ibi versus the beat number

n (a sample of 2 × 105) that settles, eventually, to a constant value of ≃ 309 ms, and (f) the power

spectrum of Vm (from a time series of 2 × 105 iterations) that has discrete peaks at the fundamental

frequency ωf ≃ 3.25 Hz and its harmonics.

Figure 2.27: The spiral wave moves away from the square simulation domain of side L = 256 mm

for the TP06 model with the P3 parameter set if a square obstacle of side ℓ = 50 mm is placed at (150

mm, 50 mm) as illustrated in (a), (b), and (c) via pseudocolor plots of Vm at t = 0 s, t = 2 s, and t = 4 s,

respectively.

and (f), respectively. The oscillating time series, non periodic ibi, and broad-band

nature of power spectrum are characteristic of the state with MST.
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In Figs. 2.26(a)-(g) we show, for the parameter set P3 and with a square obsta-

cle of side ℓ = 50 mm with its bottom-left corner fixed at (50 mm, 100 mm), the

exact analogs of Figs. 2.25(a)-(g). The periodic nature of the local time series of

Vm (Fig. 2.26(d)), the flattening of the ibi (Fig. 2.26(e)), and the discrete peaks in

E(ω) with fundamental frequency at ωf ≃ 3.25 Hz (Fig. 2.26(a)), show that the tem-

poral evolution of the spiral wave is periodic. And the pseudocolor plots of Vm in

Figs. 2.26(b) and (c) give evidence of an RS state in which the spiral is anchored to

the obstacle.

In Figs. 2.27(a)-(c) we show, for the parameter set P3 and with a square obstacle

of side ℓ = 50 mm and bottom left corner is fixed at (150 mm, 50 mm), the exact

analogs of Figs. 2.25(a)-(c). The pseudocolor plot of Fig. 2.27(c) shows that the final

state is an SA state.

To check the sensitive dependence of spiral-wave dynamics on the position of an

obstacle, we change the position of the obstacle, whose size is fixed. Our results

show that a small change of the position of the obstacle can change the final state

of the system from spiral-turbulence (ST) to a rotating-spiral (RS) or spiral absorp-

tion (SA), which reflects an underlying fractal-type basin boundary between the

domains of attraction of ST, RS, and SA states. We also observe similar sensitive

dependence of spiral-wave dynamics on the position of an obstacle, if we use an

obstacle that does not have a square shape (e.g., for a circle) [31]. For more details

we refer the reader to our previous work [31].

Spiral wave with ionic inhomogeneity

Apart from obstacles, cardiac tissue also have other types of inhomogeneities that

originate from the changes of physiological properties at the single-cell level; e.g.,

changes in the chemical environment or metabolic modifications [50] can modify

the ionic current of a cell. We refer to a collection of such cells as an ionic inho-

mogeneity. Studies on such inhomogeneities in cardiac tissue show that they can

affect the dynamics of spiral waves [28,31,44]. For example, the stability of a spiral

wave in a homogeneous, 2D cardiac tissue depends on the maximal amplitude of

the slow inward calcium current (governed by the conductance Gsi) as illustrated

by the numerical studies of Refs. [28,31,44] for the LRI model. In these studies, as

the authors increased Gsi, they first observed a rigidly rotating spiral wave, then

one in which the spiral tip meandered quasiperiodically, and finally they obtained

spiral turbulence with broken spiral waves.

Studies of ionic inhomogeneites show that they can have dramatic effects on

spiral wave dynamics. Like a conduction inhomogeneity, they can eliminate spiral
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Figure 2.28: The effect of a squareGNa inhomogeneity, of side 50mm in a square simulation domain

of side 256 mm, with Gout
Na = 14.838 (maximal value) and Gin

Na = 5 × 14.838, and placed at (x = 25 mm,

y = 25 mm), on spiral-wave dynamics in the TP06 model: Pseudocolor plots of Vm at (a) 0 s, (b) 2 s,

and (c) 4 s; (d) the time series of Vm, from a sample of the initial 2 × 105 iterations, taken from the

point (50 mm, 200 mm) that lies outside the inhomogeneity. Associated plots of (e) the ibi versus the

beat number n and (f) the power spectrum E(ω) of Vm indicating periodic temporal evolution with

a fundamental frequency ωf = 5 Hz (see text); this is consistent with the average rotation period,

τrot ≃ 202 s, of a spiral wave, as obtained from our ibi plot. Figures (g), (h), and (i) are the analogs

of (d), (e), and (f), respectively, when data for Vm are recorded from the point (50 mm, 50 mm) that

lies inside the inhomogeneity; here we have roughly quasiperiodic behavior, with a dominant peak

at ω1 ≃ 5 Hz and a secondary peak at ω2 ≃ 2.25 Hz.

waves, or lead to an anchored spiral, with richer dynamics than for a conduction

inhomogeneity. For example, ionic inhomogeneity studies in the Panfilov model in

Refs. [25, 31] show that such an inhomogeneity can lead to the coexistence of the

following states in the same system: (a) spatiotemporal chaos outside the inho-

mogeneity and quasiperiodic behavior inside it (ST-QP); (b) an unbroken rotating

spiral outside the inhomogeneity and broken spiral waves inside it (RS-ST); (c) a
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spiral anchored to the inhomogeneity, with different quasiperiodic behaviour out-

side and inside it (QP-QP). Such complex behaviours have also been observed in

numerical studies in some ionic model of cardiac tissue, like the LRI, RPB and

TNNP models [31]. Here we restrict ourselves to discuss only the part of results

for the TP06 model and similar results have been discussed explicitly for the Pan-

filov, LRI, RPB, and TNNP04 models in our previous studies [31].

We introduce a square ionic inhomogeneity of side ℓ = 50 mm in a domain of

side L = 512 mm, for the TP06 model, by decreasing the value of GNa above its

maximal value in the region of the inhomogeneity. We present below some of our

representative results for the TP06 model with ionic inhomogenities.

We use the initial spiral configuration, shown in Fig. 4.4(a), with the P1 param-

eter set, which evolves to a stable rotating spiral (Fig. 4.4(c)) in the absence of an

ionic inhomogeneity. In Figs. 2.28 (a), (b), and (c) we show the pseudocolor plots of

Vm at times t = 0 s, 2 s, and 4 s, respectively, for a representative, square, ionic inho-

mogeneity, with side ℓ = 50 mm and the lower-left-hand corner of this square fixed

at (x = 25 mm,y = 25 mm). We obtain time series for Vm from a point outside the

inhomogeneity (50 mm, 200 mm) and a point inside it (50 mm, 50 mm); these points

are indicated, respectively, by asterisks in Figs. 2.28 (b) and (c). In Fig. 2.28(d) we

give the time series of Vm, with 2 × 105 data points, recorded from outside of inho-

mogeneity; Fig. 2.28 (e) shows plot of the inter-beat interval (ibi) versus the beat

number n for the time series of Vm mentioned above, which shows that, after initial

transients (roughly the first 10 beats), the spiral wave rotates periodically with an

average rotation period τrot ≃ 202 ms. The power spectrum E(ω), which follow from

this time series, is given in Fig. 2.28 (f); this shows discrete peaks in E(ω) at the
fundamental ωf ≃ 5 Hz and its harmonics. The periodic nature of the local time

series of Vm, the flattening of the ibi, and the discrete peaks in E(ω) show that the

temporal evolution of the spiral wave is periodic. The analogs of Figs. 2.28(d), (e),

and (f), for the data recorded inside inhomogeneity, are shown in Figs. 2.28(g), (h),

and (i), respectively. The time series, oscillating ibi, and the peaks in E(ω) show
spiral-wave activation, inside the inhomogeneity, is roughly quasiperiodic behav-

ior, with a dominant peak at ω1 ≃ 5 Hz and a secondary peak at ω2 ≃ 2.25 Hz. We

also observe following dynamics, inside and outside inhomogeneities, depending

on the position of the inhomogeneity: (a) quasiperiodic behaviors both outside and

inside, (b) same periodic behavior outside and inside, i.e., the inhomogeneity does

not have a significant qualitative effect on the dynamics of spiral waves, but the

position of the spiral tip may shift to another position in the simulation domain.

The spatiotemporal evolution of Vm, for an ionic inhomogeneity of side ℓ = 50 mm
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and various positions is presented in Video S12; these animations use Gout
Na = 14.838

(maximal value) and Gin
Na = 5 × 14.838; the animations (b), (c), (d), (e), and (f) in this

Video show the inhomogeneity with its left-bottom corner at (x = 25mm, y = 25mm),

(x = 75 mm, y = 75 mm), (x = 100 mm, y = 100 mm), (x = 125 mm, y = 125 mm), and

(x = 175 mm, y = 175 mm), respectively; the animation (a) shows the domain with-

out an inhomogeneity. We also obtain similar results, if the initial configuration

is a broken spiral-wave state rather than a rotating state. The coexistence of such

complex periodic oscillations in an excitable medium has been reported in experi-

ments [51]; however, the oscillations observed in these experiments are believed to

be caused by the interplay of conduction inhomogeneities and partial conduction

block.

2.3.5 Elimination of spiral turbulence

As we have mentioned in Sec. 5.1, there is growing consensus that the break up

of spiral waves of electrical activation in ventricular tissue leads to ventricular

fibrillation (VF). In the usual clinical treatment of VF electrical stimuli are ap-

plied to the affected heart. This is believed to reset all irregular waves in the

ventricular tissue leaving it ready to receive the regular sinus rhythm [52]; thus,

if the electrical stimulus is strong enough, it can arrest VF and restore the si-

nus rhythm. Initially 60 Hz AC was used clinically to defibrillate transthrorasi-

cally [53] but this was later discontinued because of several reasons including the

high energy requirement, the possible induction of atrial fibrillation, the prolonged

muscle contraction, the risk of an electrical shock to the operator, and the size of

the device [52]. Clinically available defibrillation techniques still apply massive

electrical shocks to the heart; this can damage the heart muscle. The success rate

of such techniques is not quite satisfactory [54]. Furthermore, scar tissues can be

created during the process of such defibrillation; these can make the patient vul-

nerable to further arrhythmias and also act as conduction inhomogeneities that we

have investigated via numerical simulations in Section 5.3. Hence, there is a great

need for developing low-amplitude defibrillation schemes; this must be based on

an understanding of the spatiotemporal behavior of activation waves during VF.

We begin with a brief overview of some techniques that have been proposed for the

elimination of spiral-wave turbulence in models for cardiac tissue.

Biktashev and Holden [55] have proposed a method for controlling spiral-wave

turbulence by producing a directed movement of a rigidly rotating spiral wave away

from the medium by using resonant stimulation. They find that small-amplitude,

spatially uniform, repeated stimuli can be used to produce a directed movement
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of the spiral wave, if the period of stimulation is equal to the period of its rota-

tion. This directed movement eventually pushes this wave out of the simulation

domain [55]. However, this method can only be used before the onset of spiral-

wave turbulence.

Osipov and Collins [56] have suggested another scheme that is based on the ob-

servation that the dynamics of excitable media can be modelled by fast and slow

variables, e.g, V and g in the Panfilov model. They control the slow variable by

applying a weak impulse on the whole medium. This eventually changes the veloc-

ities of the front and back of the wave. The propagation of the wave front and wave

back with different velocities leads to a shrinkage or expansion of the pulse width.

If the amplitude and duration of the impulse are sufficiently large, then the prop-

agating pulse collapses and disappears. Unfortunately such control of the slow

variable over the whole medium can be achieved only by pharmaceutical means

and not by the application of electrical pulses.

Rappel, Fenton, and Karma [57] have proposed another method based on the

application of a small control current at a finite number of equally spaced “con-

trolled cells” in a tissue, by using a coarse lattice of electrodes with a lattice spac-

ing of about 1 cm. This method has been demonstrated to prevent one spiral from

breaking up. Unfortunately this method fails in the fully developed spiral-wave

turbulence state with broken spirals [29].

To suppress a spatiotemporally chaotic state with broken spiral waves, Sinha,

Pande, and Pandit [29] have proposed a scheme based on the observation that

spiral turbulence does not persist in the hearts of small mammals, if it can at

all be initiated [58]. We will use this scheme below, so we describe it in some

detail. They have shown that spiral-wave turbulence is a long-lived transient [29,

30] whose lifetime τL increases rapidly with the linear size L of the simulation

domain, e.g., from ≃ 850 ms for L = 100 mm to ≃ 3200 ms for L = 128 mm in the

two-dimensional Panfilov model; for large systems (e.g., L > 128 mm in the Panfilov

case), τL is sufficiently long so that we obtain a nonequilibrium statistical steady

state with spatiotemporal chaos [30]. This might suggest that a global control

scheme, such as that of Osipov and Collins [56], is essential. It turns out, however,

that a judicious choice of control points on a mesh leads to an efficient scheme

for the control of spiral-wave turbulence in such models [29]. We first illustrate

the principle of this method for a two-dimensional square domain with side L:

This is divided into K2 smaller blocks by a mesh of line electrodes, and the mesh

size is chosen to be small enough that spirals cannot persist for long inside the

block of side ℓ = L/K. A voltage or current pulse is applied at all points along
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the mesh boundaries for a time τc. This makes the mesh region refractory and

so effectively simulates Neumann boundary conditions for any block bounded by

the mesh. Thus spiral waves formed inside the block are absorbed at the mesh

bounding the block. For example, in the Panfilov model in dimension d = 2, L = 128,
and K = 2, a time τc = 41.2 ms suffices to suppress spiral turbulence; when L = 512,
and K = 8, a time τc = 704 ms is required; electrical pulses of amplitude ≃ 60 µA/cm2

are used on the control mesh; this is much less than in conventional electrical

defibrillation which uses pulses of amplitude 1 A/cm2. This control algorithm has

been extended to suppress spiral turbulence in the two-dimensional Beeler-Reuter

and LRI models [30].

Recently Zhang, et al. [59], have proposed another attractive scheme for the

control of spiral turbulence in excitable media. In their method spiral waves are

driven away by periodic forcing of V at a small number of n×n points in the center

of the simulation domain. This generates target waves that eventually drive out

the spiral waves if the amplitude Γ and the frequency ωf of the forcing are chosen

carefully: For example, for the Panfilov model with d = 2 it is shown in Ref. [59]

that spiral turbulence in a square 500 × 500 simulation domain can be suppressed

within 410,000 iterations when one chooses n = 6, ωf = 0.82, and Γ = 6. This con-

trol scheme is attractive because it employs local forcing, compared to the control

scheme of Ref. [29] that uses a spatially extended control mesh. However, the local

control scheme of Ref. [59] inadvertently generates spiral-wave break up if there

are obstacles in the medium.

In the paragraph above we have given a short overview of some control schemes

that have been used to suppress spiral-wave break up in two-dimensional simula-

tion in some mathematical models for cardiac tissue. Cardiac tissue can have inho-

mogeneities, such as scar tissue. It is important, therefore, to study whether these

control schemes are effective in controlling spiral-wave turbulence in the presence

of such inhomogeneities. To the best of our knowledge this has not been investi-

gated systematically so far. We present such an investigation here (for simplicity

we restrict ourselves to conduction inhomogeneities). In particular, it is important

to ensure that a control scheme does not lead inadvertently to spiral break up in

the presence of inhomogeneities.

We begin by studying the control scheme of Zhang et al. [59] that we have out-

lined above. This scheme drives away broken spiral waves from the simulation do-

main by using the target waves that are created by the local periodic forcing. What

happens to such target waves when they encounter an obstacle? It turns out that

these target waves break up as they collide with the obstacle and thus contribute
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to spiral turbulence in the medium [60]. Had there been no obstacle, this control

scheme would have driven away all the broken spiral waves from the domain. How-

ever, this does not happen in the presence of an obstacle; hence this control scheme

is unsuitable for controlling spiral-wave turbulence if inhomogeneities are present.

By contrast, the control scheme proposed in Ref. [29] works even in the pres-

ence of an inhomogeneity. Here we show how the control scheme of Ref. [29] is

also successful in eliminating spiral turbulence in the complex model even in the

presence of conduction inhomogeneities. We describe below the detail technique of

this low-amplitude control scheme.

In this mesh-based control scheme, we apply a current pulse of amplitude 75 pA/pF

for 0.2 s over a mesh that divides our square simulation domain with L = 256 mm

into 64 square cells of side l = 32 mm each; this pulse makes the links of the mesh

refractory and, thereby, effectively imposes Neumann boundary conditions for any

block inside the mesh; therefore, spiral waves inside a block are absorbed on the

links of the mesh that bound the block.

In Fig. 4.14 we illustrate spiral-wave control, via low-amplitude control pulses,

in the TP06 model, in the , by presenting pseudocolor plots of Vm. The spiral state,

at time t = 0 ms (Fig. 4.14(a) with the P1 parameter set), evolves to an RS state

(Fig. 4.14(b)) at time t = 0.2 s; this state is suppressed, by our square-mesh control

methods, as shown in Fig. 4.14(c) and , at t = 0.2 ms. Similar plots for the P2 and

P3 parameter sets are given in Figs. 4.14(d)-(f) and Figs. 4.14(g)-(h), respectively;

these illustrate square-mesh control of states with spiral turbulence. The Video

S13, which comprises six animations of pseudocolor plots of Vm, shows the spa-

tiotemporal evolution of these spiral waves, with and without control pulses, for

the time interval 0 s ≤ t ≤ 1 s.

We now study spiral-wave control in a 2D simulation domain with a square con-

duction inhomogeneity with side ℓ = 50 mm. Again, we apply a control pulse of

amplitude 75 pA/pF for t = 0.2 s over a square mesh with cells whose sides are

of length L/K = 32 mm, i.e., the simulation domain is divided into 82 = 64 square

blocks. We present results for two representative cases with the P3 parameter

set. Figures 3.25 (a), (b), and (c) show pseudocolor plots of Vm at times t = 0 s,

0.2 s, and 0.2, respectively, when the bottom left corner of the obstacle is fixed at(x = 50 mm,y = 75 mm); the animation at the left-panel of Video S14 shows the

spatiotemporal evolution of Vm in the absence and presence of the control pulse.

The pseudocolor plots and animations show that the single spiral that is attached

to the obstacle, in the absence of the control pulse, can be removed by our low-

amplitude, mesh-based, control scheme. Pseudocolor plots and animations, similar
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Figure 2.29: Spiral-wave control in the TP06 model for the homogeneous domain by low-amplitude

control pulses (see text). The spiral state, at time t = 0 s (a), with the parameter set P1 , evolves,

in the absence of the control, to an RS state (b), at time t = 0.2 s; this state is suppressed by the

square-mesh control method as shown in (c), at t = 0.2 s. Similar plots for the sets P2 and P3

parameter sets are given, respectively, in (d)-(f) and (g)-(h). The Video S18, which comprises six

animations of pseudocolor plots of Vm, shows the spatiotemporal evolution of these spiral waves,

with and without control pulses, for the time interval 0 s ≤ t ≤ 1 s. In all these cases, we apply a

control pulse of amplitude 75 pA/pF for t = 0.2 ms.

to those in Figs. 3.25(a)-(c) and Video S14 (a) and (c), are shown in Figs. 3.25(d)-

(e) and animations (c) and (d), respectively, for an MST state with the bottom-left

corner of the obstacle fixed at (x = 125 mm,y = 125 mm). The plots in Figs. 3.25

and animations in Video S14 show that the states RS and MST, with an obstacle,

can be controlled successfully by our mesh-bashed, low-amplitude, control scheme.

Thus, we conclude that the low-amplitude mesh-based control scheme is an effec-

tive control method for the suppression of various types of spiral-wave states in the

absence and the presence of inhomogeneities.
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Figure 2.30: Spiral-wave control in the TP06 model in the presence of a square shape conduction

inhomogeneity of size ℓ = 50 mm by low-amplitude control pulses (see text). The spiral state, at

time t = 0 s (a), with the parameter set P3 and an obstacle whose bottom-left corner is fixed at

(x = 50 mm,y = 75 mm), evolves, in the absence of control, to an RS state (b) that is anchored

to the obstacle, at time t = 0.2 s; this state is suppressed by the square-mesh control method as

shown in (c), at t = 0.2 s. Similar plots for the P3 parameter set and an obstacle whose bottom-left

corner is fixed at (x = 125 mm,y = 125 mm) are given, respectively, in (d)-(f) for the ST state. The

Video S14, which comprises four animations of pseudocolor plots of Vm, shows the spatiotemporal

evolution of these spiral waves, with and without control pulses, for the time interval 0 s ≤ t ≤ 1 s.

In all these cases we apply a control pulse of amplitude 75 pA/pF for t = 0.2 ms. These plots and

animations show that the states RS and MST, with an obstacle, can be controlled successfully by

our mesh-bashed, low-amplitude, control scheme.

2.4 Discussion and Conclusion

We have presented the most extensive numerical study carried out so far of the

effects of inhomogeneities on spiral-wave dynamics in mathematical models for

cardiac tissue. In particular, we have investigated such dynamics in the TNNP04

and TP06 models for homogeneous simulation domains and also in the presence

of conduction and ionic inhomogeneities. Furthermore, we have considered a low-

amplitude control scheme in detail; this has been designed to eliminate spiral-wave

turbulence in these models but has not been tested systematically in the presence

of inhomogeneities; we carry out such tests here.
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One of the principal results of our studies is the confirmation that spiral-wave

dynamics in mathematical models of cardiac tissue depends very sensitively on the

positions of conduction or ionic inhomogeneities in the simulation domain. Our re-

sults here extend significantly those presented in Ref. [25] for the Panfilov and LRI

models. In particular, we have shown that this sensitive dependence on inhomo-

geneities also holds in realistic ionic models, which account for ion pumps and ion

exchangers and also the details of the dynamics of calcium ions; and the nature of

the inhomogeneity also affects the spatiotemporal dynamics of spiral waves as can

be seen by comparing our simulations of conduction inhomogeneities with those

for ionic inhomogeneities. As we have seen, in the latter case the transmembrane

potential Vm displays rich and different temporal behaviors inside and outside the

ionic inhomogeneity. We believe this sensitive dependence of spiral waves on inho-

mogeneities in the medium is a reflection of a fractal basin boundary between the

domains of attraction of spiral-turbulence (ST), rotating-spiral (RS), and quiescent

(Q) states. In a low-dimensional dynamical system it is possible to obtain such a

basin boundary by changing initial conditions; in a high-dimensional dynamical

system (the partial-differential-equation models for cardiac tissue are infinite di-

mensional) it is not practical to find such a boundary numerically. We have shown

instead, that, by changing parameters in these cardiac-tissue models, such as the

positions or natures of inhomogeneities, we can affect the spatiotemporal evolution

of spiral waves drastically.

Our studies have practical implications for experimental investigations of spiral-

wave dynamics in cardiac tissue. In particular, the studies of Refs. [19–21,51] have

provided a rich variety of results including complicated temporal patterns in inter-

beat intervals [51] for Vm and the partial or complete elimination of spiral-wave

turbulence by conduction inhomogeneities [9]. We have described these briefly in

the introduction. Here we would like to note that our in silico simulations of spiral-

wave dynamics in the TNNP04 and TP06 models have allowed us to carry out a

much more systematic study of inhomogeneities in these models than is possible

in vitro and in vivo. We hope our work will stimulate experiments in this field. It

is worth noting that our study yields all the types of rich spatiotemporal behaviors

(e.g., for Vm) that have been observed in a variety of experiments on spiral-wave

dynamics in cardiac tissue or cell cultures, if we keep in mind that the states ST,

RS, and Q in our simulations are the analogs of VF, VT, and quiescence in such

experiments.

Our results, especially those on the elimination of spiral-wave turbulence in

the presence of inhomogeneities, should also have important implications for the
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development of low-amplitude electrical defibrillation schemes, which is a major

challenge that lies at the interfaces between nonlinear science, biophysics, and

biomedical engineering. One of the lessons of our numerical studies, namely, the

sensitive dependence of spiral-wave dynamics on inhomogeneities, implies that

low-amplitude defibrillation schemes might well have to be tuned suitably to ac-

count for inhomogeneities in cardiac tissue. Furthermore, it would be very inter-

esting to develop the mesh-based control scheme that we have described in the

previous section and to see how it might be realised experimentally.

As we have emphasized throughout this paper, one of the principal goals of our

study is a qualitative one, namely, the elucidation of the sensitive dependence of

spiral-wave dynamics on inhomogeneities in mathematical models of cardiac tis-

sue. We have, therefore, carried out extensive simulations of such dynamics in the

TNNP04 and TP06 models; but we have not, so far, extended our study to bido-

main models [61] and models in which mechanics [62] is also included. We expect

our principal qualitative results about inhomogeneities will go through even when

such models are considered; this will have to be checked explicitly by subsequent

studies.
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Parameter GNa GCaL Gto GKs GKr GK1 Video Final state

sets (nS/pF) (nS/pF) (nS/pF) (nS/pF) (nS/pF) (nS/pF)

P0 14.838 0.000175 0.294 0.245 0.096 5.405 S03(a) SRS

with fundamental peak

ωf ≃ 3.75 Hz

P1 1.85475 0.000175 0.294 0.245 0.096 5.405 S03(b) DRS

with fundamental peak

ωf ≃ 2.75 Hz

P2 7.419 0.000175 0.294 0.245 0.096 5.405 S03(c) SRS

with fundamental peak

ωf ≃ 3.5 Hz

P3 29.676 0.000175 0.294 0.245 0.096 5.405 S03(d) SMST

with first dominant peak

ωf ≃ 3.75 Hz

P4 59.352 0.000175 0.294 0.245 0.096 5.405 S03(e) SMQP

with fundamental peaks

ω1 ≃ 4 Hz and ω2 ≃ 8.25 Hz

P5 118.704 0.000175 0.294 0.245 0.096 5.405 S03(f) SA

P6 14.838 0 0.294 0.245 0.096 5.405 S04(b) DRS

with first dominant peak

ωf ≃ 8 Hz

P7 14.838 0.00001 0.294 0.245 0.096 5.405 S04(c) Three RS

with first dominant peak

ωf ≃ 7.75 Hz

P8 14.838 0.00002 0.294 0.245 0.096 5.405 S04(d) SRS

with first dominant peak

ωf ≃ 6.25 Hz

P9 14.838 0.00004 0.294 0.245 0.096 5.405 S04(e) SA

P10 14.838 0.00035 0.294 0.245 0.096 5.405 S04(e) SSQP

with fundamental peaks

ω1 ≃ 3.25 Hz and ω2 ≃ 6.75 Hz

P11 14.838 0.000175 0.588 0.245 0.096 5.405 S05(b) SSQP

with fundamental peaks

ω1 ≃ 3.75 Hz and ω2 ≃ 7.75 Hz

P12 14.838 0.000175 1.176 0.245 0.096 5.405 S05(c) SSQP

with fundamental peaks

ω1 ≃ 3.75 Hz and ω2 ≃ 7.75 Hz

P13 14.838 0.000175 2.352 0.245 0.096 5.405 S05(d) SSQP

with fundamental peaks

ω1 ≃ 3.75 Hz and ω2 ≃ 7.5 Hz

P14 14.838 0.000175 0.294 0.98 0.096 5.405 S06(b) SRS

with fundamental peak

ωf ≃ 4.75 Hz

P15 14.838 0.000175 0.294 3.92 0.096 5.405 S06(c) SRS

with fundamental peak

ωf ≃ 6 Hz

P16 14.838 0.000175 0.294 15.68 0.096 5.405 S06(d) SRS

with fundamental peak

ωf ≃ 7.75 Hz
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Parameter GNa GCaL Gto GKs GKr GK1 Video Final state

sets (nS/pF) (nS/pF) (nS/pF) (nS/pF) (nS/pF) (nS/pF)

P17 14.838 0.000175 0.294 0.245 0.192 5.405 S07(b) SRS

with fundamental peak

ωf ≃ 4.25 Hz

P18 14.838 0.000175 0.294 0.245 0.384 5.405 S07(c) SMST

P19 14.838 0.000175 0.294 0.245 0.768 5.405 S07(d) SMST

P20 14.838 0.000175 0.294 0.245 0.096 10.81 S08(b) SMQP

with fundamental peaks

ω1 ≃ 4.25 Hz and ω1 ≃ 8.75 Hz

P21 14.838 0.000175 0.294 0.245 0.096 21.62 S08(c) SMST

P22 14.838 0.000175 0.294 0.245 0.096 43.24 S08(d) SMST

Table 2.1: Parameter sets used for our studies of the TNNP04, 2D, homogeneous model; we change

channel conductances, associated with major ionic currents. The abbreviations are as follows: (a)

SRS, single rotating spiral; (b) DRS, double rotating spiral; (c) SSQP: single spiral quasi periodic; (d)

SMQP, single meandering quasiperiodic; (e) SMST, single meandering spiral turbulence; (f) MST,

multiple spiral turbulence; and (g) SA, spiral absorption.

Parameter GNa Gkr Gks GpCa GpK σf Video Final state

sets nS/pF nS/pF nS/pF nS/pF nS/pF

P1 14.838 0.153 0.392 0.1238 0.0146 1 S09(a) RS

with fundamental peak

ω1 ≃ 4.75 Hz

P2 5 × 14.838 0.153 0.392 0.1238 0.0146 1 S09(b) SMST

P3 14.838 0.172 0.441 0.8666 0.00219 2 S09(c) MST

Table 2.2: Parameter sets used for our study of the TP06, 2D, homogeneous model; we change the

channel conductances, associated with the ionic, currents and time constants to obtain three major

spiral states, namely, single rotating spiral (SRS), single meandering spiral turbulence (SMST),

and multiple spiral turbulence (MST), for the parameter sets P1, P2, and P3, respectively. Here, σf

is the scale factor of the time constant τf (see Appendix).
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1 Supporting Information

Video S01: Spatiotemporal evolution of a plane wave in a cable-type domain,

for the TNNP04 model, shown via 2D pseudocolor plots (top panel) and 3D pseudo-

color plots (bottom panel) of the transmembrane potential Vm; the time evolution is

shown for 0 s ≤ t ≤ 0.8 s; we use 10 frames per second (fps); in real time each frame

is separated from the succeeding frame by 2 ms.

Video S02: Spatiotemporal evolution of circular waves for, the TNNP04 model,

produced by an application of a point stimulus at the middle of the our square

simulation domain; the time evolution of 2D pseudocolor plots (left panel), contour

plots (middle panel), and 3D pseudocolor plots (right panel) of the transmembrane

potential Vm are shown for 0 s ≤ t ≤ 0.4 s; we use 10 frames per second (fps); in real

time each frame is separated from the succeeding frame by 2 ms.

Video S03: Spiral-wave dynamics for the TNNP04 model with the parameter

sets (a) P0, (b) P1, (c) P2, (d) P3, (e) P4, and (f) P5 (Table 2.1), which are obtained

by modifying the maximal GNa conductance associated with the INa ionic current.

The pseudocolor plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 4 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S04: Spiral-wave dynamics for the TNNP04 model with the parameter

sets (a) P0, (b) P6, (c) P7, (d) P8, (e) P9, and (f) P10 (Table 2.1), which are obtained

by modifying the maximal GCa conductance associated with the ICaL ionic current.

The pseudocolor plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 4 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S05: Spiral-wave dynamics for the TNNP04 model with the parameter

sets (a) P0, (b) P11, (c) P12, and (d) P13 (Table 2.1), which are obtained by modify-

ing the maximal Gto conductance associated with the Ito ionic current. The pseudo-

color plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 4 s; we use 10

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S06: Spiral-wave dynamics for the TNNP04 model with the parameter

sets (a) P0, (b) P14, (c) P15, and (d) P16 (Table 2.1), which are obtained by mod-

ifying the maximal GKs conductance associated with the IKs ionic current. The

pseudocolor plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 4 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.
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Video S07: Spiral-wave dynamics for the TNNP04 model with the parameter

sets (a) P0, (b) P17, (c) P18, and (d) P19 (Table 2.1), which are obtained by mod-

ifying the maximal GKr conductance associated with the IKr ionic current. The

pseudocolor plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 4 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S08: Spiral-wave dynamics for the TNNP04 model with the parameter

sets (a) P0, (b) P20, (c) P21, and (d) P22 (Table 2.1), which are obtained by mod-

ifying the maximal GK1 conductance associated with the IK1 ionic current. The

pseudocolor plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 4 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S09: Spiral-wave dynamics for the TP06 model with the parameter sets

(a) P0, (b) P1, and (c) P3 (Table 2.2), which are obtained by modifying the maximal

channel conductances, associated with the ionic currents and time constants. The

pseudocolor plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 4 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S10: Spiral-wave dynamics for the TNNP04model with the P1 parameter

set in the presence of a square conduction inhomogeneity whose top-left corner is

fixed at (x = 67.5 mm, y = 90 mm). (a) ℓ = 0 i.e., a homogeneous domain, (b) ℓ = 27
mm, (c), ℓ = 36 mm, and (d) ℓ = 45 mm. The pseudocolor plots of the transmembrane

potential Vm are shown for 0 s ≤ t ≤ 1 s; we use 10 frames per second (fps); in real

time each frame is separated from the succeeding frame by 8 ms.

Video S11: Spiral-wave dynamics for the TNNP04model with the P7 parameter

set in the presence of a square conduction inhomogeneity whose top-right corner

is fixed at (x = 90 mm, y = 90 mm). (a) ℓ = 0 i.e., a homogeneous domain, (b) ℓ = 27
mm, (c), ℓ = 36 mm, and (d) ℓ = 45 mm. The pseudocolor plots of the transmembrane

potential Vm are shown for 0 s ≤ t ≤ 1 s; we use 10 frames per second (fps); in real

time each frame is separated from the succeeding frame by 8 ms.

Video S12: Spiral-wave dynamics for the TP06model in the presence of a square

ionic inhomogeneity, of side ℓ = 50 mm, for the case of Gout
Na = 14.838 (maximal value)

andGin
Na = 5×14.838, and the lower left-bottom corner of the inhomogeneity at differ-

ent positions. (a) Homogeneous domain, (b) (x = 25 mm, y = 25 mm), (c) (x = 75 mm,

y = 75 mm), (d) (x = 100 mm, y = 100 mm), (e) (x = 125 mm, y = 125 mm), and (f)

(x = 175 mm, y = 175 mm). The pseudocolor plots of the transmembrane potential
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Vm are shown for 0 s ≤ t ≤ 4 s; we use 10 frames per second (fps); in real time each

frame is separated from the succeeding frame by 8 ms.

Video S13: Spiral-wave dynamics for the homogeneous TP06 model without

and with control pulses for the parameter sets P1 (left-panel), P2 (middle-panel),

and P3 (right-panel). The pseudocolor plots of the transmembrane potential Vm are

shown for 0 s ≤ t ≤ 1 s; we use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms.

Video S14: Spiral-wave dynamics for the TP06 model without and with control

pulses in the presence of a square conduction inhomogeneity of side ℓ = 50 mm, and

bottom-left corners at (x = 50 mm, y = 75 mm) (left-panel) and (x = 125 mm, y = 125
mm) (right-panel). The pseudocolor plots of the transmembrane potential Vm are

shown for 0 s ≤ t ≤ 1 s; we use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms.
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Chapter 3

Spiral-wave dynamics in a Mathematical Model of

Human Ventricular Tissue with Myocytes and

Fibroblasts

This Chapter follows closely a paper that we have submitted for publication to PLoS

ONE journal. The authors are Alok Ranjan Nayak, TK Shajahan, AV Panfilov,

and Rahul Pandit.

3.1 Introduction

Cardiac fibroblasts, which are connective, non-myocyte cells, play a major role in

producing myocyte cells, both in the early stage of heart development and after a

myocardial infarction. Experimental studies [1,2] suggest that such fibroblasts can

be coupled functionally with myocytes, under both physiological and pathophysi-

ological conditions. Fibroblasts can, therefore, modulate the electrophysiological

properties of cardiac tissue. However, it is not clear yet what range of values we

should use for the gap-junctional conductanceGgap of a fibroblast-myocyte gap junc-

tion [3–5]; in intact tissue 4 nS ≲ Ggap ≲ 6 nS [3] and, in cell-culture preparations,

0.3 nS ≲ Ggap ≲ 8.0 nS [5]. The structural organization of fibroblast cells in car-

diac tissue, which consists of myocyte and non-myocyte cells (e.g., fibroblasts), is

still being explored [2, 6–8] for different mammalian hearts. This lack of detailed

structural and functional information makes it difficult to use experimental stud-

ies to uncover the precise role that fibroblasts play in the propagation of electrical

impulses and spiral waves of electrical activation in cardiac tissue. Therefore, com-

putational studies are beginning to play an important role in the investigation of

the properties of mathematical models for cardiac tissue that include myocytes and

fibroblasts and a coupling between them; some of these study a single, composite

87
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myocyte-fibroblast cell [9–12]; others have considered electrical-wave propagation

in one- and two-dimensional, mathematical models for cardiac tissue, in which the

fibroblasts are modelled as passive cells [11, 13, 14]. Here we build on mathemat-

ical models that couple cardiac myocytes and fibroblasts at the single-cell level

to develop a mathematical model for a two-dimensional (2D) sheet of cardiac my-

ocytes coupled to a similar sheet of fibroblasts. Our model uses the state-of-the-art

ionic model for human cardiac myocytes due to ten Tusscher, Noble, Noble, and

Panfilov (TNNP) [15]; we include connections between myocytes and fibroblasts

via gap junctions; and we also allow for the possibility of studying zero-sided, one-

sided, and two-sided couplings. We carry out detailed numerical studies of the

propagation of electrical impulses in our myocyte-fibroblast (MF) models; these

yield a variety of interesting results that we summarize below after a brief, illus-

trative overview of some earlier studies that have investigated single fibroblast-

myocyte-cell units to determine the effects of the extra electrical load, either be-

cause of passive or active fibroblasts, in both animal- and human-ventricular-cell

models [9–12].

Xie, et al. [9] have used two different ionic models, namely, the Luo-Rudy Phase

1 (LRI) model [16], with modified maximal conductances, and a rabbit-ventricular-

cell model [17], coupled to models of passive and active fibroblasts via a gap-

junctional conductance. In their passive-fibroblast studies, they have considered

the ranges 0 nS < Gf ≤ 4 nS and −80 mV ≤ Ef ≤ 0 mV for the membrane conductance

Gf and the resting membrane potential Ef of fibroblasts; and they have used Nf = 2
and 3 and Ggap = 8 nS and 3 nS, respectively, for LRI and rabbit-ventricular models,

where Nf is the number of fibroblasts per myocyte and Ggap the gap-junctional con-

ductance. For low values of Gf they have found that the action-potential duration

(APD) is always prolonged relative to its value APDm for an uncoupled myocyte;

however, if Gf is large, then the APD is less than APDm, if Ef is low, but greater

than APDm, if Ef is high. They have obtained similar results in models with active

fibroblasts.

Sachse, et al. [10] have shown that the APD is prolonged relative to APDm in

an active-fibroblast model. They have employed a rat-ventricular-cell model [18]

coupled to active fibroblasts with 0.1 nS ≤ Ggap ≤ 100 nS and 0 ≤ Nf ≤ 10. Their study
shows that the myocyte APD, measured at 90% repolarization, increases from 38.9

ms to 61.3 ms if Nf = 10 and Ggap = 10 nS; however, if Nf = 10 and Ggap = 0.1 nS, this

APD decreases from 39.0 ms to 37.1 ms. Their studies also show that the myocyte

resting membrane potential, Vrest, and the maximal upstroke velocity, V̇max, depend

on Nf and Ggap; e.g., if Nf = 10 and Ggap = 100, then Vrest increases from −81.1 mV, in
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the absence of fibroblasts, to −80.6 mV, whereas V̇max decreases from 160 mV/ms to

114 mV/ms.

Jacquemet, et al. [11] have studied a mouse-ventricular-cell model [19] coupled

to a simple fibroblast model that includes a delayed activation of the membrane

current. Their study has revealed that the myocyte APD is prolonged from 14.4 ms

to 14.8 ms, its action potential amplitude (APA) reduced from 115.1 mV to 114.6 mV,

and there is a slight elevation of the resting membrane potential Vrest from −82.3
mV to −82.0 mV, when a single fibroblast is coupled to a myocyte with Ggap = 4.05
nS. They have also studied the dependence of the APA, APD, Vrest, and V̇max on Nf

and Ggap by measuring them at a site of a myocyte cell, located in the middle of a

cable, which contains 50 myocyte cells covered by a layer of fibroblasts. They have

found, e.g., that (a) the APA, APD, and Vrest change to 93.1 mV, 19.3 ms, and −80.5
mV, respectively, from their corresponding uncoupled values 100.8 mV, 15.7 ms, and

−82.3 mV, when Nf = 10 and Ggap = 4.05 nS, and (b) V̇max changes to ≃68 mV/ms from

its uncoupled value ≃92 mV/ms, when Nf = 17 and Ggap = 4.05 nS.

MacCannell, et al. [12] have considered fibroblast models, principally active but

also passive, coupled to a human-ventricular-myocyte model [15]. They have pre-

sented representative results for a single MF unit for the passive case, with Nf = 2
and 4 and Cf,tot (the total cellular capacitance for fibroblast), Gf and Ef 6.3 pF, 0.1

nS, and −49.6 mV, respectively, to a myocyte via a gap-junctonal conductance with

Ggap = 3 nS; they have found that the myocyte APD increases from its uncoupled

value 263 ms to 273 ms or 275 ms for Nf = 2 and 4, respectively. By contrast, in their

active-MF model, they have found that the APD decreases from 263 ms to 195 ms

and 155 ms, respectively, when Nf = 2 or 4 (with the above-mentioned parameter

values); furthermore, Vrest is elevated from its uncoupled value −86.1 mV to −85.8
mV, if Nf = 2, and −85.3 mV, if Nf = 4; and the APD shortening can be enhanced by

increasing either Cf,tot or Ggap; e.g., if Nf = 2 the APD decreases from 263 ms to 225

ms or 207 ms, respectively, for Ggap = 1 and 2 nS, with Cf,tot = 6.3 pF, Gf = 0.1 nS, and
Ef = −49.6 mV. This study also obtains similar results when it holds all parameters

at the values given above but uses Cf,tot = 6 pF or 63 pF.

Both in cell culture and in intact tissue, fibroblasts can couple functionally to

adjacent myocytes via a gap junction at the single-cell level by expressing either

the Cx43 or the Cx45 gap-junction protein or connexin. Miragoli, et al. [20] have

shown the expression of connexins, between fibroblasts and, at contact sites, be-

tween fibroblasts and cardiomyocytes, by studying cocultured fibroblasts coated

over rat-ventricular-myocyte strands; and Gaudesius, et al. [21] have reported that

Cx43 and Cx45 are expressed among fibroblasts and between fibroblasts and my-
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ocytes when fibroblasts are inserted in cocultures of neonatal rat-heart cells in a

monolayer.

Fibroblasts can play a major role in the propagation of electrical impulses in

cardiac tissue. Some cell-culture [13, 20–22] and in-silico [11, 13, 14] studies have

reported the suppression of impulse propagation in cardiac tissue because of fi-

broblasts. For example, Miragoli, et al. [20] have studied electrical-impulse prop-

agation in cultured strands of myocytes coated by fibroblasts and shown that the

conduction velocity CV decreases by an amount that depends on the density of fi-

broblasts. The work of Gaudesius, et al. [21] has demonstrated that conduction

delay occurs because of the insertion of fibroblasts between myocytes in cultured

myocyte strands; the delay depends on the number of inserted fibroblasts; and fi-

nally conduction block occurs when the length of the inserted fibroblasts exceeds

300 µm. Zlochiver, et al. [13] have studied the propagation of electrical impulses

in a monolayer of myocytes and fibroblasts of neonatal rats; in one set of experi-

ments they have either increased or decreased the gap-junction coupling by over-

expressing Cx43 or by using silencing RNAi; in another set of experiments they

have varied the ratio of fibroblasts to myocytes. In the former case, they have

observed that an increase in the gap-junctional conductance first leads to a de-

crease in CV and then an increase; in the second set of experiments they have

found that CV decreases as the fibroblast density increases. McSpadden, et al. [22]

have studied electrical-wave propagation in a monolayer of neonatal rat cardiac

myocytes electrotonically loaded with a layer of cardiac fibroblasts; they have used

an optical-mapping technique to find the dependence of such impulse propagation

on the gap-junctional conductance Ggap; and they have found that impulse prop-

agation, in both the transverse and longitudinal directions, changes significantly

when fibroblasts are loaded on the myocyte monolayers; e.g. , as the fibroblast

coverage area increases from the 0 − 15% coverage range to the 75 − 100% coverage

range, the conduction velocity CV , in loaded monolayers, decreases from ≃ 28 ± 5
cm/s to ≃ 21±7 cm/s, in the longitudinal direction, and from 13±3 cm/s to 9±3 cm/s,

in the transverse direction.

Xie, et al. [14] have followed Ref. [23] to model MF tissue in three different

ways, namely, with (a) zero-sided, (b) single-sided, and (c) double-sided connec-

tions, by using the LRI [16] ventricular-cell model for myocytes with slight modi-

fications of the original parameters. In their zero-sided connection model, passive

fibroblasts are inserted in a 2D layer of myocytes; but they are functionally un-

coupled with myocytes at their contact sites, so the fibroblasts are equivalent to

conduction inhomogeneities [24–28]. In the single-sided connection model, con-
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nected fibroblasts are loaded on the top of a 2D layer of myocytes; therefore, they

are equivalent to an extra, local electrical load. In the double-sided-connection

model, connected fibroblasts are inserted in a 2D myocardial layer, with myocytes

and fibroblasts connected at contact sites; this provides an additional conduction

pathway for electrical signals, so the fibroblasts are qualitatively similar to ionic in-

homogeneities [24,25,29]. Their studies of fibroblasts randomly attached on the top

of a 2D myocyte sheet (i.e., single-sided connections), show that, for low fibroblast

membrane conductances Gf ≃ 1 and with the fibroblast resting-membrane poten-

tial Ef = −20 mV, CV initially remains almost unchanged as the fibroblast-myocyte

(FM) ratio increases; but then it decreases quickly as the FM ratio approaches 3. If,

however, Gf ≃ 4, CV increases initially and then decreases rapidly as the FM ratio

approaches 1. However, in both cases, with low and high values of Gf , conduction

failure occurs when CV decreases to ≃ 0.2 m/s from its uncoupled value 0.56 m/s.

Furthermore, when Ef = −80 mV (i.e., close to the myocyte resting-membrane po-

tential), CV decreases linearly from 0.56 m/s to 0.49 m/s as the FM ratio increases

from 0 to 3; this trend is almost independent of the value of Gf . They have also

studied the effects of the random insertion of fibroblasts in a 2D sheet of myocytes

sheet; the resulting myocyte-fibroblast pairs can have zero-sided or double-sided

connections. When fibroblasts are inserted in series, CV decreases almost linearly

as the FM ratio increases, for zero-sided connections, and conduction failure occurs

if the FM ratio is above 3. Similar results are observed with double-sided connec-

tion when fibroblasts, with Ef = −20 mV and a low value of Gf (1 nS) are coupled

with myocytes. However, for larger values of Gf (4 nS), CV decreases much faster

as the FM ratio increases, and conduction failure occurs if the FM ratio is below 1.

Furthermore, if Ef = −80mV, CV is only slightly different from that with uncoupled

fibroblasts and almost independent of Gf . If the fibroblasts lie parallel to myocytes

in a 2D sheet, they have found that, with random laterally inserted fibroblasts

coupled to all neighboring cells (double-sided connection), CV changes in both lon-

gitudinal and transverse directions, but to a different extents. In the longitudinal

direction, CV is similar to that in models with random fibroblast attachment; how-

ever, in the transverse direction, CV decreases much more rapidly, as in to models

with random fibroblast insertions. These authors have also studied the effects of

Gj on CV for randomly inserted fibroblasts (double-sided connection) in a 2D sheet

of myocytes. For low Gf (0.1 nS), with an FM ratio of 1, they have found that CV

decreases first and then increases as Gj increases (Gj > 25 nS). However, for high

Gf (2 nS), CV increases to a maximum (at Gj ≃ 5 nS), then decreases to minimum

(at Gj ≃ 25 nS), and eventually increases linearly as Gj increases.



3.1. Introduction 92

Zlochiver, et al. [13] have studied impulse propagation, by inserting fibroblasts,

in a 2D sheet of myocyte tissue in the dynamic Luo-Rudy (LRd) [30,31] model of a

mammalian ventricular cell [32]. Their studies show that CV first increases and

then decreases as Ggap increases and then decreases as a function of fibroblast-

myocyte area ratio, in agreement with their experimental observations.

Before we present the details of our work, we give a summary of our princi-

pal results: We present systematic numerical studies of single MF units and two-

dimensional (2D) arrays of such units. Our studies on a single MF unit show that

the action-potential (AP) morphology depends principally on Ef and the coupling

Ggap between a myocyte-fibroblast pair. We present ionic mechanisms that are re-

sponsible for the modulation of the AP as we alterEf orGgap. Our numerical results

for an MF composite show that APD alternans can arise from the modulation of the

IKs and IKr potassium ionic currents. However, the current IK1 contributes princi-

pally to an elevation in Vrest in the diastolic interval; the amount of this elevation

depends on the potential difference between the myocyte and fibroblast. We find

that our MF composite can also show autorhythmic and oscillatory behaviors in ad-

dition to an excitable response; precisely which one of these responses is obtained

depends on the values of Ggap and other parameters. We also carry out system-

atic studies of a 2D mathematical model for MF tissue with (a) both homogeneous

and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters

such as Ggap, Gf , and Ef , and (c) intercellular couplings that can be zero-sided, one-

sided, and two-sided connections of fibroblasts with myocytes. Our studies with ho-

mogeneous simulations domains show that CV decreases as a function of Ggap, for

zero-sided and one-sided couplings; however, for two-sided coupling, CV decreases

initially and then increases as a function of Ggap, and, eventually, we observe that

conduction failure occurs for low values of Ggap. In our homogeneous studies, we

find that the rotation speed and stability of a spiral wave can be controlled either

by controlling Ggap or Ef . Our studies with fibroblast inhomogeneities show that

a spiral wave can get anchored to a local fibroblast inhomogeneity, just as with

conduction or ionic inhomogeneities [24,33–35]; but the spiral-wave dynamics are

completely different here than they are with conduction and ionic inhomogeneities.

We also study the efficacy of a low-amplitude control scheme, which has been sug-

gested for the control of spiral-wave turbulence in mathematical models for cardiac

tissue [24,25,36,37], in our MF model both with and without heterogeneities.

The remaining part of this paper is organized as follows. In Sec. 4.2, we describe

the formulation of our myocyte-fibroblast model, for a single cell and for 2D tissue;

we also describe the numerical schemes that we use to solve the model equations.



3.2. Model and Methods 93

In Sec. 3.3, we present the results of our numerical calculations. In Sec. 3.4, we

discuss the significance of our results and compare them with results from other

experimental and computational studies.

3.2 Model and Methods

In this Section, we build on earlier mathematical models for (a) cardiac tissue [15]

and (b) the coupling, at the level of single cells, of cardiac myocytes and cardiac

fibroblasts [9–12] to develop a mathematical model for a 2D sheet of cardiac my-

ocytes coupled to a similar sheet of fibroblasts. We use the ionic model for human

cardiac myocytes [15] due to ten Tusscher, Noble, Noble, and Panfilov (TNNP); we

include connections between myocytes and fibroblasts via gap junctions; and we

also allow for the possibility of studying zero-sided, one-sided, and two-sided cou-

plings as illustrated in the schematic diagram of Fig. 3.1.

The cell membrane of a cardiac myocyte is modelled by the following ordinary

differential equation (ODE) [38,39]:

Cm,tot

∂Vm

∂t
= −Iion,m + Iext; (3.1)

here Cm,tot is the total cellular capacitance, Vm is the transmembrane potential, i.e.,

the voltage difference between intra- and extra-cellular spaces, Iion,m is the sum of

all ionic currents that cross the cell membrane, and Iext is the externally applied

current. Similarly, the membrane potential of a passive fibroblast is given by the

ODE

Cf,tot

∂Vf

∂t
= −Iion,f , (3.2)

where Cf,tot, Vf , and Iion,f are, respectively, the total cellular capacitance, the trans-

membrane potential, and the sum of all ionic currents for the fibroblast. The pas-

sive nature of the fibroblasts allows us to write

Iion,f = Gf(Vf −Ef); (3.3)

here Gf and Ef are, respectively, the conductance and the resting membrane po-

tential for the fibroblast. If a single myocyte cell is coupled with Nf fibroblasts via

the gap junctional conductance Ggap, its transmembrane potential can be modelled

by the following set of equations:

Cm,tot

∂Vm

∂t
= −Iion,m +

Nf

∑
n

Igap,n, (3.4)

Cf,tot,n

∂Vf,n

∂t
= −Iion,fn − Igap,n, (3.5)
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where

Igap,n = Ggap(Vf,n − Vm); (3.6)

here n labels the fibroblasts that are connected to the myocyte via Ggap; note

that 1 ≤ n ≤ Nf and, for the identical fibroblasts we consider here, Cf,tot,n = Cf,tot,

Igap,n = Igap, and Vf,n = Vf , for all n. The physical units that we use for our model are

as follows: time t is in ms, the transmembrane potentials Vm and Vf are in mV, the

transmembrane currents Iion,m and Iion,f are in pA, therefore, current densities for

the myocyte are in pA/pF, the total cellular capacitances Cm,tot and Cf,tot are in pF,

and the fibroblast conductance Gf and the gap-junctional conductance Ggap are in

nS.

As suggested in Ref. [40], the dynamics of Nf identical fibroblasts coupled to a

myocyte is equivalent to the dynamics of a single fibroblast coupled to a myocyte

with coupling strength, Gmf = Gfm/Nf , where Gmf is the coupling strength of a my-

ocyte to Nf fibroblasts and Gfm = Ggap is the coupling strength of a fibroblast to a

myocyte. Therefore, we have performed simulations by using only one fibroblast

per myocyte in our 2D simulation domain. This is equivalent to a myocyte being

coupled with Nf fibroblasts with coupling strength Gmf = Gfm/Nf . Furthermore,

in our 2D model, the maximum number of fibroblasrs Nf,max allowed per site is

roughly related with the ratio of Cm,tot and Cf,tot because they are related to the

surface area of the cell; in experiments, Nf depends on the ratio of these surface

areas and the volume fractions of myocytes and fibroblasts. These considerations

are important because fibroblasts are considerably smaller than myocytes as we

discuss in greater detail in Sec. 3.4.

In our 2D computational studies, we use a simulation domain in which we have

one layer of fibroblasts on top of a myocyte layer as illustrated in Fig. 3.1. Such

a simulation domain is motivated by the experiments of Refs. [6–8, 41]. We model

this myocyte-fibroblast bilayer by using the following discrete equations [42,43]:

Cm,totV̇m(i, j) = −Iion,m(i, j) +Ggap (Vf(i, j) − Vm(i, j))
+ ∑

I=−1;1
J=−1;1

Gmm(Vm(i + I, j + J) − Vm(i, j)) + Gfm(Vf(i + I, j + J) − Vm(i, j))(3.7)

Cf,totV̇f(i, j) = −Iion,f(i, j) +Ggap (Vm(i, j) − Vf(i, j))
+ ∑

I=−1;1
J=−1;1

Gff(Vf(i + I, j + J) − Vf(i, j)) + Gmf(Vm(i + I, j + J) − Vf(i, j))(3.8)

here the dots above Vm and Vf denote time derivatives, Gmm and Gff represent,

respectively, intercellular couplings in the myocyte and fibroblast layers; and Gmf
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and Gfm account for cross couplings between myocyte and fibroblast layers; if one

of the cross-coupling coefficients, say Gmf , is nonzero, then the other, Gfm, must

also be nonzero to ensure current conservation; myocyte and fibroblast composites

are coupled at a given site by Ggap; in addition, we allow for intercellular couplings

(see Fig. (3.1)) that can be categorized naturally as follows: (A) zero-sided: Gmm >
0, Gmf = Gfm = Gff = 0; (B) one-sided: Gmm, Gff > 0, Gmf = Gfm = 0; and (C) two-sided:

Gmm, Gff > 0, Gmf , Gfm > 0; the index (i, j) refers to the cell associated with the node

under consideration; the conductances Gmm, Gff , Gmf , Gfm, and Ggap are in nS.

Figure 3.1: Schematic diagram: A small part of our square simulation domain with sites occupied

by myocyte-fibroblast (MF) composites, connected by the gap-junctional conductance Ggap, with (a)

zero-sided, (b) single-sided, and (c) double-sided couplings between MF composites (see text).

We use a 2D square domain consisting of 600×600 grid points and lattice spacing

∆x = ∆y = 0.225 mm, so the side of each square domain is L = 135 mm; one of these

layers contains myocytes and the other fibroblasts as shown in Fig. 3.1. These

two layers are separated by a distance ∆z = 0.225 mm. We use a forward-Euler

method for the time evolution of the transmembrane potentials with a time step

∆t = 0.02 ms. We use no-flux (Neumann) boundary conditions on the edges of the

simulation domain. The initial condition we use is related to the one given in

Ref. [25]; we describe it in detail in subsection 4.3.2.

It is often useful to track the trajectory of the tip of a spiral wave to investi-

gate the stability of a spiral, its transitions, and its the rate of drifting in a 2D

simulation domain. The tip of such a spiral wave is normally defined as the point
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where the excitation wave front and repolarization wave back meet; this point can

be found as the point of intersection of an isopotential line, of constant membrane

potential, Vm = Viso (in general Viso < 0 mV), and the line dVm/dt = 0 [15,44,45]. An-

other classical technique, which tracks the spiral-wave tip in a two-variable model,

obtains this tip by finding the point where the isocontours of the two state variables

intersect [45–48]; this technique can also be used in a complex mathematical model

for cardiac tissue provided the model has at least one slow and one fast variable.

We have developed a tip-tracking algorithm that locates the tip position, i.e., the

point at which the wave-front and wave-back meet each other, by monitoring INa,

the sodium current. This is the predominant current in the depolarization phase

of the AP and is, therefore, responsible for depolarizing the cells that lie ahead

of the wave front, in the 2D simulation domain; thus, it plays an important role

in the spatiotemporal evolution of this wave front. Hence, we find the minimum

strength of INa that can yield an AP; and we use this as a reference value to track

the tip position. Given the sharpness of the depolarization, pseudocolor plots of INa

show a fine line along a spiral-wave arm (see, e.g., Fig. 2A in Ref. [24]); this fine

line stops at the spiral tip and provides, therefore, an accurate way of tracking the

spatio-temporal evolution of this tip.

3.3 Results

In our previous studies [24, 25], we have investigated the interaction of a spiral-

wave with conduction and ionic inhomogeneities in the TNNP model for cardiac

tissue. Here we elucidate spiral-wave dynamics in the presence of fibroblasts by

using the mathematical model we have developed in Sec. 4.2. In subsection 3.3.1

we present results for the morphology of the action potential (AP) in a myocyte-

fibroblast (MF) composite; in particular, we examine the dependence of the AP on

Ggap, Gf , Ef , Cf,tot, and Nf . Subsection 3.3.2 contains our results for spiral-wave

dynamics in a homogeneous MF bilayer, in which MF composites are coupled; we

consider zero-, one-, and two-sided couplings. In subsection 3.3.2 we explore the

dynamics of spiral waves in a sheet of myocytes with an inhomogeneity that is an

MF bilayer. The last subsection 4.3.4 examines the efficacy of the low-amplitude,

mesh-based control scheme of Refs. [24, 36, 37] in the elimination of spiral waves

in the homogeneous MF bilayer and the sheet of myocytes with an MF-bilayer

inhomogeneity.
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3.3.1 A Myocyte-Fibroblast (MF) Composite

Fibroblast cells act like an electrical load on myocytes. This load, which depends,

principally, on the parameters Ggap, Gf , Ef , Cf,tot, and Nf , and alters the electro-

physiological properties of a myocyte that is coupled to a fibroblast. In particular,

it modifies the morphology of the action potential (AP). Earlier computational stud-

ies [9–12], which we have summarized in the Introduction (Sec. 4.1), have investi-

gated mathematical models for a single unit of a myocyte and fibroblasts, for both

animal and human ventricular cells and with passive or active fibroblasts. Most

of these computational studies focus on the modification of the AP by (a) the num-

ber Nf of fibroblasts per myocyte and (b) the gap-junctional conductance Ggap. In

the numerical studies that we present here we use a composite myocyte-fibroblast

(MF) system with Nf passive fibroblasts per myocyte. We examine in detail the

dependence of the AP of this composite on the parameters of the model, namely,

the membrane capacitance Cf,tot, the membrane conductance Gf , the resting mem-

brane potential Ef , and the coupling strength Ggap; the trends we uncover are in

qualitative agreement with various experiments [3,5].

The ranges of parameters, which we use for our composite MF system, are con-

sistent with those found in experimental studies and those used in earlier compu-

tational studies. For example, in a cell-culture experiment, Rook, et al. [5] have

studied rat-heart fibroblasts and reported that the membrane resistance Rf , the fi-

broblast resting membrane potential Ef , and the gap-junctional conductance Ggap,

lie, respectively, in the ranges 3 − 25 GΩ, −20 to −40 mV, and 0.3 − 8.0 nS. Kohl et

al. [3] have studied non-excitable cardiac, mechanosensitive fibroblasts from the

region of the sinoatrial node in a rat heart. Their study, which uses both intact

tissue and cell cultures, estimates that Rf ≃ 1 GΩ, Ef ≃ −15± 10 mV, and Ggap ≃ 4− 6
nS for a well-coupled MF pair. In vitro studies, by Kiseleva, et al. [49], have ex-

amined rat mechanosensitive fibroblasts attached to the right atrium; they have

found Ef ≃ −22±1.9mV and Rf ≃ 0.51±0.01 GΩ, for a control case, and Ef ≃ −46.5±1.8
mV and Rf ≃ 3.8 ± 0.03 GΩ, in the case of a large infarct caused by a myocardial in-

farction. In vitro studies by Kamkin, et al. [50] of non-excitable, mechanosensitive,

cardiac fibroblasts from the atrium of a human heart have reported Ef ≃ −15.9± 2.1
mV Rf ≃ 4.1±0.1 GΩ. In vitro studies, by Kamkin et al. [51], of rat atrial fibroblasts

attached to the sinoatrial node region yielded Ef ≃ −22±2 mV and Rf ≃ 510±10 MΩ,

for the control case, and for the case with myocardial infarction, and Ef ≃ −41±3mV

to ≃ −28±3 mV. Recent experiment, in culture, by Chilton et al. [52] have measured

the cellular capacitance Cf,tot of rat-ventricular fibroblasts by using a patch-clamp

recording and found Cf,tot ≃ 6.3 ± 1.7 pF; they have shown that the input resistance
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of fibroblasts Rf ≃ 10.7 ± 2.3 GΩ. Their measurements have shown that Ef depends

on the inwardly rectifying K+ current (Kir) and the potassium ion concentration[K+]o; e.g, when Kir is expressed, Ef is ≃ −65±5mV and ≃ −80±1.8mV for [K+]o = 10
mM and 5.4mM, respectively. However, when Kir is absent, Ef is ≃ −34±2mV. Fur-

thermore, in culture, Shibukawa, et al. [53] have found, in patch-clamp recordings

from rat-ventricular fibroblasts (active), that Cf,tot ≃ 4.5 ± 0.4 pF, Ef ≃ −58 ± 3.9 mV,

Rf ≃ 5.5 ± 0.6 GΩ.
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Figure 3.2: Plots of the myocyte action potential Vm (full symbols and lines) and the fibroblast

action potential Vf (unshaded symbols and dashed lines), with a passive fibroblast of capacitance

Cf,tot = 6.3 pF coupled with a myocyte for (a) Ef = 0 mV and Gf = 0.1 nS, (b) Ef = −19 mV and

Gf = 0.1 nS, (c) Ef = −39 mV and Gf = 0.1 nS, (d) Ef = 0 mV and Gf = 1 nS, (e) Ef = −19 mV, and

Gf = 1 nS, (f) Ef = −39 mV and Gf = 1 nS, (g) Ef = 0 mV and Gf = 4 nS, (h) Ef = −19 mV and

Gf = 4 nS, and (i) Ef = −39 mV and Gf = 4 nS; red squares (full or unshaded) indicate Ggap = 0.3 nS;

blue diamonds (full or unshaded) indicate Ggap = 1 nS; gray triangles (full or unshaded) indicate

Ggap = 8 nS; black squares (full or unshaded) indicate an uncoupled myocyte.

The computational studies of mathematical models for fibroblasts, discussed in

Sec. 4.1, have also used a wide range of values for parameters for the cellular
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Figure 3.3: Plots of the myocyte action potential Vm (full symbols and lines) and the fibroblast

action potential Vf (unshaded symbols and dashed lines), with a passive fibroblast of capacitance

Cf,tot = 25.2 pF coupled with a myocyte for (a) Ef = 0 mV and Gf = 0.1 nS, (b) Ef = −19 mV and

Gf = 0.1 nS, (c) Ef = −39 mV and Gf = 0.1 nS, (d) Ef = 0 mV and Gf = 1 nS, (e) Ef = −19 mV and

Gf = 1 nS, (f) Ef = −39 mV and Gf = 1 nS, (g) Ef = 0 mV and Gf = 4 nS, (h) Ef = −19 mV and

Gf = 4 nS, and (i) Ef = −39 mV and Gf = 4 nS; red squares (full or unshaded) indicate Ggap = 0.3 nS;

blue diamonds (full or unshaded) indicate Ggap = 1 nS; gray triangles (full or unshaded) indicate

Ggap = 8 nS; black squares (full or unshaded) indicate an uncoupled myocyte.

capacitance Cf,tot, the membrane conductance Gf , the fibroblast resting membrane

potentialEf , and the gap-junctional couplingGgap betweenmyocyte and fibroblasts.

For example, Xie, et al. [9] have used Cf,tot = 25 pF, Gf = 0.1 − 4 nS, Ef = −50 − 0 mV,

and Ggap = 0 − 20 nS for an MF composite. The study of Sachse, et al. [10] has

used Cf,tot = 4.5 pF, Ef = −58 mV, and Ggap = 0.1 − 100 nS for an MF composite

with active fibroblasts. Jacquemet, et al. [11] have studied the MF composite with

active fibroblasts by using Cf,tot = 4.5 pF, Ef = −58 mV, and Ggap = 0.09 − 4.05 nS.

MacCannell, et al. [12] have used Cf,tot = 6 − 60 pF, Ef = −49.6 mV and Ggap = 1 −
3 nS for their studies of an active-fibroblast model. To investigate in detail the
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Figure 3.4: Plots of the myocyte action potential Vm (full symbols and lines) and the fibroblast

action potential Vf (unshaded symbols and dashed lines), with a passive fibroblast of capacitance

Cf,tot = 63 pF coupled with a myocyte for (a) Ef = 0 mV and Gf = 0.1 nS, (b) Ef = −19 mV and

Gf = 0.1 nS, (c) Ef = −39 mV and Gf = 0.1 nS, (d) Ef = 0 mV and Gf = 1 nS, (e) Ef = −19 mV and

Gf = 1 nS, (f) Ef = −39 mV and Gf = 1 nS, (g) Ef = 0 mV and Gf = 4 nS, (h) Ef = −19 mV and

Gf = 4 nS, and (i) Ef = −39 mV and Gf = 4 nS; red squares (full or unshaded) indicate Ggap = 0.3 nS;

blue diamonds (full or unshaded) indicate Ggap = 1 nS; gray triangles (full or unshaded) indicate

Ggap = 8 nS; black squares (full or unshaded) indicate an uncoupled myocyte.

effect of fibroblasts on a myocyte, we use the following wide ranges of parameters

(these encompass the ranges used in the experimental and computational studies

mentioned above): Cf,tot = 6 − 60 pF, Gf = 0.1 − 4 nS, Ef = −39 to 0 mV, and Ggap =
0.3 − 8.0 nS for our MF composites. However, to observe some special properties,

such as autorhythmicity of MF composites, we vary the fibroblast parameters and

gap-junctional conductances.

Figures 3.2 (a)-(i) show plots of the myocyte transmembrane potential Vm (filled

symbols with solid lines) and the fibroblast transmembrane potential Vf (unshaded

symbols with dashed lines) versus time t, when we consider an MF composite in
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Figure 3.5: Plots of various morphological features of the myocyte action potential Vm versus the

gap-junctional conductance Ggap; here the myocyte is coupled with a passive fibroblast with capac-

itance Cf,tot = 6.3 pF and conductance Gf = 4.0 nS. (a) The action-potential duration APD versus

Ggap; (b) the resting-membrane potential Vrest versus Ggap; (c) the maximum upstroke velocity

dV /dtmax versus Ggap; (d) the maximum value of Vm, during the action potential, Vmax versus Ggap;

(e) the value of Vm at the position of the notch, i.e., Vnotch versus Ggap; (f) the maximum value of

Vm, in the plateau region of the action potential, i.e., Vplateau versus Ggap; these figures show plots

for the fibroblast resting membrane potential Ef = 0 mV (full red triangles), Ef = −9 mV (full blue

squares), Ef = −19 mV (full black circles), Ef = −29 mV (full blue diamonds), and Ef = −39 mV (full

red stars).

which amyocyte is coupled to a passive fibroblast, with Cf,tot = 6.3 pF. In Figs. 3.2 (a)-

(i) we use squares (◾ or ◻) for low coupling (Ggap = 0.3 nS), diamonds (◆ or ◇) for inter-
mediate coupling (Ggap = 1.0 nS), triangles (▴ or △) for high coupling (Ggap = 8.0 nS),

and filled circles (●) for a myocyte that is not coupled to a fibroblast. Figures 3.2

(a), (d), (g), which are in the first column, depict Vm and Vf for low (0.1 nS), inter-

mediate (1.0 nS), and high (4.0 nS) values of Gf when Ef = 0.0 mV; their analogs for

Ef = −19.0 mV and −39.0 mV are given, respectively, in Figs. 3.2 (b), (e), (h) (second

column) and Figs. 3.2 (a), (d), (g) (third column). These figures show the following:

(i) the fibroblast action potential (fAP) is similar to the myocyte action potential

(mAP) when the gap-junctional conductance Ggap is high and the fibroblast conduc-

tance Gf is low (Figs. 3.2 (a), (b), (c) in the first row); (ii) for low and intermediate

values of Ggap and with Gf = 0.1 nS, the fAP plateau decreases but the APD is pro-

longed with respect to that of the corresponding mAP; (iii) the fAP loses its spike

and notch and has a lower plateau and prolonged APD compared to the mAP when
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Figure 3.6: (a) Plots versus time t of the transmembrane potentials Vm (full curves with filled

symbols), for a myocyte, and Vf (dashed curves with open symbols), for a passive fibroblast coupled

with a myocyte cell; here Cf,tot = 6.3 pF, Gf = 4.0 nS, Ggap = 8.0 nS and Ef = −39.0 mV (blue squares)

andEf = 0.0mV (red triangles); the full black curve with circles shows Vm for an uncoupled myocyte.

(b) Plots versus t of the gap-junctional current Igap with parameters and symbols as in (b). Plots

versus t, for the first 2 ms after the application of a stimulus of −52 pA/pF, of (c) Vm, (d) Igap, (e) the

myocyte sodium current INa, and (f) the total activation m3 (full lines with filled symbols) and total

inactivation hj (dashed lines with open symbols) gates; the parameters and symbols here are as in

(a).

Gf = 1.0 nS or 4.0 nS. Figures similar to Figs. 3.2 (a)-(i), but with Cf,tot = 25.2 pF and

Cf,tot = 63, are given, respectively, in Figs. 3.3 (a)-(i) and Figs. 3.4 (a)-(i); these show

that Vm does not depend very significantly on Cf,tot but Vf does.

In Figs. 3.5 (a), (b), (c), (d), (e), and (f) we show, respectively, plots of the action-

potential duration APD, the resting-membrane potential Vrest, the maximum up-

stroke velocity dV /dtmax, the maximum value of Vm, during the action potential,

namely, Vmax, the value of Vm at the position of the notch, i.e., Vnotch, and the max-

imum value of Vm, in the plateau region of the action potential, i.e., Vplateau versus

versus the gap-junctional conductance Ggap; here the myocyte is coupled with a

passive fibroblast with capacitance Cf,tot = 6.3 pF and conductance Gf = 4.0 nS.

These figures show plots for the fibroblast resting membrane potential Ef = 0 mV

(full red triangles), Ef = −9 mV (full blue squares), Ef = −19 mV (full black cir-

cles), Ef = −29 mV (full blue diamonds), and Ef = −39 mV (full red stars). For

−39 mV≲ Ef ≲ −19 mV, the APD decreases monotonically as Ggap increases, but for

higher values of Ef , namely, −9 mV and 0 mV their is a monotonic increase of the
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Figure 3.7: Plots of ionic current, Im, of the myocyte versus time t of an MF composite with Nf = 1;
the fibroblast parameters are Cf,tot = 6.3 pF and Gf = 4.0 nS, and it coupled with a myocyte with

Ggap = 8.0 nS; the full black curve with circles shows Im for an uncoupled myocyte; the blue filled

squares and the red triangles are, respectively, for Ef = −39.0 mV and Ef = 0 mV. (a) the fast inward

Na+ current, INa; (b) the L-type slow inward Ca2+ current, ICaL; (c) the transient outward current,

Ito; (d) the slow delayed rectifier current, IKs; (e) the rapid delayed rectifier current, IKr; (f) the

inward rectifier K+ current, IK1; (g) the Na+/Ca2+ exchanger current, INaCa; (h) the Na+/K+ pump

current, INaK ; (i) the plateau Ca2+ current, IpCa; (j) the plateauK+ current, IpK ; (k) the background

Na+ current, IbNa; (l) the background Ca2+ current, IbCa.

APD with Ggap. Both dV /dtmax and Vmax decrease monotonically as Ggap increases;

the lower the value of Ef , the slower is this decrease. Similarly, Vnotch and Vplateau

decrease monotonically as Ggap increases; but the higher the value of Ef , the slower

is this decrease.

In Fig. 3.6 (a) we present plots versus time t of the transmembrane potentials

Vm (full curves with filled symbols), for a myocyte, and Vf (dashed curves with open

symbols), for a passive fibroblast coupled with a myocyte cell; here Cf,tot = 6.3 pF,

Gf = 4.0 nS, Ggap = 8.0 nS and Ef = −39.0 mV (blue squares) and Ef = 0.0 mV

(red triangles); the full black curve with circles show, for comparison, a plot of
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Vm for an uncoupled myocyte. Figure 3.6 (b) contains plots versus t of the gap-

junctional current Igap with parameters and symbols as in (b); and plots versus t

of Vm, Igap, the myocyte sodium current INa, and the total activation m3 (full lines

with filled symbols) and total inactivation hj (dashed lines with open symbols)

gates, for the first 2 ms after the application of a stimulus current Iext = −52 pA/pF

at 50 ms for 3 ms, are depicted in Figs. 3.6 (c), (d), (e), and (f), respectively, for the

parameters and symbols used in Fig. 3.6 (a). These plots show that the myocyte

membrane potential Vm is reduced, i.e., the cell is depolarized, when a passive

fibroblast is coupled with it; the larger the value of Ef , the more is the reduction

in Vm. However, Vm is elevated, compared to its value in the uncoupled-myocyte

case, for both the values of Ef we study, because, when Iext from 0 ≤ t ≤ 50 ms, the

gap-junctional current Igap flows from the fibroblast to the myocyte as shown in

Fig. 3.6 (b). The greater the elevation of Vm the earlier is the activation of the Na+

fast-activation gate m, in the presence of an external applied stimulus, as can be

seen by comparing Figs. 3.6 (c) and (f); this early activation shifts the minimum in

INa towards the left as depicted in Fig. 3.6 (e). Note that the product hj, the total

inactivation gating variables, decreases as Vm increases (dashed lines in Fig. 3.6

(f)) in the range 50 ms ≤ t ≤ 52 ms. Therefore, the amplitude of INa decreases with

increasing Ef , as shown in Fig. 3.6 (e), and leads to a reduction in the maximum

rate of AP depolarization (see the plots of dV /dtmax in Fig. 3.5 (c)); this shift in the

minimum of INa is also associated with the leftward shift of Vm in Fig. 3.6 (c). A

comparison of Figs. 3.6 (e) and (f) shows, furthermore, that, for a given value of Ef ,

the minimum of INa occurs at the value of t where the plots of m3 and hj cross.

The current Igap = Ggap(Vm − Vf) flows from the myocyte to the fibroblast or vice

versa as shown in Figs. 3.6 (b) and (d). Before the application of a stimulus current

(0 ms ≤ t ≤ 50 ms in Fig. 3.6 (b)), Igap < 0, i.e., it flows from the fibroblast to the my-

ocyte; and the current-sink capability of the fibroblast increases with Ef , because

(see Fig. 3.6 (a)) (Vm − Vf) increases with Ef . However, when we have a current

stimulus Iext > 0, i.e., in the time interval 50 ms < t ≤ 53 ms, the trend noted above

is reversed: the lower the value of Ef the higher is the ability of the myocyte to act

as a current sink as shown in Fig. 3.6 (d).

Several studies [54–57] have shown that the contribution of individual ionic

currents to the AP morphology can be examined by a partial or complete blocking

of the corresponding ion channel. Therefore, we examine, for an isolated myocyte,

how the AP morphology changes as we modify the major ionic currents. As in

Refs. [54–57], we find that (a) Vmax and dV /dtmax depend principally on INa, (b) Vnotch

depends mainly on Ito, (c) the maximum of the plateau region Vplateau is maintained
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by a balance between ICaL and IKs, (d) the final phase of repolarization, which

determines the APD, depends primarily on IKr and IKs, (e) the diastolic or resting

phase, which decides the value of Vrest, is maintained predominantly by IK1, and

(f) all gating variables, which determine the opening and closing of ion channels,

depend on Vm, therefore, the contribution of the ionic currents to the morphology

of the AP is modified as Vm changes.

Given these results for an isolated myocyte, we can understand qualitatively

the effects on the AP morphology of a myocyte when it is coupled with a fibroblast.

The coupling of a fibroblast to a myocyte modifies Vm because of the electronic in-

teraction, via Ggap. Therefore, the AP morphology changes as we have described

above and shown in Figs. 3.5(a)-(f); to explain the results in this figure, we have to

examine the behaviors of all the ionic currents when the myocyte is coupled to a

fibroblast. For the ensuing discussion we consider a representative value of Ggap,

namely, 8.0 nS, and study the variation of the ionic currents as we change Ef for

an MF composite. In particular, we examine the time-dependence of the myocyte

ionic currents INa, ICaL, Ito, IKs, IKr, IK1, INaCa, INaK , IpCa, IpK , IbNa, and IbCa, which

are plotted in Fig. 3.7 for a fibroblast coupled with a myocyte, with Cf,tot = 6.3 pF,

Gf = 4.0 nS, Ggap = 8.0 nS and Ef = −39.0 mV (blue squares) and Ef = 0.0 mV (red

triangles); the full black curves with circles show the ionic currents for an uncou-

pled myocyte. We observe that, as we vary Ef , the IKs and IKr currents change

substantially (see Figs. 3.7(d) and (e)). As a result, APD increases with increas-

ing Ef , as shown in Fig. 3.5(a). Furthermore, as we increase Ef , Vrest increases

as shown in Fig. 3.5(b); the amount of elevation of Vrest depends on (Vm − Ef ). By

examining the contributions of all ionic currents (see Fig. 3.7) to their values in

the resting state of the AP (t ≥ 400 ms), we conclude that IK1 changes most sig-

nificantly compared to other ionic currents. Therefore, we find the Ef -dependence

of IK1 shown in Fig. 3.7(f). As we have noted above for an isolated myocyte, Vmax

and dV /dtmax depend principally on INa; therefore, we examine INa to understand

the variations of Vmax and dV /dtmax as functions of Ef for an MF composite. We

find that the magnitude of INa decreases as Ef increases (Fig. 3.7(a)), so Vmax and

dV /dtmax decrease as Ef increases (as shown in Figs. 3.5(c) and (d)). Similarly, we

look at Ito to understand the dependence of Vnotch on Ef ; and we examine ICaL and

IKs for the Ef -dependence of Vplateau. Figure 3.7(c) shows that Ito decreases when

Ef increases, therefore, Vnotch increases as a function of Ef (as shown in Fig. 3.5(e)).

Figures 3.7(b) and (d) show ICaL and IKs, respectively; the former decreases and

the latter increases as Ef increases; however, the effect of IKs dominates that of

ICaL so Vplateau increases as Ef increases as shown in Fig. 3.5(f).
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Figure 3.8: (a) Transmembrane potential of myocyte Vm in an MF composite with Cf,tot = 6.3 pF,

Gf = 8.0 nS, and Ef = 0 mV for Ggap = 17 nS (full black circles), Ggap = 20 nS (full blue diamond)

and Ggap = 23 nS (full red triangle). (b) Plot of frequency f versus Ggap. The MF composite shows

excitable, autorhythmicity and oscillatory behavior in the regime 0 ≤ Ggap < 16 nS, 16 ≤ Ggap < 23 nS

and Ggap ≥ 23 nS, respectively.

It has been noted in Refs. [40,58,59], that a myocyte cell can display autorhyth-

micity when it is coupled with fibroblasts; in particular, Ref. [58] shows that the

cycle length of autorhythmicity activation depends on Ef and Ggap. We find that Gf

and Cf,tot play a less important role than Nf , Ef , and Ggap in determining whether

such autorhythmicity is obtained. In Fig. 3.8 we give some illustrative plots for

Nf = 1, Ef = 0mV, and Gf = 8nS that yield autorhytmicity; Fig. 3.8 (a) shows a plot

of Vm versus time t; Fig. 3.8 (b) contains a plot of the frequency of autorhthymicity

f versus Ggap for our MF composite; for more detailed studies of the dependence

of such autorhythmicity on Nf and Ef we refer the reader to Ref. [60]. Figure 3.8

(b) shows that, for the range 0 nS ≲ Ggap ≲ 16 nS, the myocyte behaves like an ex-

citable cell, which produces one action potential when it is stimulated electrically;

in the range 16 nS ≲ Ggap ≲ 23 nS, the myocyte displays autorhthymicity and the

cycle length λcl, the time difference between the upstrokes of two successive action

potentials, decreases with increasing Ggap; for Ggap ≳ 23nS, the myocyte displays

oscillatory behavior. Such autorhythmic and oscillatory responses of an MF com-

posite [60] can occur at lower values of Ggap, e.g., Ggap = 8nS, if we increase Nf .

The number of fibroblasts Nf that are coupled to a myocyte in our MF composite

affect significantly the response of the MF composite to external electrical stimuli

as has been shown in detail in Refs. [9, 60]. In Fig. 3.9, we show illustrative plots

versus t of Vm, Vf , and Igap for our MF composite with Nf = 0, i.e., no fibroblasts

(black circles), Nf = 1 (red squares), Nf = 2 (blue diamonds), and Nf = 4 (gray trian-

gles) for the parameter values Cf,tot = 6.3 pF, Gf = 4 nS, Ef − 39 mV. For a low value

of Ggap, namely, 0.3 nS (plots in the left column), we see that the resting potential of
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Figure 3.9: Plots versus t of Vm, Vf , and Igap for Nf = 0, i.e., no fibroblasts (black circles), Nf = 1

(red squares), Nf = 2 (blue diamonds), and Nf = 4 (gray triangles) for the illustrative parameter

values Cf,tot = 6.3 pF, Gf = 4 nS, Ef = −39 mV, and a low value of Ggap, namely, 0.3 nS (plots in

the left panel (a), (d), and (g)), an intermediate value of Ggap, namely, 1.0 nS (plots in the middle

panel(b),(e), and (h)), and a high value of Ggap, namely, 8.0 nS (plots in the right panel (c), (f), and

(i)).

the coupled myocyte is elevated slightly relative to the caseNf = 0; and the APD de-

creases from 280 ms, for Nf = 0, to 260 ms when Nf = 4 (Fig.3.9(a)); the dependence

of Vf and Igap on Nf is illustrated in Figs.3.9(d) and (g). This dependence of Vm, Vf ,

and Igap increases as we can see from the plots in the middle column, Figs.3.9(b),

(e), and (h), for an intermediate value of Ggap, namely, 1 nS, and from the plots in

the right column, Figs.3.9(c), (f), and (i), for an high value of Ggap, namely, 8 nS. In

the former case (Ggap = 1 nS) Vrest rises from −84.6 mV to −83.2 mV and the APD

decreases from 280 ms to 240 ms as we go from Nf = 0 to Nf = 4 (Fig.3.9(b)); in

the latter case (Ggap = 8 nS) Vrest rises from −84.6 mV to −74.4 mV and the APD

decreases from 280 ms to 150 ms as we go from Nf = 0 to Nf = 4 (Fig.3.9(c)).
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Cf,tot Gf Ggap Ef Nf ∆APD70% ∆APD80% ∆APD90% ∆V̇max ∆Vrest

(pA) (nS) (nS) (mV) (ms) (ms) (ms) (mV/ms) (mV)

6.3 4 8 -9 1 4.62 6.72 12.30 -91.89 7.12

6.3 4 8 -9 2 40.90 50.40 - -151.68 14.99

6.3 4 8 -19 1 -16.80 -15.16 -11.02 -80.64 6.04

6.3 4 8 -19 2 -16.92 -11.02 - -137.32 12.60

6.3 4 8 -29 1 -36.12 -34.84 -31.74 -68.40 4.97

6.3 4 8 -29 2 -58.00 -54.02 - -122.88 10.33

6.3 4 8 -29 3 -64.56 -51.84 - -270.10 15.91

6.3 4 8 -39 1 -53.62 -52.64 -50.32 -54.41 3.90

6.3 4 8 -39 2 -89.68 -86.92 -75.54 -103.87 8.21

6.3 4 8 -39 3 -112.60 -106.02 - -135.49 12.21

6.3 4 8 -39 4 -126.26 -106.18 - -270.10 16.35

6.3 4 8 -49 1 -69.52 -68.82 -67.10 -40.90 2.86

6.3 4 8 -49 2 -115.22 -113.30 -107.18 -82.25 6.18

6.3 4 8 -49 3 -146.06 -142.18 - -112.77 9.10

6.3 4 8 -49 4 -173.62 -166.16 - -134.10 11.77

6.3 4 8 -49 5 -195.72 -179.94 - -149.25 14.30

6.3 4 8 -49 6 -205.32 -144.06 - -162.44 16.72

6.3 4 8 -49 7 -214.12 - - -178.78 18.96

Table 3.1: The values of Cf,tot, Gf , Ggap, Ef , and Nf for a single MF composite and the changes in

the AP morphology, relative to that of an uncoupled myocyte. We concentrate on the APD, ˙Vmax,

and Vrest and list the changes, indicated by ∆, in these parameters. ∆APD70%, ∆APD80%, and

∆APD90% denote, respectively, the changes in the APD at 70%, 80%, and 90% repolarization. Note

that here we have high values (see text) for both Gf (4 nS) and Ggap (8 nS).

In Table 3.1, we show the change of the APD, V̇max, and Vrest for an MF composite

with respect to their uncoupled values when Nf identical fibroblasts are coupled

with a myocyte with high value of both Gf (4 nS) and Ggap (8 nS). We measure

∆APD70% = APDc
70% − APD

m
70%, where APDc

70% and APDm
70% are, respectively,

APD of an MF composite and isolated myocyte at 70% repolarization. Similarly,

∆APD80% and ∆APD90% are, respectively, the change of the APD of MF composite

with respect to the myocyte APD at 80% and 90% repolarization of AP. We do not

present here the results of composites withNf fibroblasts, which show AP automat-

ically in the absence of external stimulus. The change of V̇max, ∆V̇max, is measured

by substracting V̇ c
max of an MF composite form an isolated myocyte V̇ m

max. Similarly,

the change of Vrest, ∆Vrest, is measured by substracting V c
rest of an MF composite

form an isolated myocyte V m
rest. The analog of Table 3.1 for low values of Gf(0.1 nS)

and Ggap(0.3 nS), is given in Table 3.2.
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Cf,tot Gf Ggap Ef Nf ∆APD70% ∆APD80% ∆APD90% ∆V̇max ∆Vrest

(pA) (nS) (nS) (mV) (ms) (ms) (ms) (mV/ms) (mV)

6.3 0.1 0.3 -9 1 0.82 0.90 1.06 -2.41 0.12

6.3 0.1 0.3 -9 2 1.66 1.82 2.14 -5.49 0.25

6.3 0.1 0.3 -9 3 2.52 2.78 3.26 -9.28 0.38

6.3 0.1 0.3 -9 4 3.42 3.76 4.42 -13.83 0.52

6.3 0.1 0.3 -9 5 4.32 4.76 5.62 -19.16 0.67

6.3 0.1 0.3 -9 6 5.26 5.80 6.86 -22.21 0.82

6.3 0.1 0.3 -9 7 6.22 6.86 8.12 -25.40 0.99

6.3 0.1 0.3 -9 8 7.22 7.96 9.44 -29.41 1.16

6.3 0.1 0.3 -19 1 0.26 0.34 0.50 -2.08 0.10

6.3 0.1 0.3 -19 2 0.56 0.70 1.00 -4.64 0.21

6.3 0.1 0.3 -19 3 0.86 1.08 1.54 -7.72 0.33

6.3 0.1 0.3 -19 4 1.18 1.50 2.12 -11.34 0.45

6.3 0.1 0.3 -19 5 1.52 1.92 2.70 -15.53 0.57

6.3 0.1 0.3 -19 6 1.86 2.36 3.34 -20.29 0.70

6.3 0.1 0.3 -19 7 2.24 2.84 3.98 -22.61 0.84

6.3 0.1 0.3 -19 8 2.64 3.32 4.68 -25.34 0.98

6.3 0.1 0.3 -29 1 -0.28 -0.22 -0.08 -1.76 0.09

6.3 0.1 0.3 -29 2 -0.54 -0.40 -0.12 -3.85 0.18

6.3 0.1 0.3 -29 3 -0.80 -0.58 -0.16 -6.29 0.28

6.3 0.1 0.3 -29 4 -1.04 -0.76 -0.18 -9.10 0.37

6.3 0.1 0.3 -29 5 -1.28 -0.90 -0.18 -12.29 0.48

6.3 0.1 0.3 -29 6 -1.50 -1.04 -0.14 -15.89 0.58

6.3 0.1 0.3 -29 7 -1.70 -1.16 -0.08 -19.87 0.69

6.3 0.1 0.3 -29 8 -1.88 -1.26 0.02 -22.37 0.81

6.3 0.1 0.3 -39 1 -0.82 -0.76 -0.64 -1.45 0.07

6.3 0.1 0.3 -39 2 -1.64 -1.52 -1.26 -3.11 0.15

6.3 0.1 0.3 -39 3 -2.46 -2.26 -1.86 -4.99 0.22

6.3 0.1 0.3 -39 4 -3.26 -2.98 -2.46 -7.10 0.30

6.3 0.1 0.3 -39 5 -4.04 -3.70 -3.02 -9.45 0.39

6.3 0.1 0.3 -39 6 -4.82 -4.40 -3.58 -12.05 0.47

6.3 0.1 0.3 -39 7 -5.58 -5.08 -4.10 -14.90 0.56

6.3 0.1 0.3 -39 8 -6.32 -5.74 -4.62 -18.00 0.65

Table 3.2: The values of Cf,tot, Gf , Ggap, Ef , and Nf for a single MF composite and the changes in

the AP morphology, relative to that of an uncoupled myocyte. We concentrate on the APD, ˙Vmax,

and Vrest and list the changes, indicated by ∆, in these parameters. ∆APD70%, ∆APD80%, and

∆APD90% denote, respectively, the changes in the APD at 70%, 80%, and 90% repolarization. Note

that here we have low values (see text) for both Gf (0.1 nS) and Ggap (0.3 nS).
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3.3.2 Wave dynamics in a 2D simulation domain with MF composites

We move now to a systematic study of the propagation of electrical waves of activa-

tion in a 2D simulation domain with MF composites that are coupled via the types

of intercellular and gap-junctional couplings described in Sec. 4.2. We begin with

an examination of plane-wave propagation through such a simulation domain and

study the dependence of the conduction velocity CV on the gap-junctional coupling

Ggap for zero-, one-, and two-sided couplings. We then study spiral-wave propaga-

tion in this domain. Finally, we investigate spiral-wave propagation through an

inhomogeneous, square simulation domain in which most of the domain consists of

myocytes, but a small region comprises a square MF composite.

In most of our numerical simulations of 2D MF composite domains, we choose

the following representative values: the total cellular capacitance Cf,tot = 6.3 pF;

the fibroblast conductance Gf = 4.0 nS; the resting membrane potential of fibrob-

last Ef = −39 mV; and Dmm = 0.00154 cm2/ms [15], which yields, in the absence of

fibroblasts, the maximum value for the plane-wave conduction velocity CV , namely,

= 68.3 cm/s [25]; here Dmm is the diffusion constant of the myocyte layer, and it is

given by the relation, Dmm = GmmSm/Cm,tot, where Sm is the surface area of the my-

ocyte. For the the gap-junctional conductance we explore values in the experimen-

tal range (see Sec. 4.1), 0.0 nS ≲ Ggap ≲ 8.0 nS; the remaining intercellular conduc-

tances lie in the following ranges: 0 ≤ Gff ≤ Gmm/200 and 0 ≤ Gmf = Gfm ≤ Gmm/200. In
some of our studies, we vary Gf and Ef ; e.g., when we study spiral wave dynamics

in the autorhymicity regime, we use Gf = 8.0 nS and Ef = 0.0 mV.

Spiral waves in homogeneous domains

As we have noted in Sec. 4.1, both experimental and computational studies [13,14,

22] have shown that CV behaves nonmonotonically as a function of the number

of fibroblasts Nf in an MF composite. However, to the best of our knowledge, no

simulation has examined in detail the dependence of CV on Ggap; therefore, we ex-

amine this dependence for the zero-, single-, and double-sided couplings described

in Sec. 4.2.

We measure CV for a plane wave by stimulating the left boundary of the sim-

ulation domain with a current pulse of amplitude 150 pA/pF for 3 ms. This leads

to the formation of a plane wave that then propagates through the conduction do-

main as shown in Fig. 3.10. For such a wave we can determine CV as described,

e.g., in Refs. [24, 25]. In our in silico experiments, we observe that CV decreases

monotonically, as a function of Ggap, for zero- and single-sided couplings; but CV

is a nonmonotonic function of Ggap in the case of double-sided coupling. These be-
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Figure 3.10: Plane waves shown via pseudocolor plots of Vm at t = 160 ms in a 2D square simulation

domain of side L = 135 mm for (a) the control case with only myocytes, (b) zero-sided coupling, (c)

single-sided couplingwith Gmm/Gff = 1, (d) double-sided couplingwith Gmm/Gff = 1, Gmm/Gmf = 100,
and Ggap = 0.5 nS, (e) double-sided coupling with Gmm/Gff = 1, Gmm/Gmf = 100, and Ggap = 8.0 nS,

and (f) double-sided coupling with Gmm/Gff = 1, Gmm/Gmf = 200, and Ggap = 0.5 nS (Video S1

illustrates the spatiotemporal evolution of these plane waves). Plots of CV versus Ggap for (g)

zero-sided coupling, (h) single-sided coupling with Gmm/Gff = 1 (blue circles), Gmm/Gff = 4 (black

squares), and Gmm/Gff = 100 (red triangles), and (i) double-sided coupling with Gmm/Gff = 1 and

Gmm/Gmf = 200. For double-sided coupling, conduction failure can occur for low and intermediate

values of Ggap, e.g., 0.5 nS and 2.0 nS, as shown in (d).

haviors of CV , as a function of Ggap, can be explained qualitatively by examining

the dependence of the rate of depolarization dV /dt on Ggap for an isolated MF com-

posite. As we increase Ggap, dV /dt decreases because of the additional electrical

load of the fibroblast on the myocyte; the fibroblast acts as current sink and, there-

fore, the flux carried by the wave front decreases and CV decreases. However, for

double-sided coupling, CV decreases initially and then increases as a function of

Ggap because of the cross-coupling terms Gmf and Gfm.
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Figure 3.11: Initiation of a spiral wave by the S1-S2 parallel field protocal: To inject a spiral wave,

the diffusion constant is set to Dmm = 0.000385 cm2/ms; this is a quarter of its original value, which

is 0.00154 cm2/ms; an S1 stimulus of strength 150 pA/pF is applied for 3 ms at the left boundary;

after 560 ms, an S2 stimulus of strength 450 pA/pF is applied for 3 ms just behind the refractory

tail of the plane wave initiated by the S1 stimulus; this S2 stimulus is applied over the region

x = 360 and 1 ≤ y ≤ 550. We reset Dmm to its original value after 880 ms; this procedure yields a

fully developed spiral wave at t = 976 ms. The spiral wave configuration in (c) is used as the initial

condition for our subsequent studies.

We show plane waves in Figs. 3.10 (a)-(f) via pseudocolor plots of Vm at t = 160ms

in a 2D square simulation domain of side L = 135 mm for (a) the control case with

only myocytes, (b) zero-sided coupling, (c) single-sided coupling with Gmm/Gff = 1,
(d) double-sided coupling with Gmm/Gff = 1, Gmm/Gmf = 100, and Ggap = 0.5 nS, (e)

double-sided coupling with Gmm/Gff = 1, Gmm/Gmf = 100, and Ggap = 8.0 nS, and (f)

double-sided coupling with Gmm/Gff = 1, Gmm/Gmf = 200, and Ggap = 0.5 nS. Video S1

illustrates the spatiotemporal evolution of these plane waves. Figures 3.10 (g)-(h)

show plots of CV versus Ggap for (g) zero-sided coupling, (h) single-sided coupling

with Gmm/Gff = 1 (blue circles), Gmm/Gff = 4 (black squares), and Gmm/Gff = 100 (red

triangles), and (i) double-sided coupling with Gmm/Gff = 1 and Gmm/Gmf = 200. For

double-sided coupling, conduction failure can occur for low and intermediate values

of Ggap, e.g., 0.5 nS and 2.0 nS, as shown in Fig. 3.10 (d); however, no conduction

occurs in this range if Gmm/Gmf = 200. We do not observe any conduction failure in

the cases of zero- and one-sided coupling.

Two methods are often used to initiate spiral waves in simulations [15,24,61,62]

and in experiments [61, 63], namely, (1) the S1-S2 cross-field protocol and (2) the

S1-S2 parallel-field protocol. In the cross-field method, a super-threshold stimulus

S2 is applied at the boundary that is perpendicular to the boundary along which

the S1 stimulus is given; in the parallel-field method, S2 is applied parallel to the

refractory tail of the S1 stimulus, but not over the entire length of the domain. We

use the parallel-field protocol to initiate a spiral wave in our homogeneous, square
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Figure 3.12: Pseudocolour plots of Vm, in a square simulation domain of side L = 135 mm, at time

t = 2 s with Gf = 4.0 nS, Ef = −39.0 mV, zero-sided coupling with Dmm = 0.00154 cm2/s, and (a)

Ggap = 0.0 nS (control case, i.e., only myocytes), (b) Ggap = 0.5 nS (low coupling), (c) Ggap = 2.0 nS

(intermediate coupling), and (d) Ggap = 8.0 nS (high coupling); the white solid lines show the tra-

jectory of the spiral tip for 2 s≤ t ≤ 3 s. Video S2 illustrates the spatiotemporal evolution of these

spiral waves. (e) Plot of the rotation period τrot of the spiral wave versus Ggap. (f) Plots of the power

spectra E(ω) of the time series of Vm(x, y, t) recorded from the representative point (x = 112.5 mm,

y = 112.5 mm), which is indicated by an asterisk in (a)-(d), for Ggap = 0.0 nS (black circles), (b)

Ggap = 0.5 nS (gray squares), (c) Ggap = 2.0 nS (blue diamonds), and (d) Ggap = 8.0 nS (red triangles);

for these power spectra we use time series with 400000 points.
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Figure 3.13: Plots of spiral-wave-tip trajectories for the time intervals (a) 2 s≤ t ≤ 3 s, (b) 4 s≤ t ≤ 5 s,

and (c) 6 s≤ t ≤ 7 s, with zero-sided coupling, and for the control case withGgap = 0.0 ns (black circles),

Ggap = 0.5 ns (gray squares), Ggap = 2.0 ns (blue diamonds), and Ggap = 8.0 ns (red triangles), and

all other parameter values as in Fig. 3.12. Videos S2, S3, and S4 illustrate the spatiotemporal

evolution of these spiral-tip trajectories.
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simulation domain with myocytes as follows. Initially we set the diffusion constant

Dmm = 0.000385 cm2/ms; this is a quarter of its original value, which is 0.00154

cm2/ms. We then inject a plane wave into the domain via an S1 stimulus of strength

150 pA/pF for 3 ms at the left boundary. After 560ms we apply an S2 stimulus

of strength 450 pA/pF for 3ms just behind the refractory tail of the plane wave

initiated by the S1 stimulus; in our simulation domain the S2 stimulus is applied

over the region x = 360 and 1 ≤ y ≤ 550. We reset D to its original value after 880 ms.

This procedure yields a fully developed spiral wave at t = 976 ms (see Fig. 3.11 for

a pseudocolor plot of the transmembrane potential for this spiral wave); we use

the values of Vm, the gating variables, the intracellular ion concentrations for this

spiral wave as the initial condition for our subsequent studies. By decreasing D

for this small interval of time we are able to reduce CV (because CV ∝
√
D) and,

thereby, the wave length λ; if we do not reduce D for this period, it is difficult to

trap the hook of the proto spiral our simulation domain, whose side L = 13.5 cm.

We use the fully developed spiral wave of Fig. 3.11 in (c) as an initial condi-

tion for the myocytes in our 2D simulation domain with MF composites; for the

fibroblasts Vf is set equal to Ef at this initial time.

We begin by studying the dependence on Ggap of spiral-wave dynamics in our 2D

MF-composite simulation domain with zero-sided coupling. In Fig. 3.12 we show

pseudocolour plots of Vm, in a square simulation domain of side L = 135 mm, at

time t = 2 s with Gf = 4.0 nS, Ef = −39.0 mV, and (a) Ggap = 0.0 nS (control case,

i.e., only myocytes), (b) Ggap = 0.5 nS (low coupling), (c) Ggap = 2.0 nS (intermediate

coupling), and (d) Ggap = 8.0 nS (high coupling); the white solid lines show the

trajectory of the spiral tip for 2 s≤ t ≤ 3 s. Video S2 illustrates the spatiotemporal

evolution of these spiral waves. The plot in Fig. 3.12 (e) of the rotation period

τrot of the spiral wave versus Ggap shows that τrot decreases as Ggap increases. In

Fig. 3.12 (f) we show the power spectra E(ω) of the time series of Vm(x, y, t) recorded
from the representative point x = 112.5 mm,y = 112.5 mm, which is indicated by an

asterisk in Figs. 3.12 (a)-(d), for Ggap = 0.0 nS (black circles), (b) Ggap = 0.5 nS (gray

squares), (c) Ggap = 2.0 nS (blue diamonds), and (d) Ggap = 8.0 nS (red triangles);

for these power spectra we use time series with 400000 points; the discrete lines in

these power spectra show that, over these time scales, we have periodic temporal

evolution that is a characteristic signature of a single, rotating spiral wave. The

position of the fundamental peak in these power spectra moves to high frequencies

as we increase Ggap in a manner that is consistent with the decrease of τrot in (e).

The rotation period τrot, for zero-sided coupling, decreases as Ggap increases. We

can understand this qualitatively by looking at the APD of an MF composite and
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examining the propagation properties of plane waves that we have discussed above.

Recall that, as Ggap increases, the myocyte APD for a myocyte in an MF composite

decreases for low values of Ef (e.g., Ef = −39 mV, as shown by red triangles in

Fig. 3.5 (a)). The APD is roughly equal to the refractory time of a plane wave in a 1D

or 2D domain [64], therefore, the refractory period of a plane wave in 2D decreases

asGgap increases; and we have checked explicitly that it decreases asGgap increases

by applying an additional stimulus at the wave back of the propagating plane wave.

The rotation period τrot of a spiral wave is related to the refractory period of a

plane wave, although the curvature plays an additional role in the spiral-wave

case [65,66]. Therefore, spiral waves rotate faster as Ggap is increased.

The white solid lines in Figs. 3.12 (a)-(d) show the trajectories of the spiral tips

for 2 s≤ t ≤ 3 s. If we monitor these trajectories for longer durations of time, we

obtain the tip trajectories shown in Figs. 3.13 (a), (b), and (c), respectively, for

the time intervals 2 s≤ t ≤ 3 s, 4 s≤ t ≤ 5 s, and 6 s≤ t ≤ 7 s for the case of zero-

sided coupling, for the control case with Ggap = 0.0 ns (black circles), Ggap = 0.5 ns

(gray squares), Ggap = 2.0 ns (blue diamonds), and Ggap = 8.0 ns (red triangles),

and all other parameter values as in Fig. 3.12. Note that in Figs. 3.13 (a) and

(b), i.e., for t ≲ 5 s, these trajectories are very nearly circular for all the values of

Ggap we consider. However, for t > 5 s, the tip trajectories can form Z-type curves

as shown in Fig. 3.13 (c) for the control case with Ggap = 0.0 ns (black circles),

Ggap = 0.5 ns (gray squares), and Ggap = 2.0 ns (blue diamonds); the trajectory for

Ggap = 8.0 ns (red triangles) continues to be circular. Videos S2, S3, and S4 illustrate

the spatiotemporal evolution of these spiral-tip trajectories. The stability of the

spiral core increases as we increase Ggap because the interaction of the wave back

of the preceding arm of the spiral wave and the wave front of the following arm

decreases with increasing Ggap.

For the case of zero-sided coupling, with Ef = 0 mV and Gf = 8 nS, Figs. 3.14(a)-

(c) show, respectively, pseudocolor plots of the myocyte transmembrane potential

Vm, at time t = 2 s, for low-frequency autorhythmicity (e.g., with Ggap = 17 nS), high-
frequency autorhythmicity (e.g., with Ggap = 20 nS), and when the MF composite

displays (cf. Fig. 3.8) oscillatory behavior (e.g., with Ggap = 23 nS). In Fig. 3.14(d),

we show the time series of Vm(x, y, t), in the interval 0 s ≤ t ≤ 4 s, obtained from three

representative points, shown by asterisks in Fig. 3.14(a), namely, (x = 22.5 mm, y =
22.5 mm) (black filled circles), (x = 67.5 mm, y = 67.5 mm) (blue filled diamonds), and

(x = 112.5 mm,112.5 mm) (red filled triangles); Fig. 3.14(g) shows the corresponding

power spectra, which we calculate from these time series, each of which has 2 × 105

data points; each one of these power spectra has discrete, sharp peaks at a funda-
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Figure 3.14: Pseudocolor plots of the myocyte transmembrane potential Vm, at time t = 2 s, for

the case of zero-sided couplings, with Ef = 0 mV and Gf = 8 nS: (a) low-frequency autorhyth-

micity (Ggap = 17 nS), (b) high-frequency autorhythmicity (Ggap = 20 nS), and (c) when the MF

composite displays oscillatory behavior (Ggap = 23 nS) (see, Figs. 3.8 for the boundaries of these

regions). Figures (d)-(f) show, respectively, the time series of Vm(x, y, t), in the time interval

0 s ≤ t ≤ 4 s, obtained from three representative points, shown by asterisks in Fig. 3.14(a)-(c), namely,

(x = 22.5 mm, y = 22.5 mm) (black filled circles), (x = 67.5 mm, y = 67.5 mm) (blue filled diamonds),

and (x = 112.5 mm,112.5 mm) (red filled triangles). Figures 3.14(g)-(i) show the corresponding power

spectra, which we calculate from these time series, each of which has 2 × 105 data points.

mental frequency and at its harmonics; the periodic nature of the time series and

these peaks in the power spectra provide evidence for the temporally periodic mo-

tion of the spiral wave in the region of low-frequency autorhythmicity. The analogs

of Figs. 3.14(d) and (g) are shown in Figs. 3.14(e) and (h) for the regime of high-

frequency autorhythmicity; the time series of Vm(x, y, t), in the interval 0 s ≤ t ≤ 4 s,

from (x = 22.5 mm, y = 22.5 mm) (black filled circles) and (x = 67.5 mm, y = 67.5 mm)

(blue filled diamonds), show irregular behaviors and the corresponding power spec-

tra show subsidiary peaks near the main peaks; however, the time series recorded
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Figure 3.15: Spiral waves in pseudocolor plots of Vm at time t = 2 s in a simulation domain with

L = 13.5 cm, an MF composite at every site, with a myocyte M coupled via Ggap = 8 nS with one

fibroblast F (Cf,tot = 6.3 pF, Gf = 4 nS, and Ef = −39 mV) for (a) control case with only myocytes and

no fibroblasts, (b) zero-sided coupling, (c) single-sided coupling with Gmm/Gff = 1, and (d) double-

sided coupling with Gmm/Gff = 1 and Gmm/Gmf = 200; the white solid lines in plots (a), (b), (c), and

(d) show the trajectories of the spiral tip for 2 s < t < 3 s. Video S5 illustrates the spatiotemporal

evolution of these spiral waves. (e) Time series data for Vm(x, y, t) are recorded at the point (x =
112.5 mm, y = 112.5 mm), shown by an asterisk, for 6 s < t < 8 s. (f) Plot of the inter-beat interval

(ibi) versus the beat number n, and (g) the power spectrum E(ω) (of Vm) versus the frequency ω

for the control case (black circles), zero-sided coupling (gray squares), single-sided coupling (blue

diamonds), and double-sided coupling (red triangles); these plots of ibi and E(ω) are obtained from

a time series of Vm, with 400000 data points separated by 0.02 ms.

from (x = 112.5 mm,112.5 mm) (red filled triangles) shows periodic behavior and,

consequently, the corresponding power spectrum has discrete, strong peaks. The

analogs of Figs. 3.14(d) and (g), for the oscillatory regime, are shown in Figs. 3.14(f)

and (i).
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Figure 3.16: Pseudocolour plots show the time evolution of the myocyte transmembrane potential

Vm for double-sided diffusive coupling with Dmm/Dff = 1 and Dmm/Dmf = 200; the fibroblasts in

these MF composites have Cf,tot = 6.3 pF, Gf = 4.0 nS, and Ef = −39.0 mV; the gap-junctional

couplings Ggap are, (a) 0.5 nS, (b) 2 nS, and (c) 8 nS. The plots of Vm, at time t = 80 ms, are shown in

(a), (b), and (c) for the Ggap 0.5 nS, 2 nS, and 8 nS, respectively; (d), (e) and (f) are the analogs of (a),

(b) and (c) at time t = 400 ms. For low and intermediate values of Ggap conduction failure occurs as

shown in (a),(b), (d), and (e).

In Fig. 3.15 we show spiral waves via pseudocolor plots of Vm at time t = 2 s;

here, at each site, we have an MF composite with a myocyte M coupled with one

fibroblast F for which Ggap = 8 nS, Cf,tot = 6.3 pF, Gf = 4 nS, and Ef = −39 mV.

Figure 3.15(a) shows the control case in which there are only myocytes and no

fibroblasts; Fig. 3.15(b) shows the spiral wave for the case of zero-sided coupling;

Fig. 3.15(c) gives the spiral wave for single-sided coupling with Gmm/Gff = 1; and

Fig. 3.15(d) portrays this wave when we have double-sided coupling with Gmm/Gff =
1 and Gmm/Gmf = 200; the white solid lines in these plots show the trajectories of the

spiral tip for 2 s < t < 3 s. Video S5 illustrates the spatiotemporal evolution of these

spiral waves. In Fig. 3.15(d), we show the time series of Vm(x, y, t), in the interval

6 s ≤ t ≤ 8 s, obtained from a representative point, shown by asterisks in Figs. 3.15(a-

d), namely, (x = 112.5 mm, y = 112.5 mm), for the control case (black circles), zero-

sided coupling (gray squares), single-sided coupling (blue diamonds), and double-

sided coupling (red triangles); Figs 3.15(e) and (f) contain, respectively, plots of

the inter-beat interval (ibi) versus the beat number n and the power spectrum

E(ω) (of Vm) versus the frequency ω for the control case (black circles), zero-sided
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coupling (gray squares), single-sided coupling (blue diamonds), and double-sided

coupling (red triangles); these plots of ibi and E(ω) are obtained from a time series

with 4× 105 data points separated by 0.02 ms and recorded from the representative

point (x = 112.5 mm, y = 112.5 mm) that is indicated by a ∗ in these pseudocolor

plots. For a specific, initial spiral configuration (see Fig. 3.11), we observe that the

spatiotemporal evolution of the system leads to a single rotating spiral for control,

zero-sided, and single-sided couplings; however, this initial condition leads to two

rotating spirals, with opposite senses of rotation, for double-sided couplings. All

initial conditions do not lead to two rotating spiral waves, for the case of double-

sided couplings, but some do (see Figs. 3.11 and 3.16). The spiral-wave rotation

period, with double-sided couplings, is less than it is in the case with no fibroblasts

(only myocytes) but greater than it is with zero- and single-sided couplings. We now

investigate the dependence of the two-spiral state, with double-sided couplings, on

Ggap with the initial spiral configuration shown in Fig. 3.11 (c). In Fig. 3.16, we

show pseudocolour plots of the myocyte transmembrane potential Vm, for double-

sided coupling with Gmm/Gff = 1 and Gmm/Gmf = 200, and at different values of the

time t; the fibroblasts in these MF composites have Cf,tot = 6.3 pF, Gf = 4.0 nS, and

Ef = −39.0 mV. Pseudocolor plots of Vm at t = 80 ms are given in Figs. 3.16 (a), (b),

and (c) for Ggap = 0.5 nS, 2 nS, and 8 nS, respectively; the analogs of the these plots

at t = 400 ms are given, respectively, in Figs. 3.16 (d), (e), and (f). From these plots

we conclude that, for low and intermediate values of Ggap, conduction failure occurs

because of the absorption of spiral waves at the top boundary of the simulation

domain (see Figs. 3.16(a), (b), (d), and (e)); however, for Ggap = 8.0 nS, the initial

spiral configuration splits into the two stable spirals as shown in Figs. 3.16(c) and

(f).

Spiral waves in inhomogeneous domains

We now examine the effects of fibroblast inhomogeneities on spiral-wave dynam-

ics in our mathematical model; outside the region of the inhomogeneity we use

the TNNP model for cardiac tissue; inside the inhomogeneity we use the 2D MF

composite domain that we have used in our studies above.

We model an inhomogeneity in our 2D simulation domain by incorporating a

small square patch of side ℓ; this patch is an MF composite domain; the remain-

ing part of the simulation domain contains only myocytes that are coupled via

Dmm. Again, we focus on three different types of couplings in the MF-composite

domain, namely, zero-, single-, and double-sided couplings between myocytes and
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Figure 3.17: Pseudocolor plots of the transmembrane potential of the myocyte Vm at time, t = 2 s,

in the presence of a square shape MF composite inhomogeneity, of side ℓ = 33.75 mm, for the case

of zero-sided coupling; the bottom-left corner of the inhomogeneity is fixed at (a) (x = 33.75 mm, y =
67.5 mm), (b) (x = 56.25 mm, y = 56.25 mm), and (c) (x = 78.75mm, y = 45mm); the white solid lines

in these figures show the spiral-tip trajectories in the time interval 2 s ≤ t ≤ 3 s and the local

time series data are recorded from points that are shown by asterisks. Video S6 illustrates the

spatiotemporal evolution of these spiral waves. The plots in (d)-(f) show the time series for Vm, in

the interval 0 s ≤ t ≤ 4 s, which are obtained from a point outside ((x = 112.5mm, y = 112.5mm) for
all cases) and inside the fibroblast inhomogeneity ((x = 45mm, y = 90mm), (x = 67.5mm, y = 67.5mm),
and (x = 90mm, y = 67.5mm) for (a), (b), and (c), respectively), represented by black circles and red

triangles, respectively; (g), (h), and (i) show plots of the inter-beat intervals (ibis) versus the beat

number n for the time series of Vm mentioned above; each one of these time series contain 2 × 105
data points; the power spectra E(ω), which follow from these time series, are given in (j), (k), and

(l).
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Figure 3.18: Pseudocolor plots of the transmembrane potential Vm of the myocyte at time, t = 2 s,

in the presence of a square MF-composite inhomogeneity, of side ℓ = 33.75 mm, for the case of

single-sided coupling with Gmm/Gmf = 1; the bottom-left corner of the inhomogeneity is fixed at (a)

(x = 33.75 mm, y = 67.5 mm), (b) (x = 56.25 mm, y = 56.25 mm), and (c) (x = 78.75mm, y = 45mm); the
white solid lines in these figures show the spiral-tip trajectories in the time interval 2 s ≤ t ≤ 3 s

and the local time series data are recorded from points that are shown by asterisks. The plots

in (d)-(f) show the time series for Vm, in the interval 0 s ≤ t ≤ 4 s, which are obtained from the

points outside ((x = 112.5mm, y = 112.5mm) for all cases) and inside the fibroblast inhomogeneity

((x = 45mm, y = 90mm), (x = 67.5mm, y = 67.5mm), and (x = 90mm, y = 67.5mm) for (a), (b), and (c),

respectively), represented by black circles and red triangles, respectively; (g), (h), and (i) show plots

of the inter-beat intervals (ibis) versus the beat number n for the time series of Vm mentioned above;

each one of these time series contain 2× 105 data points; the power spectra E(ω), which follow from

these time series, are given in (j), (k), and (l).

fibroblasts; and we choose to the following, representative fibroblast parameters:

Cf,tot = 6.3 pF, Gf = 4 nS, and Ef = −39mV. In most of our studies, we use Ggap = 8 nS.
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In Figs. 3.17 (a), (b), and (c) we show pseudocolor plots of Vm at time, t = 2 s,

in the presence of a square fibroblast inhomogeneity, of side 33.75 mm, for the

case of zero-sided coupling, and the lower-left-hand corner of the inhomogeneity

at, respectively, (x = 33.75 mm, y = 67.5 mm), (x = 56.25 mm, y = 56.25 mm) and(x = 78.75 mm, y = 45 mm), respectively; the white solid lines in these figures

show the spiral-tip trajectories, for 2 s ≤ t ≤ 3 s. We also obtain time series for

Vm from a point outside the inhomogeneity ((x = 112.5 mm, y = 112.5 mm) for all

cases) and a point inside it ((x = 45 mm, y = 90 mm), (x = 67.5 mm, y = 67.5 mm), and(x = 90 mm, y = 67.5 mm) for Figs. 3.17 (a), (b), and (c), respectively). Data from

the points outside and inside the fibroblast inhomogeneity are represented, respec-

tively, by black circles and red triangles in Figs. 3.17 (d), (e), and (f). Figures 3.17

(g), (h), and (i) show plots of the inter-beat intervals (ibis) versus the beat number

n for the time series of Vm mentioned above; each one of these time series contain

2×105 data points; the power spectra E(ω), which follow from these time series, are

given in Figs. 3.17 (j), (k), and (l).

The white solid lines in Figs. 3.17 (a)-(c) show the trajectories of the spiral tips

for 2 s≤ t ≤ 3 s; note that these trajectories depend sensitively on the position of

the MF composite inhomogeneity; furthermore, the dynamics of the wave, inside

and outside this inhomogeneity, are different (cf., our previous studies with ionic

inhomogeneities [24, 25]). Figure 3.17 (a) shows that, in the presence of an MF-

composite inhomogeneity, the tip trajectory deviates from one with a circular core;

the corresponding plots of the ibis and power spectra, Figs. 3.17 (g) and (j), respec-

tively, illustrate that the temporal evolution of the spiral is periodic inside and out-

side of the inhomogeneous domain. However, for the inhomogeneity of Fig. 3.17 (b),

we observe non-periodic and periodic temporal evolutions, respectively, inside and

outside the MF inhomogeneity as can be surmised from the ibi and power-spectra

plots in Figs. 3.17 (h) and (k); the tip has a Z-type trajectory, extends over a length

≃ 34mm, and it meanders both inside and outside the inhomogeneity. For the inho-

mogeneity of Fig. 3.17 (c), we obtain periodic and non-periodic temporal evolutions,

respectively, inside and outside the MF-composite inhomogeneity (see Figs. 3.17 (i)

and (l) for the ibi and power spectra); here the tip trajectory has a linear extent

≃ 14 mm and it is restricted, predominantly, inside the inhomogeneity. The Video

S6 has four animations that show superimpositions of pseudocolor plots of Vm and

the spiral-tip trajectories for 2 ≤ t ≤ 3 s for a control myocyte layer with no inho-

mogeneities and the simulation domains for Figs. 3.17 (a)-(c). If we use one-sided

coupling with Gmm/Gff = 1, we find that our results are similar to those we have de-

picted in Fig. 3.17 for zero-sided coupling, as we show in Fig. 3.18. In general, the
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heterogeneity of cardiac tissue causes a drift of the spiral wave towards regions in

which a spiral wave has a long period of rotation [67–69]. In our studies, the period

of a spiral wave decreases slightly inside the fibroblast heterogeneity; and the final

position of the spiral depends on the location of the heterogeneity.

Next we investigate the dependence of spiral-wave dynamics on the size of the

MF-composite inhomogeneity. Figures 3.19 (a), (b), and (c) show pseudocolor plots,

at time t = 2 s, of Vm for three representative square inhomogeneities, with sides

ℓ = 22.5 mm, ℓ = 33.75 mm, and ℓ = 45 mm; the lower-left-hand corner of these squares

is fixed at (56.25 mm,56.25 mm). The white, solid lines in these figures show the

spiral-tip trajectories for 2 ≤ t ≤ 3 s. The spiral-tip trajectory, shown in Fig. 3.19(a),

is a closed, but not circular, path that is confined inside the inhomogeneity; as the

size of the inhomogeneity grows, this tip trajectory also grows in size and parts

of it lie outside the inhomogeneity, as shown, e.g., in Fig. 3.19(b) and (c).; in the

latter two cases, the tip trajectories are not closed and their linear extent is com-

parable to the length of the side of the inhomogeneity. We also obtain time series

for Vm from a point outside the inhomogeneity (22.5mm,22.5mm) and a point inside

it (67.5mm,67.5mm); these points are indicated, respectively, by black and white

asterisks in Figs. 3.19 (a), (b), and (c); and data from the points outside and inside

the fibroblast inhomogeneity are represented, respectively, by black circles and red

triangles in Figs. 3.19 (d)-(l). In Figs. 3.19 (d), (e), and (f) we give the time series of

Vm; Figs. 3.19 (g), (h), and (i) show plots of the inter-beat intervals (ibis) versus the

beat number n for the time series of Vm mentioned above (these contain 2×105 data

points); the power spectra E(ω), which follow from these time series, are given in

Figs. 3.19 (j), (k), and (l). The Video S7 has four panels that show superimpositions

of pseudocolor plots of Vm and the spiral-tip trajectories for 2 ≤ t ≤ 3 s for a control

myocyte layer with no inhomogeneities (top left panel) and the simulation domains

for Figs. 3.19 (a), (b), and (c) (top right, bottom left, and bottom right panels, re-

spectively). We observe rich varieties of spiral-wave dynamics, both inside and

outside of the inhomogeneity. The precise spatiotemporal evolution of the spiral

waves depends on the size of the inhomogeneity; for a careful investigation of this

size dependence, we must keep one point of the inhomogeneity, say its left bottom

corner, fixed, as in Figs. 3.19(a), (b), and (c), where we find that the system moves

from periodic to non-periodic temporal evolution as the size of the inhomogene-

ity increases; this conclusion follows from the ibi plots in Figs. 3.19(g)-(i) and the

power spectra in Figs. 3.19(j)-(l). Note, furthermore, that the spiral-wave rotation

period τrot decreases as the size of inhomogeneity increases; this is consistent with
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Figure 3.19: Pseudocolor plots of the transmembrane potential of the myocyte Vm at time, t = 2 s,

in the presence of three square MF composite inhomogeneities with sides (a) ℓ = 22.5 mm, (b) ℓ =
33.75 mm, and (c) ℓ = 45 mm, for the case of zero-sided coupling; the bottom-left corner of these

squares is fixed at (x = 56.25 mm, y = 56.25 mm) ; the white solid lines in these figures show the

spiral-tip trajectories in the time interval 2 s ≤ t ≤ 3 s and the local time series data are recorded

from points that are shown by asterisks. Video S7 illustrates the spatiotemporal evolution of these

spiral waves. The plots in (d)-(f) show the time series for Vm, in the interval 0 s ≤ t ≤ 4 s, which are

obtained from the point outside the inhomogeneity (x = 22.5mm, y = 22.5mm) and a point inside it

(x = 67.5mm, y = 67.5mm), represented by black filled circles and red filled triangles, respectively;

(g), (h), and (i) show plots of the inter-beat intervals (ibis) versus the beat number n for the time

series of Vm mentioned above; each one of these time series contain 2 × 105 data points; the power

spectra E(ω), which follow from these time series, are given in (j), (k), and (l).
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Figure 3.20: Pseudocolor plots of the transmembrane potential of the myocyte Vm at time, t = 2 s,

when a square MF-composite inhomogeneity, with Gmm/Gff = 1 and Gmm/Gmf = 1, is placed with

its lower-left corner at (x = 67.5mm, y = 67.5mm); the square has a side of length (a) ℓ = 0, i.e., no

inhomogeneity, (b) ℓ = 11.25mm, (c) ℓ = 16.875mm, (d) ℓ = 22.5mm, (e) ℓ = 28.125mm, (f) ℓ = 33.75mm,

(g) ℓ = 39.375mm, and (h) ℓ = 45mm. Video S8 illustrates the spatiotemporal evolution of these spiral

waves for (a), (d), (f) and (h). The smallest MF-composite inhomogeneity that can anchor a spiral

wave has ℓ = 16.875mm; (i) shows a plot of the rotation period τrot of such an anchored spiral wave.

Fig. 3.15 (f), which shows that the ibi for a homogenous myocyte layer is greater

than the ibi of a homgeneous MF-composite layer.

We turn now to a study of an MF-composite inhomogeneity with double-sided

coupling. We have shown that, in a homogeneous, 2D simulation domain with such

MF composites, the occurrence of conduction block depends on the value of Gmf ; e.g.,

we have observed that conduction failure occurs if Gmm/Gmf ≤ 4 and Ggap = 8 nS, but

it does not occur if Ggap = 8 nS and Gmm/Gmf > 4; in the latter case, CV depends on

the ratio Gmm/Gmf . Therefore, we choose the following four representative values

for Gmf in our MF-composite inhomogeneity studies: Gmm/Gmf = 1, Gmm/Gmf = 50,

Gmm/Gmf = 100, and Gmm/Gmf = 200. We begin with Gmm/Gmf = 1 for which conduc-
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Figure 3.21: Pseudocolor plots of the transmembrane potential of the myocyte Vm at time, (a) t = 2 s,
(b) t = 4 s, and (c) t = 6 s, when a square MF-composite inhomogeneity with, Gmm/Gff = 1 and

Gmm/Gmf = 1, and of length ℓ = 33.75mm, is placed with its lower-left corner at (x = 67.5mm, y =
67.5mm); (d) shows the time series of Vm(x, y, t), in the time interval 0 s ≤ t ≤ 4 s, obtained from

three representative points, shown by asterisks in (c), namely, (x = 90 mm, y = 112.5 mm) (black

filled circles), (x = 90 mm, y = 90 mm) (blue filled diamonds), and (x = 90 mm,67.5 mm) (red filled

triangles); the corresponding ibi’s, calculated from data sets of 4 × 105 points, are shown in (e); (f)

shows the power spectrum of the above time series of Vm of length 2×105 data points (after removing

the initial 2 × 105 iteration steps).

tion failure occurs for all physical values Gff and Ggap in the homogeneous case. In

Figs. 3.20 (a)-(h), we show pseudocolor plots of Vm at time t = 2 ms, when a square

MF-composite inhomogeneity, with Gmm/Gff = 1 and Gmm/Gmf = 1, is placed with

its lower-left corner at (x = 67.5 mm, y = 67.5 mm); the square has a side of length

ℓ = 0, i.e., no inhomogeneity (Fig. 3.20(a)), ℓ = 11.25mm (Fig. 3.20(b)), ℓ = 16.875mm

(Fig. 3.20(c)), ℓ = 22.5mm (Fig. 3.20(d)), ℓ = 28.125mm (Fig. 3.20(e)), ℓ = 33.75mm

(Fig. 3.20(f)), ℓ = 39.375mm (Fig. 3.20(g)), and ℓ = 45mm (Fig. 3.20(h)). The smallest

MF-composite inhomogeneity that can anchor a spiral wave has ℓ = 16.875mm. The

Video S8 has four panels that show the spatiotemporal evolution of pseudocolor

plots of Vm for 2 s ≤ t ≤ 3 s for a control myocyte layer with no inhomogeneities (top

left panel) and the simulation domains for Figs. 3.20 (d), (f), and (h) (top right, bot-

tom left, and bottom right panels, respectively). Figure 3.20(i), a plot of the rotation

period τrot, of such an anchored spiral wave, versus ℓ, shows how τrot increases with

ℓ; such an increase has also been seen for a conduction inhomogeneity [70].
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If the value of Gmm/Gmf is such that conduction failure occurs in a homogeneous,

MF-composite simulation domain, then the MF-composite inhomogeneity behaves

somewhat like a conduction inhomogeneity inasmuch as the spiral wave does not

enter significantly into the region of the inhomogeneity. To check how far the wave

penetrates into the MF-composite inhomogeneity, we show in Figs. 3.21 (a), (b),

and (c) pseudocolor plots of Vm at times t = 2s, t = 6s, and t = 8s, respectively, when

a square MF-composite inhomogeneity of side ℓ = 33.75mm, with Gmm/Gff = 1 and

Gmm/Gmf = 1 is placed with its bottom left corner at (x = 56.25 mm, y = 56.25 mm).
Data for the time series of Vm(x, y, t) are recorded at three points of the simula-

tion domain, namely, (x = 90mm, y = 112.5mm), which lies outside the inhomo-

geneity, (x = 90mm, y = 90mm), at the top-right corner of the inhomogeneity, and(x = 90mm, y = 67.5mm), on the right-middle side of the inhomogeneity; these points

are indicated by asterisks in Fig. 3.21 (c) and the data recorded from them are

represented, respectively, by black circles, blue diamonds, and red triangles in

Figs. 3.21 (d)-(f). Figure 3.21 (d) contains plots of the time series of Vm (each one of

these time series contain 2×105 data points). Figure 3.21 (e) shows the correspond-

ing plots of the inter-beat intervals (ibis) versus the beat number n; and the power

spectra E(ω), which follow from the time series of Vm, are given in Fig. 3.21 (f).

From the time series of Vm (Fig. 3.21 (d)), we see small-amplitude oscillations

in Vm if the time series are obtained from points at the side and corner of the

MF-composite inhomogeneity; however, if the point lies outside the inhomogeneity,

this time series shows a periodic pattern of action potentials. These times series

and the plots of the ibi (Fig. 3.21 (e)) show that the oscillations in Vm, from these

three different points, are in phase; to this extent the MF-composite inhomgeneity

acts like a conduction inhomgeneity [24]; however, the spiral wave does penetrate

the region of the inhomogeneity marginally, so, in this sense, the MF-composite

inhomgeneity acts like an ionic inhomogeneity [24].

In our plane-wave studies in 2D homogeneous simulation domains with double-

sided coupling, we have noted that the propagation speed CV and the wave length

λ depend Gmf . Therefore, we now carry out a study of the interaction of spiral

waves with an MF-composite inhomogeneity for different values of Gmf . We have

seen above that an MF-composite inhomogeneity behaves somewhat like a con-

duction inhomogeneity if Gmm/Gmf = 1. In Figs. 3.22 (a), (b), and (c) we show, for

Gmm/Gmf = 50, 100, and 200, respectively, pseudocolor plots of Vm, at time t = 2 s, in

the presence of a square, MF-composite inhomogeneity, of side ℓ = 33.75 mm and

with its lower-left-hand corner placed at (x = 56.25 mm, y = 56.25 mm) for the case of

doubled-sided coupling with Gmm/Gff = 1 and Ggap = 8 nS. We also obtain time series
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Figure 3.22: Pseudocolor plots of the transmembrane potential of the myocyte Vm, at time t = 2 s,

in the presence of a square, MF-composite inhomogeneity, of side ℓ = 33.75 mm and with its lower-

left-hand corner placed at (x = 56.25 mm, y = 56.25 mm) for the case of doubled-sided coupling with

Gmm/Gff = 1 and Ggap = 8 nS: (a) Gmm/Gmf = 50, (b) Gmm/Gmf = 100, and (c) Gmm/Gmf = 200. Video
S9 illustrates the spatiotemporal evolution of these spiral waves. The time series for Vm(x, y, t),
with 2 × 105, from a point outside the inhomogeneity (x = 22.5mm, y = 22.5mm) and a point inside

it (x = 67.5mm, x = 67.5mm), both of which are depicted by asterisks in (a)-(c), are plotted in (d),

(e), and (f) for Gmm/Gmf = 50, 100, and 200, respectively (data from the points outside and inside

the inhomogeneity are represented, respectively, by black circles and red triangles); (g), (h), and (i)

show the corresponding plots of the ibi versus the beat number n; and the associated power spectra

E(ω) are depicted in (j), (k), and (l).

for Vm(x, y, t) from a point outside the inhomogeneity (x = 22.5mm, y = 22.5mm) and

a point inside it (x = 67.5mm, x = 67.5mm), both of which are depicted by asterisks

in Figs. 3.22 (a)-(c). These time series, with 2 × 105 data points each, are plotted
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Figure 3.23: Pseudocolor plots of the transmembrane potential of the myocyte Vm, at time t = 2 s,

in the presence of a square, MF-composite inhomogeneity, of side ℓ = 33.75 mm and with its lower-

left-hand corner placed at (x = 56.25 mm, y = 56.25 mm) for the case of doubled-sided coupling with

Gmm/Gff = 1 and Gmm/Gff = 200: (a) Ggap = 0.5 nS, (b) Ggap = 2 nS, and (c) Ggap = 8 nS. Video S10

illustrates the spatiotemporal evolution of these spiral waves. The time series for Vm(x, y, t), with

2×105 data points each, from a point outside the inhomogeneity (x = 22.5mm, y = 22.5mm) and a point

inside it (x = 67.5mm, x = 67.5mm), both of which are depicted by asterisks in (a)-(c), are plotted in

(d), (e), and (f) for Ggap = 0.5 nS, 2 nS, and 8 nS, respectively (data from the points outside and inside

the inhomogeneity are represented, respectively, by black circles and red triangles); (g), (h), and (i)

show the corresponding plots of the ibi versus the beat number n; and the associated power spectra

E(ω) are depicted in (j), (k), and (l).

in Figs. 3.22 (d), (e), and (f) for Gmm/Gmf = 50, 100, and 200, respectively (data from

the points outside and inside the inhomogeneity are represented, respectively, by

black circles and red triangles); Figs. 3.22 (g), (h), and (i) show the corresponding
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plots of the ibi versus the beat number n; and the associated power spectra E(ω)
are depicted in Figs. 3.22 (j), (k), and (l). The Video S9 has four panels that show

the spatiotemporal evolution of pseudocolor plots of Vm and the spiral-tip trajecto-

ries for 2 s ≤ t ≤ 3 s for a control myocyte layer with no inhomogeneities (top left

panel) and, in addition, the simulation domains of Figs. 3.22 (a)-(c) (top right, bot-

tom left, and bottom right panels). We observe rich spiral-wave dynamics, which

can be different inside and outside of the MF-composite inhomogeneity, as in the

cases with zero- and single-sided couplings. The degree to which the spiral-wave

penetrates inside the inhomogeneity depends on the value of Gmf , as we can see

from the time-series plots of Figs. 3.22(d)-(f).

We turn now to an examination of the interaction of spiral waves with an MF-

composite inhomogeneity for different values of Ggap. For the same MF-composite

inhomogeneity and parameters as in Fig. 3.22 (c), we show in Figs. 3.23 (a), (b), and

(c) for, respectively, Ggap = 0.5 nS (low coupling), 2 nS (intermediate coupling), and

8 nS (high coupling), pseudocolor plots of Vm, at time t = 2 s, with Gmm/Gmf = 1 and

Gmm/Gmf = 200. We also obtain time series for Vm(x, y, t) from a point outside the in-

homogeneity (x = 22.5mm, y = 22.5mm) and a point inside it (x = 67.5mm, x = 67.5mm),

both of which are depicted by asterisks in Figs. 3.23 (a)-(c). These time series, with

2 × 105 data points each, are plotted in Figs. 3.23 (d), (e), and (f) for Ggap = 0.5 nS,

2 nS, and 8 nS, respectively (data from the points outside and inside the inhomo-

geneity are represented, respectively, by black circles and red triangles); Figs. 3.23

(g), (h), and (i) show the corresponding plots of the ibi versus the beat number n;

and the associated power spectra E(ω) are depicted in Figs. 3.23 (j), (k), and (l). The

Video S10 has four panels that show the spatiotemporal evolution of pseudocolor

plots of Vm and the spiral-tip trajectories for 2 s ≤ t ≤ 3 s for a control myocyte layer

with no inhomogeneities (top left panel) and, in addition, the simulation domains

of Figs. 3.23 (a)-(c) (top right, bottom left, and bottom right panels). Here too we ob-

tain a rich variety of spiral-wave behaviors inside and outside of the MF-composite

inhomogeneity, as in the cases with zero- and single-sided couplings.

3.3.3 Control of spiral-wave turbulence in the presence of MF-composite

inhomogeneities

One of the goals of our extensive studies of various types of heterogeneities in

mathematical models for cardiac tissue [24,25,33,34] has been to understand their

effects on spiral-wave dynamics and thus develop effective, low-amplitude control

techniques for the elimination of single, rotating spiral waves or spatiotemporally

chaotic multiple spiral waves of electrical activation in mathematical models for
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cardiac tissue. In these earlier studies [24, 25, 33, 34] we have considered conduc-

tion or ionic inhomogeneities; here we have extended such studies to mathematical

models in which we allow for the MF-composite inhomogeneities that we have de-

scribed above.

In this subsection we investigate the elimination of spiral-wave turbulence in

the presence of MF-composite inhomogeneities. We use the control scheme of

Sinha, et al., [37]; this eliminates spiral waves by the application of a current

pulse on a mesh, which we describe below. We have found in our earlier stud-

ies [24,25,36,37] that such a mesh-based control scheme is effective even when the

simulation domain has conduction or ionic inhomogeneities; by contrast, control

schemes, which use electrical stimuli at a point [71,72], work well in homogeneous

simulation domains but do not eliminate spiral-wave turbulence in domains with

inhomogeneities.

In our mesh-based control scheme in a 2D simulation domain with an MF-

composite inhomogeneity, we apply a current pulse of amplitude 30 pA/pF for 20ms

over a mesh that divides our square simulation domain, of side 135 mm, into 16

square cells of side 33.75 mm each. The application of this pulse makes the region,

which is covered by the mesh, refractory and, therefore, effectively imposes Neu-

mann boundary conditions for any cell bounded by this mesh. Thus, spiral waves

that lie inside the cell are absorbed at the mesh that bounds it and, eventually,

spiral-wave turbulence is eliminated from the whole simulation domain.

We begin with a discussion of the control of spiral waves, in a 2D, MF-composite

simulation domain, by the application of a current pulse on the square mesh de-

scribed above. In Fig. 4.14 (a) we show a pseudocolor plot of Vm at time t = 0 ms,

for the control case with Ggap = 0 nS; we give pseudocolor plots of Vm, at t = 400 ms,

and in the absence and presence of the control pulse in Figs. 4.14 (b) and (c), re-

spectively. Figures 4.14 (d), (e) and (f), are the analogs of Figs. 4.14 (a), (b), and (c),

respectively, for zero-sided coupling with Cf,tot = 6.3 pF, Gf = 4 nS, Ef = −39 mV, and

Ggap = 8 nS. Figures 4.14 (g), (h), and (i) are the analogs of Figs. 4.14 (a), (b), and

(c), respectively, for two-sided coupling with Cf,tot = 6.3 pF, Gf = 4 nS, Ef = −39 mV,

Ggap = 8 nS, Gmm/Gff = 1, and Gmm/Gmf = 200. From the pseudocolor plots of Vm in

Figs. 4.14 (c), (f), and (i) we see that our mesh-based, spiral-control scheme succeeds

in eliminating spiral-wave turbulence in less than 400 ms in a 2D, MF-composite

simulation domain with zero- and two-sided couplings; we have obtained similar

results with one-sided coupling too. The Video S11, which comprises six anima-

tions of pseudocolor plots of Vm, shows the spatiotemporal evolution of the spiral

waves for these cases, with and without control pulses.
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Figure 3.24: Spiral-wave control in our 2D M-F composite model, by the application of a control

pulse of amplitude 30 pA/pF for t = 400 ms over a square mesh with each block of side L/K =
33.75 mm, i.e., the simulation domain is divided into 42 square blocks. Plots in (a), (d) and (g) are

the initial conditions of Vm, i.e., t = 0 ms, for the control case, i.e., Ggap = 0 nS, zero sided coupling

with Cf,tot = 6.3 pF, Gf = 4 nS, Ef = −39 mV and Ggap = 8 nS, and double-sided coupling with the

same fibroblasts parameters as in (d) and with Gmm/Gff = 1 and Gmm/Gmf = 200, respectively; (b), (e)
and (h) show the pseudocolor plots of Vm at t = 400 ms in the absence of any control pulse. However,

the spiral-wave is suppressed by an application of the control pulse as shown (c), (f) and (i) at time

t = 400 ms. The Video S11, which comprises six animations of pseudocolor plots of Vm, shows the

spatiotemporal evolution of these spiral waves for these cases, with and without control pulses.

We now study spiral-wave control in a 2D simulation domain with myocytes and

a square MF-composite inhomogeneity with side l = 33.75 mm whose bottom-left

corner is placed at (x = 56.25 mm,y = 56.25 mm. Again, we apply a control pulse

of amplitude 30 pA/pF for t = 20 ms over a square mesh with cells whose sides

are of length L/K = 33.75 mm, i.e., the simulation domain is divided into 42 = 16

square blocks. We consider the following three cases: (A) zero-sided coupling with

Cf,tot = 6.3 pF,Gf = 4 nS, Ef = −39mV andGgap = 8 nS; (B) double-sided coupling with
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Figure 3.25: Spiral-wave control in the 2D Fibroblast model in the presence of a square shape MF

composite inhomogeneity of size l = 33.75 mm whose bottom-left corner is placed at (56.25 mm,

56.25 mm). We apply a control pulse of amplitude 30 pA/pF for t = 400 ms over a square mesh with

each block of size L/K = 33.75mm, i.e., the simulation domain is divided into 42 square blocks. Plots

in Figs. (a), (b) and (c) are the initial conditions of Vm, i.e., t = 0 ms, foe zero sided coupling with

Cf,tot = 6.3 pF, Gf = 4 nS, Ef = −39 mV and Ggap = 8 nS, double sided coupling with same fibroblasts

parameters as in (a) with Gmm/Gff = 1 and Gmm/Gmf = 1, and double sided coupling with same

fibroblasts parameters as in (a) with Gmm/Gff = 1 and Gmm/Gmf = 200, respectively. Figures (b), (e)

and (h) are the time evolution of Vm corresponds to Figs. (a), (d), (g), respectively, at t = 400 ms in

absence of any control pulse. However, the spiral-wave is suppressed an application of control pulse

as shown in Figs. (c), (f) and (i) at time t = 400 ms. For the spatiotemporal evolution of these spiral

waves see Video S12.

the same fibroblasts parameters as in case (A) and with Gmm/Gff = 1 and Gmm/Gmf =
1; and (C) double-sided coupling with the same fibroblasts parameters as in case

(A) and with Gmm/Gff = 1 and Gmm/Gmf = 200. Figures 3.25 (a), (d), and (g) show

pseudocolor plots of Vm at t = 0 for cases (A), (B), and (C), respectively. Figures 3.25

(b), (e), and (h) show their analogs for t = 400 ms when no control pulse is applied.
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Figures 3.25 (c), (f), and (i), which show pseudocolor plots of Vm at t = 0 for cases (A),
(B), and (C), respectively, at t = 400 ms when we apply a control pulse, illustrate

how our control scheme is effective in suppressing spiral-wave turbulence in the

presence of an MF-composite inhomogeneity. For the spatiotemporal evolution of

these spiral waves see Video S12.

3.4 Discussion and Conclusion

We have carried out detailed numerical studies of an MF composite by modelling

human ventricular myocyte cells, as in Ref. [15], and fibroblasts as passive RC cir-

cuits, as in Refs. [9,12]. The passive nature of these fibroblasts makes them behave

as inexcitable cells and, therefore, they act either as current sources or sinks, when

they are coupled with myocytes. We have investigated the responses of such MF

composites to external electrical stimuli by varying systematically the total cellular

capacitance Cf,tot of fibroblasts and their membrane conductance Gf , resting mem-

brane potential Ef , gap-junctional coupling (with myocytes) Ggap, and the number

Nf of fibroblasts coupled to a myocyte over a wide range of biophysically relevant

values. The parameters Cf,tot, Gf , and Ef depend on the geometry and size of the

fibroblast [49, 52, 53]. In our first set of simulations (Fig. 3.2 and Figs. 3.3 and

3.4), we have uncovered the dependence of the AP morphology on Cf,tot by choosing

three representative values of Cf,tot, namely, (a) 6.3 pF, (b) 25.2 pF, and (c) 63 pF; we

have found that the value of Cf,tot does not affect the myocyte AP morphology sig-

nificantly, but it does affect the APD. In the second set of simulations (Fig. 3.2), we

have set Cf,tot = 6.3 pF and examined the dependence of the AP morphology on Gf

by using the three representative values (a) 0.1 nS, (b) 1 nS, and (c) 4 nS; we have

found that the myocyte APD depends on Gf ; and Vrest is elevated substantially as

Gf is increased.

In our third set of simulations, we have fixed Cf,tot = 6.3 pF and Gf = 4 nS to

examine explicitly the dependence of the AP morphology on Ef and Ggap. We have

focused on this dependence of the AP morphology on Ef and Ggap, because the the

values of these two parameters span a wide range in experiments [3,5,52,53]. Our

studies have shown that Ef alters the APD; in particular, we have found that the

APD increases with Ggap (Fig. 3.5) if Ef is high, but it decreases, as Ggap increases,

if Ef is low. The maximum upstroke velocity, dV /dtmax, and the maximum value of

the myocyte transmembrane potential, Vmax, decrease as we increase Ef (Fig. 3.5),

with a fixed value of Ggap, whereas the notch of the AP, Vnotch, the maximum of

the plateau, Vplateau, and resting membrane potential all increase as we increase
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Ef . Furthermore, we have shown that dV /dtmax, Vmax, Vnotch, and Vplateau decrease,

but Vrest increases, as we increase Ggap (Fig. 3.5), with a fixed value of Ef . We

have explored the dependence of the myocyte AP morphology on different ionic

currents. Moreover, we have examined carefully the gap-junctional current Igap to

understand when the fibroblasts in our MF composite act as current sources and

and when they behave as current sinks. In general, our studies have shown that

if these fibroblasts act as current sources (current sinks), then the myocyte APD

decreases (increases), principally via modifications of the currents IKs and IKr.

We have carried out simulations to check the dependence of the myocyte AP

on the number Nf of fibroblasts coupled to a myocyte and have observed that (a)

the APD and Vrest decrease and increase, respectively, as Nf increases and (b) this

increase of Vrest depolarizes the membrane potential so that, eventually, Vm crosses

the threshold value for the generation of an AP, and, therefore, the MF composite

cell begins to show either autorhythmic or oscillatory behaviors. We have found

that such behaviors occur at unphysically high values of Ef and Ggap, if Nf = 1, but
in the range of experimentally observed values of Ef and Ggap if Nf > 1 [60].

Fibroblasts are found to be much smaller than myocytes in experimental stud-

ies [8, 73]; thus, in cell-culture experiments, more than one fibroblast can be de-

posited per myocyte in the cell culture. Furthermore, the sizes of fibroblasts can

vary in such experiments; this depends on the preparation technique and circum-

stances; and the fibroblast size decides the maximum number of fibroblasts that

can attach to a myocyte. Indeed, a wide range of values has been used for the to-

tal cellular capacitance Cf,tot in various computer models [9, 11, 12] because these

models assume that Cf,tot is related to the size of the fibroblast. Hence, in our

model studies, for a given size of fibroblast, i.e., a fixed value of Cf,tot, the complex,

network-type interaction can occur via Gff , Gmf , and Gfm, depending on the number

of fibroblasts Nf coupled to a myocyte in an MF composite. Therefore, we use Nf fi-

broblasts per a myocyte site in an MF composite to study the wave dynamics; each

of these fibroblasts are coupled to a myocyte via Ggap. We think of this collection of

Nf fibroblasts as a single cluster that interacts via Gmf and Gfm, with its neighbor-

ing myocytes; we assume that the number of fibroblast clusters is exactly equal to

the number of myocyte cells. We assume that, at the level of a first approximation,

the fibroblasts in a cluster interact with each other only to the extent that they

form cluster. When the size of the fibroblast cluster is much smaller than the size

of a myocyte, then the couplings Gmf , Gfm, and Gff are irrelevant and we should

only use a zero-sided model.
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Earlier computational studies [9–12], which we have discussed in Sec. 4.1, have

not investigated the dependence of the AP morphology, as we do, on the parameters

Cf,tot, Gf , Ef , Ggap, and Nf ; most of these earlier studies have focused on the depen-

dence of the AP on Nf , principally, and Ef , to some extent. Our detailed studies of

the dependence of the AP morphology on Cf,tot, Gf , Ef , Ggap, and Nf are designed

to help experimentalists in the growth of different tissue layers with myocytes and

fibroblasts and thus uncover the contribution of fibroblasts to the mechanisms of

ventricular fibrillation. For example, in our simulation, we have found that Ef has

the potential to alter the APD and, therefore, it can play a crucial role in spiral-

wave dynamics.

We have performed extensive numerical simulations in two-dimensional (2D)

simulation domains, both homogeneous and inhomogeneous, which contain my-

ocytes or MF composites, with Nf = 1 and with zero-, one-, or two-sided couplings

between myocytes and fibroblasts. We have found that, for zero- and one-sided

couplings, the plane-wave conduction velocity CV decreases as Ggap increases, but,

with two-sided couplings, CV first decreases very rapidly and then rises slowly as

Ggap increases; furthermore, we have found that conduction failure can occur in

the double-sided case if Gmf and Ggap are low (Fig. 3.10). Such behaviors have been

seen in earlier numerical studies, with passive or active fibroblast in models [13,14]

that are similar to, but not the same as, our mathematical model, and in cell cul-

tures [13, 20–22]. In our studies with zero-sided coupling, we have found that (a)

the rotation period τrot of a spiral wave decreases as we increase Ggap (Fig. 3.12),

which we have explained qualitatively, (b) the higher the value of Ggap, the more

compact and closed is the trajectory of the spiral tip (this compactness prevents a

single spiral from splitting into multiple spirals [74–76]), and (c) in the parameter

range in which autorhythmicity occurs, the spiral wave rotates periodically, for low

frequencies (Figs. 3.14).

Our studies of spiral-wave dynamics in a homogeneous simulation domain with

MF composites has shown that the spiral rotates faster for single-sided coupling

than for zero-sided coupling. The spiral rotation rate in the double-sided case lies

between these rates for zero- and one-sided couplings. We have presented a quali-

tative explanation of such fast and slow rotation rates of spiral waves by analyzing

the AP morphology of a single MF composite and the plane-wave CV with these

three types of couplings. In general, our studies have shown that, if the fibrob-

lasts in the MF composites act as current sources (current sinks), then the rate of

rotation of the spiral wave increases (decreases).
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Our studies of spiral-wave dynamics in the presence of localized, MF-composite

inhomogeneities have shown that they may block spiral-wave propagation like con-

duction inhomogeneities [24, 26, 28, 33, 34, 77]; however, in some cases (see below)

the spiral wave can enter the region with the MF-composite inhomogeneity and

yield rich spiral-wave dynamics, which can be different inside and outside of the

inhomogeneity, as happens, e.g., when we have ionic inhomogeneities [24, 29, 34].

We have found that zero- and single-sided couplings have the potential to behave

like ionic inhomogeneities; but double-sided couplings have the potential to behave

either like conduction- or ionic-type inhomogeneities (depending on the value of

Gmf ).

Our model has some limitations: it does not have any mechanosensitive cur-

rents [78], either for the myocytes or the fibroblast. These types of ionic currents

have been obtained in experimental studies of fibroblasts in the sino-atrial node

(SAN) and atria of certain mammals [3, 49, 51, 78, 79]. These mechanosensitive

currents may affect spiral-wave propagation if there is electro-mechanical feed-

back [80, 81]; our model excludes such electro-mechanical feedback. The purely

electrical approach, which we adopt, has also been used by several other groups

(see, e.g., Refs. [37,77,82–87]) with the understanding that the mechanical system

basically follows the electrical activation at the level of a first approximation (see,

e.g., Ref. [88]). Furthermore, our model is based on passive fibroblasts rather than

active fibroblast; there are several reasons to use passive fibroblast rather than

active ones, the main reason being that, so far, no experiments have identified the

presence of ionic currents in human, ventricular fibroblasts; and the presence of

active fibroblast in human, ventricular fibroblasts continues to be a matter of de-

bate. The expression of ionic currents in fibroblasts have been observed in animal

species, either in the region of the SAN or the right atrium. In spite of these limita-

tions of our model, our work provides the most comprehensive study, attempted so

far, of (a) the response of MF composites to external electrical stimulation and (b)

the propagation of spiral waves in MF-composite 2D simulation domains, which are

designed to model cell-culture experiments of the sort presented in Refs. [13, 22].

We do not attempt here to study diffuse fibrosis; this lies beyond the scope of this

paper; it has been addressed in other simulation studies [43,60,89–91]. Our stud-

ies have been designed specifically to uncover the role of fibroblasts in spiral-wave

dynamics in the the absence of other tissue heterogeneities; once the underlying

contributions of fibroblasts to spiral-wave dynamics have been revealed, we can

incorporate tissue anisotropy and diffuse fibrosis as, e.g., in Ref. [60].
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One of our goals is to test our low-amplitude control scheme in our 2D MF-

composite model; we have focused here on a monodomain model, because we use

low-amplitude control pulses rather than high-amplitude ones; the latter may re-

quire a bidomain model. Furthermore, some studies [92] have shown that there are

no significant qualitative differences between bidomain and monodomain models,

so we expect that our principal qualitative result will continue to hold even when

such models are considered; this will have to be checked explicitly by subsequent

studies.
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1 Supporting Information

Video S1 Plane-wave propagation in our 2D, homogeneous myocyte-fibroblast

(MF) model for different cases. (a) the control case , i.e., with only myocytes; (b)

zero-sided coupling; (c) single-sided couplingwith Gmm/Gff = 1; (d) double-sided cou-

pling with Gmm/Gff = 1, Gmm/Gmf = 100, and Ggap = 0.5 nS; (e) double-sided coupling

with Gmm/Gff = 1, Gmm/Gmf = 100, and Ggap = 8.0 nS; and (f) double-sided coupling

with Gmm/Gff = 1, Gmm/Gmf = 200, and Ggap = 0.5 nS. The time evolution of pseudo-

color plots of the myocyte transmembrane potential Vm is shown for 0 s ≤ t ≤ 1 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S2 Spiral-wave dynamics in our 2D homogeneous myocyte-fibroblast model

with zero-sided coupling. (a) Ggap = 0.00 nS (control case, i.e., with only myocytes);

(b) Ggap = 0.50 nS (low coupling); (c) Ggap = 2.00 nS (intermediate coupling); (d)

Ggap = 8.00 nS (high coupling). Here spiral-tip trajectories, for 2 s ≤ t ≤ 3 s, are

shown by the white lines; we use 10 frames per second (fps); in real time each

frame is separated from the succeeding frame by 8 ms.

Video S3 Spiral-wave dynamics in our 2D homogeneous myocyte-fibroblast model

with zero-sided coupling. (a) Ggap = 0.00 nS (control case, i.e., with only myocytes);

(b) Ggap = 0.50 nS (low coupling); (c) Ggap = 2.00 nS (intermediate coupling); (d)

Ggap = 8.00 nS (high coupling). Here spiral-tip trajectories, for 4 s ≤ t ≤ 5 s, are

shown by the white lines; we use 10 frames per second (fps); in real time each

frame is separated from the succeeding frame by 8 ms.

Video S4 Spiral-wave dynamics in our 2D homogeneous myocyte-fibroblast model

with zero-sided coupling. (a) Ggap = 0.00 nS (control case, i.e., with only myocytes);

(b) Ggap = 0.50 nS (low coupling); (c) Ggap = 2.00 nS (intermediate coupling); (d)

Ggap = 8.00 nS (high coupling). Here spiral-tip trajectories, for 6 s ≤ t ≤ 7 s, are

shown by the white lines; we use 10 frames per second (fps); in real time each

frame is separated from the succeeding frame by 8 ms.

Video S5 Spiral-wave dynamics in our 2D homogeneous myocyte-fibroblast model

with gap-junctional conductance, Ggap = 8.0 nS. (a) control case; (b) zero-sided cou-

pling; (c) single-sided coupling; (d) double-sided coupling. Here spiral-tip trajecto-

ries, for 2 s ≤ t ≤ 3 s, are shown by the white lines; we use 10 frames per second (fps);

in real time each frame is separated from the succeeding frame by 8 ms.

Video S6 Spiral-wave dynamics in our 2D myocyte-fibroblast model in the pres-

ence of a square fibroblast inhomogeneity, of side ℓ = 33.75 mm, for the case of zero-

sided, and the lower left-hand corner of the inhomogeneity at different positions.

(a) control case; (b) (x = 33.75 mm, y = 67.5 mm); (c) (x = 56.25 mm, y = 56.25 mm); (d)
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(x = 78.75 mm, y = 45 mm). Here spiral-tip trajectories, for 2 s ≤ t ≤ 3 s, are shown

by the white lines; we use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms.

Video S7 Spiral-wave dynamics in our 2D myocyte-fibroblast model in the pres-

ence of a square fibroblast inhomogeneity of side ℓ for the case of zero-sided with the

lower-left-hand corner of the inhomogeneity fixed at (x = 56.25 mm, y = 56.25 mm).

(a) control case; (b) ℓ = 22.5 mm; (c) ℓ = 33.75 mm; (d) ℓ = 45 mm. Here spiral-tip

trajectories, for 2 s ≤ t ≤ 3 s, are shown by the white lines; we use 10 frames per

second (fps); in real time each frame is separated from the succeeding frame by

8 ms.

Video S8 Spiral-wave dynamics in our 2Dmyocyte-fibroblast model with a double-

sided coupling and a square fibroblast inhomogeneity with side ℓ and Gmm/Gff = 1
and Gmm/Gmf = 1, and the lower left-hand corner of the inhomogeneity fixed at

(x = 67.5 mm, y = 67.5 mm). (a) ℓ = 0, i.e., absence of inhomogeneity; (b) ℓ = 22.5 mm;

(c) ℓ = 33.75 mm; (d) ℓ = 45 mm. Here the myocyte transmembrane potential time

evolution is shown for 2 s ≤ t ≤ 3 s; we use 10 frames per second (fps); in real time

each frame is separated from the succeeding frame by 8 ms.

Video S9 Spiral-wave dynamics in our 2D myocyte-fibroblast model in the pres-

ence of a square, MF-composite inhomogeneity, of side ℓ = 33.75 mm and with

its lower-left-hand corner placed at (x = 56.25 mm, y = 56.25 mm) for the case of

doubled-sided coupling with Gmm/Gff = 1 and Ggap = 8 nS. (a) control case, i.e., with

only myocytes; (b) Gmm/Gmf = 50; (c) Gmm/Gmf = 100; (d) Gmm/Gmf = 200. Here the my-

ocyte transmembrane potential time evolution is shown for 2 s ≤ t ≤ 3 s; we use 10

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S10 Spiral-wave dynamics in our 2D myocyte-fibroblast model in the

presence of a square, MF-composite inhomogeneity, of side ℓ = 33.75 mm and with

its lower-left-hand corner placed at (x = 56.25 mm, y = 56.25 mm) for the case of

doubled-sided coupling with Gmm/Gff = 1 and Gmm/Gmf = 200. (a) control case, i.e.,

with only myocytes; (b) Ggap = 0.5 nS (low coupling); (c) Ggap = 2.0 nS (intermediate

coupling); (d) Ggap = 8.0 nS (high coupling). Here the myocyte transmembrane po-

tential time evolution is shown for 2 s ≤ t ≤ 3 s; we use 10 frames per second (fps); in

real time each frame is separated from the succeeding frame by 8 ms.

Video S11 Spiral-wave dynamics, without (top panel) and with (bottom panel)

control pulses, in our 2D MF-composite model; we apply a control pulse of ampli-

tude 30 pA/pF for t = 400 ms over a square mesh with each block of side L/K =
33.75 mm, i.e., the simulation domain is divided into 42 square blocks. (a) for the
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control case, i.e., Ggap = 0 nS; (b) zero-sided couplings with Cf,tot = 6.3 pF, Gf = 4 nS,

Ef = −39 mV and Ggap = 8 nS; and (c) double-sided couplings with the same fibrob-

lasts parameters as in (b) and with Gmm/Gff = 1 and Gmm/Gmf = 200. The animations

in (d), (e), and (f) are the analogs of (a), (b), and (c), respectively, with control

pulses. Here the spatiotemporal evolution of the myocyte transmembrane poten-

tial is shown for 0 s ≤ t ≤ 0.8 s; we use 10 frames per second (fps); in real time each

frame is separated from the succeeding frame by 8 ms.

Video S12 Spiral-wave dynamics, without (top panel) and with (bottom panel)

control pulses, in the 2D Fibroblast model in the presence of a square MF com-

posite inhomogeneity of side l = 33.75 mm whose bottom-left corner is placed at

(56.25 mm, 56.25 mm); we apply a control pulse of amplitude 30 pA/pF for t = 400 ms

over a square mesh with each block of side L/K = 33.75 mm, i.e., the simulation

domain is divided into 42 square blocks. (a) zero-sided coupling with Cf,tot = 6.3 pF,

Gf = 4 nS, Ef = −39 mV and Ggap = 8 nS, (b) double-sided coupling, with the same

fibroblasts parameters as in (a) with Gmm/Gff = 1 and Gmm/Gmf = 1, and (c) double-

sided coupling with the same fibroblasts parameters as in (a) with Gmm/Gff = 1 and

Gmm/Gmf = 200. The animations in (d), (e), and (f) are the analogs of (a), (b), and (c),

respectively, with control pulses. Here the spatiotemporal evolution of the myocyte

transmembrane potential is shown for 0 s ≤ t ≤ 0.8 s; we use 10 frames per second

(fps); in real time each frame is separated from the succeeding frame by 8 ms.
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[65] Kléber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation

and associated arrhythmias. Physiol Rev 84: 431-488..

[66] Comtois P, Kneller J, Nattel S (2005) Of circles and spirals: bridging the gap

between the leading circle and spiral wave concepts of cardiac reentry. Eu-

ropace 7: S10-S20.

[67] Rudenko AN, Panfilov AV (1983) Drift and interaction of vortices in two-

dimensional heterogeneous active medium. Studia Biophysica 98: 183.

[68] Panfilov AV, Vasiev BN (1991) Vortex initiation in a heterogeneous excitable

medium. Physica D 49: 107.



Bibliography 148

[69] Ten Tusscher KH, Panfilov AV (2003) Reentry in heterogeneous cardiac tissue

described by the Luo-Rudy ventricular action potential model. Am J Physiol

Heart Circ Physiol 284: H542.

[70] Shajahan TK (2008) Studies of spiral turbulence and its control in models of

cardiac tissue. PhD Thesis, Indian Institute of Science, Bangalore, India.

[71] Zhang H, Hu B, Hu G (2003) Suppression of spiral waves and spatiotemporal

chaos by generating target waves in excitable media. Phys Rev E 68: 026134.

[72] Zhang H, Cao Z, Wu NJ, Ying HP, Hu G (2005) Suppress Winfree turbulence

by local forcing excitable systems. Phys Rev Lett 94: 188301.

[73] Camelliti P, Green CR, LeGrice I, Kohl P (2004) Fibroblast network in rabbit

sinoatrial node: structural and functional identification of homogeneous and

heterogeneous cell coupling. Circ Res 94(6):828-835.

[74] Chen PS, Wu TJ, Ting CT, et al., (2003) A tale of two fibrillations. Circulation

108: 2298.

[75] Ideker RE and Rogers JM (2006) Human ventricular fibrillation: wandering

wavelets, mother rotors, or both ? Circulation 114: 530.

[76] Janse MJ (2007) Focus, reentry, or “foca” reentry ? Am J Physiol Heart Circ

Physiol 292: H2561.

[77] Xie F, Qu Z, Garfinkel A (1998) Dynamics of reentry around a circular obstacle

in cardiac tissue. Phys Rev E 58:6355.

[78] Kohl P, Kamkin AG, Kiseleva IS, Streubel T (1992) Mechanosensitive cells in

the atrium of frog heart. Exp Physiol 77:213.

[79] Kamkin A, Kiseleva I, Lozinsky I, Scholz H (2005) Electrical interaction of

mechanosensitive fibroblasts and myocytes in the heart. Basic Res Cardiol

100:337.

[80] Panfilov AV, Keldermann RH, Nash MP (2007) Drift and breakup of spiral

waves in reaction-diffusion-mechanics systems. Proc Natl Acad Sci USA 104:

7922.

[81] Weise LD, Nash MP, Panfilov AV (2011) A discrete model to study reaction-

diffusion-mechanics systems. PLoS ONE 6(7):e21934

[82] Karma A (1993) Spiral breakup in model equations of action potential propa-

gation in cardiac tissue. Phys Rev Lett 71:1103.



Bibliography 149

[83] Panfilov AV (1998) Spiral breakup as a model of VF. Chaos 8:57.

[84] Bernus O, Wilders R, Zemlin CW, Versschelde H, Panfilov AV (2002) A compu-

tationally efficient electrophysiological model of human ventricular cells. Am

J Physiol Heart Circ Physiol 282:H2296.

[85] Qu Z, Garfinkel FXA, Weiss JN (2000) Origin of spiral wave meander and

breakup in a two-dimensional cardiac tissue model. Ann BioMed Engg 28:755.

[86] Xie F, Qu Z, Garfinkel A, Weiss JN (2001) Electrophysiological heterogeneity

and stability of reentry in simulated cardiac tissue. Am J Physiol Heart Circ

Physiol 280:H535.

[87] Zhang H, Hu B, Hu G (2003) Suppression of spiral waves and spatiotemporal

chaos by generating target waves in excitable media. Phys Rev E 68: 026134.

[88] Pumir A, Nikolski V, Horning M, et al. (2007) Wave emission from hetero-

geneities opens a way to controlling chaos in the heart. Phys Rev Lett

99:208101.

[89] Ten Tusscher KH, Panfilov AV (2003) Influence of nonexcitable cells on spiral

breakup in two-dimensional and three-dimensional excitable media. Phys Rev

E 68: 062902.

[90] Ten Tusscher KHWJ, and Panfilov AV (2007) Influence of diffuse fibrosis on

wave propagation in human ventricular tissue. Europace 9: vi38.

[91] McDowell KS, Arevalo HJ, Maleckar MM, Trayanova NA (2011) Susceptibility

to arrhythmia in the infarcted heart depends on myofibroblast density. Bio-

phys J 101: 1307.

[92] Potse M, Dube B, Richer J, Vinet A, Gulrajani RM (2006) A comparison of mon-

odomain and bidomain reaction-diffusion models for action potential propaga-

tion in the human heart. IEEE Trans Biomed Eng 53:2425.



Chapter 4

Spiral-wave Dynamics in Ionically Realistic

Mathematical Models for Human Ventricular

Tissue: The Effects of Periodic Deformation

This Chapter follows closely a paper that we have submitted for publication to PLoS

ONE journal. The authors are Alok Ranjan Nayak and Rahul Pandit.

4.1 Introduction

Sudden cardiac arrest is caused, in many cases, by cardiac arrhythmias, such as

ventricular tachyacardia (VT) and ventricular fibrillation (VF) [1, 2]. Estimates

suggest that VF is the main reason for death in 30% of the cases in which heart

failure occurs [3,4]. Thus, the importance of studying such arrhythmias cannot be

overemphasized. Such studies must use interdisciplinary approaches because they

require inputs from biology, bio-medical engineering, cardiology, on the one hand,

and physics, nonlinear dynamics, and numerical methods, on the other; meth-

ods from these areas must be used to study the complicated, nonlinear, partial-

differential-equation models that have been developed for cardiac tissue. Such

equations can show, inter alia, spiral-wave turbulence and spatiotemporal chaos,

which is believed to be one of the mathematical analogs of VF. The study we present

here combines theoretical ideas from spatiotemporal chaos in extended dynamical

systems with extensive direct numerical simulations, to elucidate the effects of pe-

riodic deformation (PD) on spiral-wave dynamics in detailed mathematical models

for cardiac tissue and to investigate the elimination of such spiral waves, in the

presence of PD, by the application of low-amplitude current pulses.

The mechanisms underlying VT and VF are not understood with complete cer-

tainty; however, various clinical studies [4, 5] have suggested that the abnormal
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propagation of a wave of electrical activation across the ventricles might be the

main reason for such arrhythmias. In particular, both experimental [6–9] and

computational [9–11] studies have suggested that VT and VF are, respectively,

manifestations of (a) a rotating spiral (RS) or scroll wave or (b) broken spiral or

scroll waves that lead to spiral- or scroll-wave turbulence (ST). Several studies

have investigated the transition from RS to ST, both in experiments on cardiac tis-

sue and in computational studies of mathematical models for cardiac tissue; they

find that this transition can occur because of (a) a steep, increasing initial segment

in the restitution curve, a plot of the action potential duration (APD) versus the

diastolic interval (DI) [10, 12, 13], (b) a similar steep part in an analogous plot of

the conduction velocity (CV ) versus the DI [10, 14], (c) alternans [11, 13, 15, 16],

and (d) heterogeneities, such as, conduction and ionic inhomogeneities [17–21].

Recently, some groups [22–26] have begun to study the effects of deformation of

cardiac tissue on the RS-ST transition; they have used simple, two-variable math-

ematical models for electrical activation in such tissue. One of the goals of our

study is to investigate spiral-wave dynamics in general, and RS-ST transitions

in particular, in a simple mathematical model for periodic deformation (PD) of

cardiac tissue [22–24] that we couple with ionically realistic human-ventricular-

tissue mathematical models, namely, (a) the TP06 model, due to ten Tusscher and

Panfilov [27], or (b) the TNNP04 model, of ten Tusscher, Noble, Noble, and Pan-

filov [28]. In our PD model we do not include stretch-activated currents as consid-

ered in Refs. [25, 26, 29]. Therefore, our model for PD is a simplified one in which

the effects of PD are accounted for by a temporal modulation of diffusion constants.

However, in spite of this simplified representation of PD, our study yields impor-

tant results that have been observed in two-variable models for cardiac tissue both

with periodic deformation [22–24] or mechanical deformation [25, 26, 29]; the lat-

ter studies include stretch-activated currents. On the positive side, our study uses

ionically realistic models that have not been employed in such PD studies so far.

Zhang, et al. [22] have studied the instability of a spiral wave of electrical activa-

tion by introducing, in a simple, two-variable, FitzHugh-Nagumo-type model [30]

for cardiac tissue, the possibility of periodic, temporal oscillations in the diffusion

constant. Their study shows that the resulting periodic deformation (PD) can lead

to a transition from a stable, RS state to an ST state with multiple spirals. In an-

other study Zhang, et al. [23] have shown that such an ST state can be driven into a

quiescent state with no spirals, if the oscillation frequency of the PD is chosen to be

close to the characteristic frequency of the spiral wave in the RS state of the system.

Chen, et al. [24] have studied the effects of PD in the two-variable, Bär model [31]
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on spiral-wave dynamics by varying the parameter ǫ, which sets the time scale of

the slow variable in this model, and the amplitudeA and frequency f of the periodic

oscillations that lead to PD; their study shows that the RS-ST transition can be ef-

fected by changing ǫ, A, and f suitably. Panfilov, et al. [25] have shown that PD can

either (a) induce a spiral wave to drift or (b) break up spiral waves and thus lead to

complex spatiotemporal patterns in the three-variable Fenton-Karma model [32]

for cardiac tissue; the model that Panfilov, et al. [25] use for PD is different from,

and more realistic than, the one used in Refs. [22–24] in so far as it includes a

stretch-activated current, which accounts for the mechano-electrical feedback in

cardiac tissue, whose stress tensor controls PD; their study shows that rotating

spirals become unstable both because of the stretch-activated current and the de-

formation of the tissue. In a related study, which also includes stretch-activated

currents, Weise, et al. [26] have shown that PD can lead to pacemaker activity in

a discrete version of the two-variable, Aliev-Panfilov, reaction-diffusion model [30].

Note that the studies in Refs. [22–26] have used only a particular type of spiral

wave configuration in their two-variable models, with either periodic deformation

or mechanical deformation.

To the best of our knowledge, there has been no study of the effects of PD on

spiral-wave dynamics in an ionically realistic mathematical model for cardiac tis-

sue. To make up for this lacuna, we carry out a systematic numerical study of

spiral-wave dynamics in the recently developed TP06 and TNNP04 mathemati-

cal models for human-ventricular tissue [27, 28], in which we include PD as in

Refs. [22–24]. We also investigate the efficacy of a low-amplitude control scheme,

which has been successful in the suppression of spiral-wave turbulence in 2D mod-

els for cardiac tissue [18, 19, 33, 34] in the absence of PD. We give below a brief

overview of our principal results.

We begin with a study of plane-wave propagation in a cable-type domain, which

is well suited for the calculation of the conduction velocity CV and the wavelength

λ. We find that PD leads to a periodic, spatial modulation of CV and a temporally

periodic modulation of λ; the degrees of these modulations depend on the amplitude

and frequency of the PD.

We use three different parameter sets, for both TP06 and TNNP04 models, to

obtain three different prototypical spiral configurations, which we use as the initial

conditions IC1, IC2, and IC3. In the TP06 model, these initial conditions evolve,

respectively, to (a) a rotating-spiral state RS, with a circular tip trajectory, (b) a

state with spiral turbulence (ST), but with a single meandering spiral, and (c) an

ST state that has multiple broken spirals, in the absence of PD; in the TNNP04
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model they evolve, respectively, to (a) an RS state, with a circular tip trajectory, (b)

a temporally quasi-periodic state QP, with a Z−type spiral-tip trajectory, and (c) an

ST state, with multiple broken spirals, in the absence of PD.

For the TP06 model, with PD, we show that the initial condition IC1 can lead

to (a) an RS state with n-cycle temporal evolution (here n is a positive integer),

(b) rotating-spiral states with QP temporal evolution, (c) a state with a single me-

andering spiral MS, which displays spatiotemporal chaos, (d) an ST state, with

multiple broken spirals, and (e) a quiescent state SA in which all spirals are ab-

sorbed. With the initial condition IC2, the TP06 model, with PD, can display either

(a) an ST state, with multiple spirals, or (b) an SA state, with no spirals; and for

IC3 it can be driven into (a) an ST state, with a single meandering spiral, (b) an

ST state, with multiple spirals, and (c) the state SA. For all the initial conditions,

precisely which one of these states is obtained depends on the amplitudes Ax and

Ay and the frequencies fx and fy of the PD in the x and y directions.

Our studies of the TNNP04 model, with PD, show that the initial condition IC1

leads to one of the following states (depending on the values of Ax, Ay, fx, and fy):

(a) an RS state, with a non-circular spiral-tip trajectory, (b) a meandering spiral

MS state, with a single spiral, (c) an ST state, with multiple broken spirals, and (d)

the state SA, with no spirals. The initial condition IC2 can yield (a) an MS state,

(b) an ST state, and (c) an SA state, whereas IC3 can lead to an (a) ST or (b) SA

state; in the last case, the spirals are first depleted by collisions among different

spiral waves and then the last remaining waves are absorbed by the boundary of

the simulation domain.

We also study, in the presence of PD, the efficacy of a low-amplitude control

scheme [18, 34] that has been suggested, hitherto only without PD, for the control

of spiral-wave turbulence, via low-amplitude current pulses applied on a square

mesh, in mathematical models for cardiac tissue. Furthermore, we develop line-

mesh and rectangular-mesh variants of this control scheme.

The remaining part of this paper is organized as follows. In Sec. 4.2, we present

the models we study and describe the numerical methods we use. In Sec. 4.3, we

present our results on spiral-wave dynamics in the TP06 and TNNP04 models in

the presence of PD; we then describe the low-amplitude control scheme for the

elimination of spiral-wave turbulence in models for cardiac tissue and examine its

efficacy in the presence of PD. Section 4.4 contains a discussion of our results and

the limitations of our study; we include here a brief overview of various stretching

devices, which have been developed to control the deformation of a cell, fiber, and

tissue, and we then suggest experiments that can impose a periodic deformation
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on cardiac tissue or cell cultures, and thereby, verify the predictions of our in silico

studies. The Supplementary Material S1 contains a detailed specification of the

TP06 and TNNP04 models, with lists of all the variables, the equations that govern

their spatiotemporal evolution, their initial values, and the additional figures that

augment the results that we present in the main body of this paper.

4.2 Methods

We begin with the reaction-diffusion equation, for the transmembrane potential

Vm,
∂Vm

∂t
+
Iion

Cm

=Dx

∂2Vm

∂x2
+Dy

∂2Vm

∂y2
, (4.1)

where Cm is the membrane capacitance density, Iion is the sum of all the ionic

currents that cross the cell membrane, and Dx and Dy are, respectively, the diffu-

sion coefficients along x and y directions. We use two biophysically realistic ionic

models for human cardiac myocytes: (a) the ten Tusscher and Panfilov model (the

TP06 model) [27], and (b) the ten Tusscher, Noble, Noble, and Panfilov model (the

TNNP04 model) [28]; these have been developed recently. In these models, the

total ionic current

Iion = INa + ICaL + Ito + IKs + IKr + IK1 (4.2)

+INaCa + INaK + IpCa + IpK + IbNa + IbCa,

where INa is the fast, inward Na+ current, ICaL the L-type, slow, inward Ca2+ cur-

rent, Ito the transient, outward current, IKs the slow, delayed, rectifier current,

IKr the rapid, delayed, rectifier current, IK1 the inward, rectifier K+ current, INaCa

the Na+/Ca2+ exchanger current, INaK the Na+/K+ pump current, IpCa and IpK the

plateau Ca2+ and K+ currents, and IbNa and IbCa the background Na+ and Ca2+

currents, respectively. The full sets of equations for these models, including the

ordinary differential equations for the ion-channel gating variables and the ion

dynamics, are given in the Supplementary Material S1.

We follow the method suggested in Refs. [22–24] for the introduction of PD into

a mathematical model for cardiac tissue. In particular, we note that any point

x = (x, y) in the medium changes to x
′(t) = (x′(t), y′(t)) with

x′(t) = x[1 +Ax(t)], (4.3)

y′(t) = y[1 +Ay(t)],
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if we impose a PD with Ax(t) = Ax cos(2πfxt) and Ay(t) = Ay cos(2πfyt). By substi-

tuting Eq. 4.3 into Eq. 4.1, we obtain

∂Vm

∂t
+
Iion

Cm

=
1[1 +Ax(t)]2Dx

∂2Vm

∂x2
(4.4)

+
1[1 +Ay(t)]2Dy

∂2Vm

∂y2
;

a comparison of Eqs. 4.1 and 4.4 shows that Eq. 4.4 can be rewritten as

∂Vm

∂t
+
Iion

Cm

=Dx(t)∂2Vm

∂x2
+Dy(t)∂2Vm

∂y2
, (4.5)

with Dx(t) =Dx(1 +Ax(t))−2 and Dy(t) =Dy(1 +Ay(t))−2.
In our numerical simulations, we use 2D square domains with 1024 × 1024 grid

points and lattice spacings δx = δy = 0.25 mm for both TP06 and TNNP04 models,

so the sides of our square simulation domains are L = 256 mm in the absence of PD.

We use a forward-Euler method for time evolution, with a time step δt = 0.02 ms;

and we employ a five-point stencil for the Laplacian. We use no-flux (Neumann)

boundary conditions on the edges of our simulation domains.

We set the diffusion coefficients Dx = Dy = D = 0.00154 cm2/ms [27, 28]for both

the TP06 and the TNNP04 models and examine the oscillation-amplitude and the

frequency ranges 0 ≲ Ax = Ay ≲ 0.5, and 0 Hz ≲ f ≲ 7.0 Hz, respectively; the

deformation amplitudes we use are comparable to those in other computational

studies [22,23,26]. Reference [35] suggests that we must have Dδt/(δx2) < 1/2d for

numerical stability, where d is the dimension of the simulation domain. For the

largest amplitude we use for the PD, the minimum and maximum values of our

time-dependent diffusion coefficient are, respectively, 0.00154 × (1 + 0.5)−2 ≃ 0.00068
cm2/ms and 0.00154×(1−0.5)−2 ≃ 0.00068 cm2/ms between which our time-dependent

diffusion coefficient oscillates. Therefore, for the time and space steps we have used

in our calculations, the maximum and minimum values of Dδt/(δx)2 are, respec-

tively, 0.197 and 0.022; for our 2D domain, the quantity 1/2d = 0.25, i.e., we have

numerical stability because Dδt/(δx)2 < 1/2d for all values of our time-dependent

diffusion coefficient. We have also checked that the changes of CV , which occur

when we change either our time step or space step, are not significant so our simu-

lation results for CV are not numerical artifacts. We can test, in one more way, that

our results are free from numerical artifacts by checking the spatiotemporal evo-

lution of an expanding wave front that emerges from a point stimulus [35]; if this

wave front deviates substantially from a circular wave, then spiral-wave dynamics

in the simulation may be represented inaccurately. Therefore, we have carried out

a set of simulations by applying a stimulus at a point at the center of the simula-
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tion domain in the presence of PD; and we have found that the resulting wave has

a front that is circular, as we show in Sec. 4.3.

In Figs. S1(a)-(f) in the Supplementary Material S1, we show schematic dia-

grams for illustrative periodic deformations of a small part of our simulation do-

main, with 5 × 5 grid points (indicated by gpts on the axes of figures); in these

diagrams, blue, open circles and blue, dashed lines show, at a particular instant

of time, the deformed simulation domain superimposed on the undeformed one,

which is represented by black, solid circles and black, full lines. We give represen-

tative diagrams for the case of expansion, with deformations along only x, only y,

or both x and y directions, in Figs. S1(a), (b) and (c), in the Supplementary Material

S1, at time t = 20 ms; the corresponding plots for contraction, at time t = 180 ms,

are shown in Figs. S1(d), (e), and (f), in the Supplementary Material S1.

We often have to track the trajectory of the tip of a spiral wave in a 2D simulation

domain. The tip of such a spiral wave is normally defined as the point where

the excitation wave front and repolarization wave back meet; this point can be

found by a variety of methods [10, 32, 36–39]. We use the tip-tracking algorithm

of Ref. [39] that locates the tip position by monitoring INa, the sodium current.

Pseudocolor plots of INa show a fine line along the arm of a spiral wave (Fig. 2A in

Ref. [18]); this line terminates in the spiral tip and can, therefore, be used to obtain

the spatiotemporal evolution of this tip.

4.3 Results

Our principal goals are (a) the examination of the effects of PD on the propaga-

tion of electrical waves of activation in mathematical models for cardiac tissue and

(b) the evaluation of the efficacy, in the presence of PD, of the low-amplitude con-

trol scheme of Refs. [18, 33] for the elimination of spiral-wave turbulence in these

models. We begin with (a), by exploring the effects of PD both on plane-wave prop-

agation and on spiral-wave dynamics; here we vary the oscillation amplitude and

the frequency in the ranges 0 ≲ Ax,Ay ≲ 0.5, and 0 Hz ≲ f ≲ 7.0 Hz; the deformation

amplitudes we use are comparable to those in other computational [22,23,26] and

experimental [40, 41] studies; to set the scale of frequencies, we note that the fre-

quency of rotation of a single spiral wave is 4.75 Hz for the TP06 model and 3.75 Hz

for the TNNP04 model (see Sec. 4.3.2). We then study the effects of PD on the

control scheme mentioned in (b) above.
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Type of Dimension of Parameter Amplitude of Frequency of

domain domain (mm) sets PD PD (Hz)

Lx = 1024, Ly = 4 (a00) Ax = 0,Ay = 0 fx = 0, fy = 0
Lx = 1024, Ly = 4 (a01) Ax = 0.1,Ay = 0 fx = 1, fy = 0
Lx = 1024, Ly = 4 (a02) Ax = 0.2,Ay = 0 fx = 1, fy = 0
Lx = 1024, Ly = 4 (a03) Ax = 0.3,Ay = 0 fx = 1, fy = 0
Lx = 1024, Ly = 4 (a04) Ax = 0.4,Ay = 0 fx = 1, fy = 0
Lx = 1024, Ly = 4 (a05) Ax = 0.5,Ay = 0 fx = 1, fy = 0
Lx = 1024, Ly = 4 (a06) Ax = 0.1,Ay = 0 fx = 3, fy = 0
Lx = 1024, Ly = 4 (a07) Ax = 0.2,Ay = 0 fx = 3, fy = 0
Lx = 1024, Ly = 4 (a08) Ax = 0.3,Ay = 0 fx = 3, fy = 0
Lx = 1024, Ly = 4 (a09) Ax = 0.4,Ay = 0 fx = 3, fy = 0
Lx = 1024, Ly = 4 (a10) Ax = 0.5,Ay = 0 fx = 3, fy = 0

Cable Lx = 1024, Ly = 4 (a11) Ax = 0.1,Ay = 0 fx = 5, fy = 0
Lx = 1024, Ly = 4 (a12) Ax = 0.2,Ay = 0 fx = 5, fy = 0
Lx = 1024, Ly = 4 (a13) Ax = 0.3,Ay = 0 fx = 5, fy = 0
Lx = 1024, Ly = 4 (a14) Ax = 0.4,Ay = 0 fx = 5, fy = 0
Lx = 1024, Ly = 4 (a15) Ax = 0.5,Ay = 0 fx = 5, fy = 0
Lx = 1024, Ly = 4 (a16) Ax = 0.1,Ay = 0 fx = 7, fy = 0
Lx = 1024, Ly = 4 (a17) Ax = 0.2,Ay = 0 fx = 7, fy = 0
Lx = 1024, Ly = 4 (a18) Ax = 0.3,Ay = 0 fx = 7, fy = 0
Lx = 1024, Ly = 4 (a19) Ax = 0.4,Ay = 0 fx = 7, fy = 0
Lx = 1024, Ly = 4 (a20) Ax = 0.5,Ay = 0 fx = 7, fy = 0

Table 4.1: Parameters for the periodic deformation (PD) that we use to study the wave dynamics in

our cable-type simulation domain in both TP06 and TNNP04 ventricular models.

4.3.1 Plane-wave Dynamics in a Cable

We study plane-wave propagation in a thin, cable-type simulation domain, with 16×

4096 grid points, i.e., Lx = 4 mm and Ly = 1024 mm. We inject a stimulus of strength

Istimulus = 150 pA/pF at the left end of the cable for 3ms and then study the effects of

PD on the plane wave that propagates through this cable; in particular, we measure

the conduction velocity CV and wavelength λ of the propagating wave in the cable.

We find that the CV ≃ 70.6 cm/s and λ ≃ 21.6 cm for the TP06 model, and CV ≃
67.8 cm/s and λ ≃ 18.9 cm for the TNNP04 model, in the absence of PD. As suggested

in Refs. [18, 28, 35], it is useful to test the accuracy of the numerical scheme by

varying both the time and space steps that we use for integration. We illustrate

this for the TP06 model by measuring CV for a plane wave, which is injected into

the medium by stimulating the left boundary of our simulation domain. We find

that, with δx = 0.025 cm CV increases by 1.6% as we decrease δt from 0.02 to 0.01ms;
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Figure 4.1: Pseudocolor plots of the transmembrane potential Vm for the TP06 model illustrating

plane-wave propagation in a cable-type domain, with PD along the axial-direction of the cable,

and the parameter sets given in Table. 4.1. The Video S1 comprises 21 animations that show the

spatiotemporal evolution of these plane waves.

if we use δt = 0.02 ms and decrease δx from 0.025 to 0.015 cm then CV increases by

4.7%; such changes are comparable to those found in earlier studies [18,28].

In Figs. 4.1(a00)-(a20) we show, at time t = 600 ms, when deformation is applied

along the axial direction of the cable, pseudocolor plots of the transmembrane po-

tential Vm for the TP06 model, with PD along the axial direction of the cable, and

the parameter sets given in Table. 4.1. The Video S1 comprises 21 animations that

show the the spatiotemporal evolution of the plane waves in Figs. 4.1(a00)-(a20);

these animations and Figs. 4.1(a00)-(a20) show that the conduction velocity CV

is modulated in space and the wavelength λ is modulated in time because of the

PD. Figure 4.2 illustrates these modulations via plots of CVf and CVb versus x for

the conduction velocities of the wave front (Fig. 4.2 (a)) and the wave back (Fig. 4.2
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Figure 4.2: The spatial modulation of CV and the temporal modulation of λ of a plane wave prop-

agating in a cable-type domain with PD: Plots versus distance x along the cable of the conduction

velocities with D = 0.00154 cm2/ms, δt = 0.02 ms, and δx = 0.25 mm (a) CVf , of the wave front, and

(b) CVb, of the wave back; (c) plot versus time t of the wavelength λ. The exact analogs of (a), (b),

and (c) are shown in (d), (e), and (f), for D = 0.00154 cm2/ms, δt = 0.01 ms, and δx = 0.25 mm, and

in (g), (h), and (i), for D = 0.00077 cm2/ms, δt = 0.02 ms, and δx = 0.25 mm. We use the represen-

tative PD parameter values Ax = 0.3 and fx = 5.0 Hz for the TP06 model. Open circles show the

values from our calculation; the red lines show smooth sinusoidal envelopes; in the absence of PD,

CV ≃ 70.6 cm/s, ≃ 71.7 cm/s, and ≃ 47 cm/s, respectively, for above three parameter sets (gray, dashed

lines in (a) and (b)); in (c) the gray, dashed line shows the value of λ that we obtain in the absence

of PD.

(b)), respectively; and Fig. 4.2(c) shows the corresponding plot for λ versus time t; in

these plots we use the representative PD parameter values Ax = 0.3 and fx = 5.0 Hz

for the TP06 model. We calculate the conduction velocities CVf(x) and CVb(x), in
the cable-type domain with PD, by recording the positions of the wave front and

the wave back at times t and t + δt; the wave-front and wave-back conduction ve-
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locities, at the point x at time t, are CVf(x) = δfx/δt and CVb(x) = δbx/δt, where

δfx and δbx are, respectively, the distances traveled by the wave front and wave

back in the time interval δt. We locate the position of the wave front by finding the

value of x at which Vm ≃ 0 mV; we define the position of the wave back as the point,

behind the wave front, at which a secondary action potential can just be initiated

by an additional stimulus (this turns out to occur at a value of Vm that is ≃ 75% of

the repolarization phase of the action potential). We obtain the wavelength λ(t) by
measuring the distance between the wave front and the wave back at time t.

In Figs. 4.2 (a) and (b), the open circles show the values of CVf(x) and CVb(x),
respectively, that we obtain by the method described above; the red lines show

smooth sinusoidal envelopes, with amplitude ≃ 31.2 cm/s and spatial period ≃ 14.5 cm,

that give the average modulations of these conduction velocities with x. Note that,

in the absence of PD, CV ≃ 70.6 cm/s (this is shown via a gray, dashed line in

Figs. 4.2 (a) and (b)); therefore, the electrical wave can travel ≃ 70.6/f cm in 1/f s;

hence, for a given PD frequency f , the spatial period of oscillation of CVf(x) and
CVb(x) is ≃ 70.6/f cm; the representative plots of Figs. 4.2 (a) and (b), in which

f = 5 Hz and the period is ≃ 70.6/5 = 14.12 cm, are consistent with this estimate.

Figure 4.2(c) shows that λ is a periodic function of t with a period τ ; we expect

that τ = 1/f , where f is the PD frequency; the illustrative plot in Fig. 4.2(c), with

f = 5 Hz, is consistent with this expectation because τ ≃ 202 ms; the gray, dashed

line shows the value of λ that we obtain in the absence of PD.

It is useful to study how CV and λ of a plane wave behave, in the presence of PD,

when we change the values of the time step and the diffusion coefficients. We find

that, in the presence of PD, CV and λ continue to oscillate, as in Figs. 4.2(d)-(i),

as functions of x and t, respectively; the mean values of CV and λ, about which

these oscillations occur, are close to their values without PD, which depend on the

diffusion coefficients and marginally on the time step: In Figs. 4.2(d)-(e) we show,

forD = 0.00154 cm2/ms, δt = 0.01ms, and δx = 0.25mm, the analogs of Figs. 4.2(a)-(c);

and in Figs. 4.2(g)-(i) we give their counterparts forD = 0.00077 cm2/ms, δt = 0.01ms,

and δx = 0.25 mm.

The TNNP04-model analogs of the TP06-model Figs. 4.1(a00)-(a20) are given

in Figs. S2(a00)-(a11) in the Supplementary Material S1; and Video S2 is the

TNNP04-model counterpart of the TP06-model Video S1 (these videos cover the

time interval 0 s ≤ t ≤ 2 s and they have 10 frames per second).



4.3. Results 161

Model Initial Final GNa Gkr Gks GpCa GpK σf

condition state (nS/pF ) (nS/pF ) (nS/pF ) (nS/pF ) (nS/pF )
TP06 IC1 RSC 14.838 0.153 0.392 0.1238 0.0146 1

TP06 IC2 STSS 5×14.838 0.153 0.392 0.1238 0.0146 1

TP06 IC3 STMS 14.838 0.172 0.441 0.8666 0.00219 2

TNNP04 IC1 RSC 14.838 0.096 0.245 0.825 0.0146 1

TNNP04 IC2 RSZ 5×14.838 0.096 0.245 0.825 0.0146 1

TNNP04 IC3 STMS 3×14.838 0.096 0.245 5×0.825 0.0146 2

Table 4.2: Parameters for the initial conditions IC1, IC2, and IC3 for TP06 and TNNP04 models:

The third column lists the final state of the system, namely, RSC, RSZ, STSS, and STMS that

denote, respectively, a rotating-spiral state with a circular tip trajectory, a rotating-spiral state

with a Z-type tip trajectory, a spiral-turbulence state with a single meandering spiral, and a spiral-

turbulence state with multiple spirals. Here, σf is the scale factor of the time constant τf (see the

Supplementary Material S1).

4.3.2 Spiral-wave Dynamics in a Homogeneous Domain

We move now to systematic studies of spiral-wave dynamics in a 2D, square sim-

ulation domain with side L = 256 mm, in the presence of PD, for both TP06 and

TNNP04 models.

In the absence of PD, two methods are used to initiate spiral waves in simu-

lations [7, 18, 28, 42] and experiments [6, 7], namely, (1) the S1-S2 cross-field pro-

tocol and (2) the S1-S2 parallel-field protocol. In the cross-field method, a super-

threshold stimulus S2 is applied at the boundary that is perpendicular to the S1

stimulus, whereas, in the parallel-field method, S2 is applied parallel to the re-

fractory tail of the S1 stimulus, but not over the entire length of the domain. Our

simulation does not show spiral-wave formation if we use the S1-S2 cross-field pro-

tocol; this protocol leads to an initial spiral hook near the edge of the simulation

domain; and this hook is absorbed by the boundary before it can develop into a

spiral wave. However, the parallel-field protocol does lead to the formation of a

spiral wave in the medium; in Refs. [18,19] we have shown that the location of the

center of the spiral depends sensitively on the time of initiation of the S2 stimu-

lus and on its spatial extent. We have found that the following modification of the

cross-field protocol yields spiral waves easily. In this modified protocol, the precise

position and the application time of the S2 stimulus does not have to be controlled

as carefully as in the parallel-field protocol; the principal requirement is that the

S2 pulse must be applied before the wave back of the S1 stimulus travels across

the full simulation domain. In particular, to initiate a spiral wave in our square

simulation domain with sides Lx = Ly = 256 mm, we first apply an S1 stimulus, of
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Figure 4.3: Initiation of spiral waves in the TP06 model by the S1-S2 cross field protocol (see text):

Pseudocolor plots of the transmembrane potential Vm showing the time evolution of spiral waves

for initial conditions (see text) IC1 ((a)-(c)), IC2 ((d)-(f)), and IC3 ((g)-(i)). The animations (a), (b),

and (c) in the Video S3 show the spatiotemporal evolution of Vm for these cases.

strength 150 pA/pF, for 3 ms; this injects a plane wave at the left boundary of this

domain; we then apply an S2 stimulus, of the same strength as the S1 stimulus and

for the same duration, to the bottom half of the domain (i.e., 0 mm ≤ y ≤ 125 mm).

This procedure yields the fully developed spiral waves shown in Fig. 4.3; we use

three types of spiral-wave initial configurations for our subsequent studies; we re-

fer to these as IC1, IC2, and IC3 initial conditions (see Table 5.1 for parameter

values). In Figs. 4.3(a)-(c), we show the time evolution of pseudocolor plots of Vm

for the TP06 model with the IC1 initial configuration; similar plots are shown in

Figs. 4.3(d)-(e) and (f)-(i), respectively, for the IC2 and IC3 initial configurations;

the complete spatiotemporal evolution of Vm for these cases is given in the upper

row of Video S3. The TNNP04-model analogs of Figs. 4.3(a)-(i) and the upper row of
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Figure 4.4: Spatiotemporal evolution of Vm for the initial condition IC1 for the TP06 model in the

absence of PD: (a)-(c)Pseudocolor plots of Vm at times t = 0 s, t = 2 s, and t = 4 s, respectively,

showing the evolution towards a state with a rotating spiral (RS); the animation (a) in Video S4

shows the spatiotemporal evolution of Vm for this case. (d) The local time series of Vm(x, y, t), from
the representative point (x = 125 mm, y = 125 mm) (the asterisk in (c)) for 2 s ≤ t ≤ 6 s; (e) a plot

of the inter beat interval (ibi), which we obtain from this time series, of length 4 × 105 iterations;

(f) the power spectrum E(ω), obtained from the local time series of (d), with discrete peaks at the

fundamental frequency ωf ≃ 4.75 Hz and its harmonics. The spiral-tip trajectory traces a roughly

circular path, with radius lc ≃ 20 mm, which is shown, for 3.6 s ≤ t ≤ 4 s, by the white line that has

been superimposed on the pseudocolor plot of Vm in (c); a magnified view of this path is shown in

(g).

Video S3 are given, respectively, in Figs. S3(a)-(i), in the Supplementary Material

S1, and the bottom row of Video S3.

In Figs. 4.4(a)-(c), we show pseudocolor plots of Vm at times t = 0 s, t = 2 s, and

t = 4 s, respectively, for the initial condition IC1 in the TP06 model, in the absence

of PD; this initial configuration evolves to a state with a rotating spiral (RS) in

the medium; the animation (a) in Video S4 shows the spatiotemporal evolution of
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Figure 4.5: Spatiotemporal evolution of Vm for the initial condition IC2 for the TP06 model in the

absence of PD: (a)-(g) show, for the initial condition IC2 in the absence of PD, the exact analogs of

Figs. 4.4(a)-(g); and the animation (b) in Video S4 shows the spatiotemporal evolution of Vm for this

case. This animation, the pseudocolor plots of Vm ((a)-(c)), the representative local time series of

Vm (d), the plot of the ibi (e), the power spectrum E(ω) (f), and the spiral-tip trajectory (the white

curve (c) and the blue one in (g)) show that the initial condition IC2 leads to spatiotemporal chaos

and spiral turbulence (ST) with a single spiral meandering chaotically in the simulation domain.

Vm for this case. The local time series of Vm(x, y, t), from the representative point

(x = 125 mm, y = 125 mm) (the asterisk in Fig. 4.4(c)), is shown in Fig. 4.4(d) for 2 s ≤
t ≤ 6 s; a plot of the inter beat interval (ibi), which we obtain from this time series,

of length 4 × 105 iterations, is given in Fig. 4.4(e), which shows that, after initial

transients (roughly the first 10 beats), the spiral wave rotates periodically with an

average rotation period T ≃ 210ms. In Fig. 4.4(f), we plot the power spectrum E(ω),
which we have obtained from the local time series of Vm mentioned above; this time

series has 2 × 105 data points and the initial 105 data points have been removed to

eliminate transients; discrete peaks in E(ω) appear at the fundamental frequency
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Figure 4.6: Spatiotemporal evolution of Vm for the initial condition IC3 for the TP06 model in the

absence of PD: (a)-(f) show, for the initial condition IC3 in the absence of PD, the exact analogs of

Figs. 4.4(a)-(f); and the animation (c) in Video S4 shows the spatiotemporal evolution of Vm for this

case. This animation, the pseudocolor plots of Vm ((a)-(c)), the representative local time series of Vm

(d), the plot of the ibi (e), and the power spectrum E(ω) (f) show that the initial condition IC3 leads

to spatiotemporal chaos and spiral turbulence (ST) with broken spirals in the simulation domain;

the life-span of a given spiral-wave segment is small so we do not track the trajectories of spiral

tips in this case.

ωf ≃ 4.75 Hz and its harmonics. The periodic nature of the local time series of Vm,

the flattening of the ibi, and the discrete peaks in E(ω) show that the temporal

evolution of the spiral wave is periodic; therefore, the spiral-tip trajectory traces

a roughly circular path with radius lc ≃ 20 mm; this circular path is shown, for

3.6 s ≤ t ≤ 4 s, by the white line that has been superimposed on the pseudocolor plot

of Vm in Fig. 4.4(c); an expanded version of this path is shown in Fig. 4.4(g).

In Figs. 4.5(a)-(g) we show, for the initial condition IC2 in the absence of PD,

the exact analogs of Figs. 4.4(a)-(g); and the animation (b) in Video S4 shows the

spatiotemporal evolution of Vm for this case. This animation, the pseudocolor plots

of Vm (Figs. 4.5(a)-(c)), the representative local time series of Vm (Fig. 4.5(d)), the

plot of the ibi (Fig. 4.5(e)), the power spectrum E(ω) (Fig. 4.5(f)), and the spiral-tip

trajectory (the white curve in Fig. 4.5(c) and the blue one in Fig. 4.5(g)) show that

the initial condition IC2 leads to spatiotemporal chaos and spiral turbulence (ST),

with a single spiral meandering chaotically in the simulation domain.
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In Figs. 4.6(a)-(f) we show, for the initial condition IC3 in the absence of PD,

the exact analogs of Figs. 4.4(a)-(f); and the animation (c) in Video S4 shows the

spatiotemporal evolution of Vm for this case. This animation, the pseudocolor plots

of Vm (Figs. 4.6(a)-(c)), the representative local time series of Vm (Fig. 4.6(d)), the

plot of the ibi (Fig. 4.6(e)), and the power spectrum E(ω) (Fig. 4.6(f)) show that

the initial condition IC3 leads to spatiotemporal chaos and spiral turbulence (ST)

with broken spirals in the simulation domain; the life-span of a given spiral-wave

segment is small so we do not track the trajectories of spiral tips in this case.

Figures S4(a)-(g), Figs. S5(a)-(g), and Figs. S6(a)-(f) (Supplementary Material

S1) show, respectively, the TNNP04 analogs of the TP06 Figs. 4.4(a)-(g) (for IC1),

Figs. 4.5(a)-(g) (for IC2), and Figs. 4.6(a)-(f) (for IC3); the spatiotemporal evolution

of Vm for these three initial conditions for the TNNP04 model are given in anima-

tions (d), (e), and (f) in Video S4. From these animations and the Figs. S4(a)-(g),

S5(a)-(g), and S6(a)-(f) (Supplementary Material S1) we conclude that the spa-

tiotemporal evolution of Vm in the TNNP04 model, without PD, is similar to, but

not identically the same as, that in the TP06 model for the initial conditions IC1,

IC2, and IC3. One difference is that, in the TNNP04 model, we have a Z-type,

spiral-tip trajectory in Figs. S5(c) and (g) (Supplementary Material S1), whereas,

for the same initial condition, we have an open spiral-tip trajectory (Figs. 4.5(c)

and (g)) in the TP06 model.

4.3.3 Spiral Waves with PD

As we have mentioned in Sec. 4.2, it is important to check the curvature of the front

of an expanding wave that emerges from a point at which we apply a stimulus.

Therefore, we apply a stimulus of current density 450 pA/pF for 9 ms at the center

of our square simulation domain of side Lx = Ly = 512 mm. Our numerical results

show that fronts of the expanding wave do not deviate substantially from circles,

even when we include PD along both x and y directions, with amplitudes and fre-

quencies in the ranges 0 ≤ Ax = Ay ≤ 0.5 and 1.0 Hz ≤ fx = fy ≤ 7.0 Hz, respectively.

The spatiotemporal evolution of such expanding waves is shown for three represen-

tative cases of PD, with amplitude and frequency (a) Ax = Ay = 0.1, fx = fy = 5 Hz,

(b) Ax = Ay = 0.3, fx = fy = 5 Hz, and (c) Ax = Ay = 0.5, fx = fy = 5 Hz, respectively, in

Video S5 by animations of pseudocolor plots (top panel) and contour plots (bottom

panel) of Vm.

We turn now to systematic studies of spiral-wave dynamics by using IC1, IC2,

and IC3 initial configurations in the presence of PD. In the TP06 model, these

initial configurations lead, respectively, to (a) an RS state with a roughly circular
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Figure 4.7: Time evolution of the RS state in the TP06 model in the presence of PD with a fixed

amplitude: Pseudocolor plots of Vm at time t = 4 s for (a) Ax = Ay = 0.1, fx = fy = 1.0 Hz, (b) Ax =
Ay = 0.1, fx = fy = 3.0 Hz, (c) Ax = Ay = 0.1, fx = fy = 5.0 Hz, and (d) Ax = Ay = 0.1, fx = fy = 7.0 Hz,

respectively; the animations (a1), (b1), (c1), and (d1) in Video S6 show the spatiotemporal evolution

of Vm for these cases in the time interval 0 s ≤ t ≤ 4 s. (e-h) Spiral-tip trajectories, which follow

from these spatiotemporal evolutions, for 3.6 s ≤ t ≤ 4 s (in (h) we give the tip trajectory for the

main, central spiral (d)). We obtain the local time series of Vm(x, y, t), from the representative point

(x = 125 mm, y = 125 mm) (the asterisks in (a-d)), and therefrom the plots of the ibi (i)-(l) and the

power spectra (m)-(p). The discrete peaks in E(ω) appear at the following frequencies: (m) ω1 = 4.75
Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz, (n) ω1 = 4.75 Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz, and small peaks at ω1 = 3
Hz, ω2 = 7.75 Hz, ω3 = 11 Hz, ω4 = 12.5 Hz, ω5 = 15.75 Hz, (o) ω1 = 4.75 Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz,

and (p) ω1 = 4.75 Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz. In (i)-(l) we see that the ibi shows a slight upward

trend; this implies that, although the temporal evolution is nearly periodic, there is a slight drift,

towards lower frequencies, in the rotation rate of the dominant spiral; note also the mild oscillations

in the ibi in (i) a 5-cycle, (j) a 3-cycle, and (l) a 2-cycle, but not in (k) a 1-cycle; the natures of these

oscillations and their cycle lengths are confirmed by the Poincaré-type return maps, shown in (q),

(r), (s), and (t), respectively; in these return maps, successive points are connected by lines.
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spiral-tip trajectory, (b) a single meandering spiral with turbulence (we refer to

this as SMST henceforth), and (c) multiple-spiral turbulence (MST) with broken

spiral waves in the absence of PD, as we have described above. For the TNNP04

model the analogs of these states are (a) RSC, a state with a rotating spiral whose

tip trajectory is roughly circular, (b) RSZ, a state with a rotating spiral whose tip

trajectory is roughly Z-type, and (c) an MST state.

We first consider the time evolution of IC1 for the TP06 model in the presence

of PD, for which we deform the medium periodically along both x and y directions,

with amplitudes and frequencies in the ranges 0.1 ≤ Ax = Ay ≤ 0.5 and 1.0 Hz ≤ fx =
fy ≤ 7.0 Hz, respectively.

In Figs. 4.7(a)-(d) we show pseudocolor plots of Vm at time t = 4 s for (a) Ax = Ay =
0.1, fx = fy = 1.0 Hz, (b) Ax = Ay = 0.1, fx = fy = 3.0 Hz, (c) Ax = Ay = 0.1, fx = fy =
5.0 Hz, and (d) Ax = Ay = 0.1, fx = fy = 7.0 Hz, respectively. The RS state, which

we obtain in the absence of PD, does not evolve into an MST state in cases (a), (b)

and (c); however, in case (d) the spiral arm splits into multiple spirals to yield an

MST state with mild spatiotemporal chaos, in so far as the dominant spiral does

not break down but continues to evolve somewhat like a mother rotor [43–46]; the

animations (a1), (b1), (c1), and (d1) in Video S6 show the spatiotemporal evolution

of Vm for these cases in the time interval 0 s ≤ t ≤ 4 s; this video uses 10 frames per

second (fps) and each pseudocolor plot of Vm is separated from its predecessor by

8 ms. The spiral-tip trajectories, which follow from this spatiotemporal evolution,

are shown in Figs. 4.7(e)-(h) for 3.6 s ≤ t ≤ 4 s (in Fig. 4.7(h) we give the tip trajectory

for the main, central spiral in 4.7(a)-(d)); these tip trajectories are nearly circular

with radii lc ≃ 18 mm, but, as we show below, the temporal evolution of Vm is dif-

ferent in these cases. To examine this evolution, we obtain the local time series of

Vm(x, y, t), from the representative point (x = 125 mm, y = 125 mm) (the asterisks in

Figs. 4.7(a-d)), and therefrom the plots of the ibi shown in Figs. 4.7(i)-(l) and the

power spectra of Figs. 4.7(m)-(p). To obtain the plots of the ibi, we use this local

time series with 4 × 105 data points; for the power spectra E(ω) we use the local

time series with 2 × 105 data points after the initial 105 data points have been re-

moved to eliminate transients; discrete peaks in E(ω) appear at the fundamental

frequency ωf ≃ 4.75 Hz and a few other frequencies (see the caption of Fig. 4.7).

From Figs. 4.7(i)-(l) we see that the ibi displays a slight upward trend; this implies

that, although the temporal evolution is nearly periodic, there is a slight drift,

towards lower frequencies, in the rotation rate of the dominant spiral. Further-

more, there are small oscillations in the ibi in Figs. 4.7(i) (a 5-cycle), (j)(a 3-cycle),

and (l)(a 2-cycle), but not in Fig. 4.7(k)(a 1-cycle); the natures of these oscillations
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and their cycle lengths are confirmed by the Poincaré-type return maps, shown in

Figs. 4.7(q)-(t) and corresponding to the ibi plots in Figs. 4.7(i)-(l), respectively; in

these return maps, successive points are connected by lines.

Similarly, we study the dependence of spiral-wave dynamics on the amplitudes

Ax and Ay of the PD, with the frequencies fx = fy held at a fixed value. In Fig. 4.8 we

show the pseudocolor plots of Vm at time t = 4 s for (a) Ax = Ay = 0.1, fx = fy = 1.0 Hz,

(b) Ax = Ay = 0.2, fx = fy = 1.0 Hz, (c) Ax = Ay = 0.3, fx = fy = 1.0 Hz, and (d)

Ax = Ay = 0.4, fx = fy = 1.0 Hz. The spiral wave does not split into multiple spirals

for these representative values of the amplitudes and frequencies. The animations

(a1), (a2), (a3), and (a4) in Video S6 show the spatiotemporal evolution of these

spiral waves for the interval 0 s ≤ t ≤ 4 s; these animations use 10 frames per sec-

ond (fps) and each frame is separated from the preceding one by 8 ms. To examine

this evolution, we obtain the local time series of Vm(x, y, t), from the representative

point (x = 125 mm, y = 125 mm) (the asterisks in Figs. 4.8(a-d)) and the correspond-

ing tip trajectories of spiral waves, in the time interval 3.6 s ≤ t ≤ 4 s (blue lines with

black points in Figs. 4.8(e) and (h), respectively); these tip trajectories trace nearly

circular paths, with radii lc ≃ 18 mm in Figs. 4.8(e)-(f); they are of the meandering

type in Figs. 4.8(g) and (h), with linear extents lc ≃ 24 mm and lc ≃ 75 mm, respec-

tively. From the local time series of Vm mentioned above, we obtain the plots of the

ibi shown in Figs. 4.8(i)-(l) and the power spectra of Figs. 4.8(m)-(p); the plots of the

ibi use 4 × 105 data points; for the power spectra E(ω) we use 2 × 105 data points af-

ter the initial 105 data points have been removed to eliminate transients; discrete

peaks in E(ω) appear at the fundamental frequency ωf ≃ 4.75 Hz and at the fre-

quencies listed in the caption of Fig. 4.8; these peaks indicate that, in Figs. 4.8(m)

and (n), we also have some high-order cycles; the broad-band power spectra in

Figs. 4.8(o) and (p) provide evidence for spiral turbulence with a meandering spiral

(SMST). In Figs. 4.8(q)-(t), we show Poincaré-type return maps of that we obtain

from the ibi plots in Figs. 4.8(i)-(l); in these maps successive points are connected

by lines. These plots give additional evidence for 5 cycles in Figs. 4.8(i)-(j) and

Figs. 4.8 (m)-(n) and of chaotic behavior in Figs. 4.8(k)-(l) and Figs. 4.8(o)-(p). The

lines in Figs. 4.8(q) and (r) move from the bottom-left corner to the top-right corner;

this suggests a low-frequency modulation of the spiral-wave dynamics because of

the PD; this is associated with the upward trend in the ibi plots of Figs. 4.8(i) and

(j).

We focus next on the types of ST states that we obtain, with PD applied along

both x and y axes, when we start with the IC1 initial condition. In Figs. 4.9 we

show three representative ST states; Figs. 4.9(a), (b), and (c) show, respectively,
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Figure 4.8: Time evolution of the RS state in the TP06 model in the presence of PD with a fixed

frequency: Pseudocolor plots of Vm at time t = 4 s for (a) Ax = Ay = 0.1, fx = fy = 1.0 Hz, (b) Ax =
Ay = 0.2, fx = fy = 1.0 Hz, (c) Ax = Ay = 0.3, fx = fy = 1.0 Hz, and (d) Ax = Ay = 0.4, fx = fy = 1.0 Hz.

The animations (a1), (a2), (a3), and (a4) in Video S6 show the spatiotemporal evolution of these

spiral waves for the interval 0 s ≤ t ≤ 4 s. (e-h) Spiral-tip trajectories, which follow from these

spatiotemporal evolutions, for 3.6 s ≤ t ≤ 4 s. We obtain the local time series of Vm(x, y, t), from
the representative point (x = 125 mm, y = 125 mm) (the asterisks in Figs. 4.8(a-d)) and therefrom

the plots of the ibi shown in (i)-(l), the power spectra E(ω) in (m)-(p), and the Poincaré-type return

maps, which we obtain from the ibi plots and which show (q) a 5−cycle, (r) a 5−cycle, (s) chaotic
behavior, and (t) chaotic evolution; discrete peaks in E(ω) appear at the following frequencies: (m)

ω1 = 4.75 Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz, (n) ω1 = 4.75 Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz and small peaks

at ω1 = 3.75 Hz, ω2 = 8.5 Hz, ω3 = 13.25 Hz, ω4 = 15 Hz, ω5 = 17.75 Hz, (o) ω1 = 4.75 Hz, ω2 = 9.5 Hz,

and (p) ω1 = 4.5 Hz, ω2 = 9.5 Hz.

pseudocolor plots of the transmembrane potential Vm for PD with (a) Ax = Ay =
0.3, fx = fy = 3.0 Hz, (b) Ax = Ay = 0.3, fx = fy = 5.0 Hz, and (c) Ax = Ay = 0.4, fx =
fy = 7.0 Hz; and the animations (b3), (c3), and (d4) in Video S6 show, respectively,

the spatiotemporal evolution of Vm for these cases in the time interval 0 s ≤ t ≤



4.3. Results 171

Figure 4.9: Temporal evolution of representative ST states in the TP06 model with PD along both

spatial directions: Three ST states, which we obtain with the initial condition IC1 and PD, are

shown via pseudocolor plots of the transmembrane potential Vm with (a) Ax = Ay = 0.3, fx = fy =
3.0 Hz, (b) Ax = Ay = 0.3, fx = fy = 5.0 Hz, and (c) Ax = Ay = 0.4, fx = fy = 7.0 Hz; the animations (b3),

(c3), and (d4) in Video S6 show, respectively, the spatiotemporal evolution of Vm for these cases in

the time interval 0 s ≤ t ≤ 4 s. We obtain the local time series of Vm(x, y, t), from the representative

points (x = 125 mm, y = 125 mm) and (x = 50 mm, y = 50 mm), shown by asterisks in (a)-(c); from these

local time series, we obtain the plots of the ibi (d)-(f) and the power spectra (g)-(i), with open-blue

and black-filled circles for the time series from (x = 125 mm, y = 125 mm) and (x = 50 mm, y = 50 mm),

respectively. These pseudocolor plots and animations of Vm and the plots of the ibi and power

spectra show that we have, roughly speaking, three types of ST states with (a) multiple spirals,

(b) a stable spiral core with broken spiral arms, and (c) a single dominant meandering spiral; the

second case (b) displays a coexistence of a quasiperiodic and an ST state because of the dominant

spiral at the center and the broken spirals generated from its arm.

4 s. To examine this evolution, we obtain the local time series of Vm(x, y, t), from
the representative points (x = 125 mm, y = 125 mm) and (x = 50 mm, y = 50 mm),

both of which are indicated by asterisks in Figs. 4.9(a)-(c); from these local time
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Figure 4.10: Pseudocolor plots of the transmembrane potential Vm for the TP06 model, with PD,

illustrating spiral-wave absorption: Pseudocolor plots of Vm, for (a)-(c) t = 0.4 s, and (d), (e), and

(f), for t = 0.8 s, t = 1.2 s, and t = 1.6 s, respectively, for three representative cases of spiral-wave

absorption with the following PDs: (a) and (d) Ax = Ay = 0.4, fx = fy = 3.0 Hz, (b) and (e) Ax = Ay =
0.5, fx = fy = 1.0 Hz, and (c) and (f) Ax = Ay = 0.5, fx = fy = 3.0 Hz; the spatiotemporal evolution of

Vm for these cases is shown, respectively, in the animations (b4), (a5), and (b5) in Video S6 for the

time interval 0 s ≤ t ≤ 4 s.

series, we obtain the plots of the ibi shown in Figs. 4.9(d)-(f) and the power spectra

of Figs. 4.9(g)-(i), with open-blue and black-filled circles for the time series from

(x = 125 mm, y = 125 mm) and (x = 50 mm, y = 50 mm), respectively. The plots of the

ibi use 4 × 105 data points; for the power spectra E(ω) we use 2 × 105 data points

after the initial 105 data points have been removed to eliminate transients. These

pseudocolor plots and animations of Vm and the plots of the ibi and power spectra

show that we have, roughly speaking, three types of ST states with (a) multiple

spirals (Fig. 4.9(a)), (b) a stable spiral core with broken spiral arms (Fig. 4.9(b)), and

(c) a single, dominant, meandering spiral (Fig. 4.9(c)); the second case (b) displays

a coexistence of a quasiperiodic and an ST state because of the dominant spiral

at the center and the broken spirals generated from its arm. Such coexistence

behaviors have been observed in both computational [10,11,47] and experimental

studies [48,49], which include in vivo experiments.

We also obtain quiescent (Q) states with no spirals because of the absorption

of spiral waves at the boundaries of the simulation domain. Typically, this occurs

because a single spiral wave drifts towards the boundaries, as we illustrate by the
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Type of Dimension of Parameter Amplitude of Frequency of

domain domain (mm) sets PD PD (Hz)

Lx = 1024, Ly = 1024 (a1) Ax = 0.1,Ay = 0.1 fx = 1, fy = 1
Lx = 1024, Ly = 1024 (a2) Ax = 0.2,Ay = 0.2 fx = 1, fy = 1
Lx = 1024, Ly = 1024 (a3) Ax = 0.3,Ay = 0.3 fx = 1, fy = 1
Lx = 1024, Ly = 1024 (a4) Ax = 0.4,Ay = 0.4 fx = 1, fy = 1
Lx = 1024, Ly = 1024 (a5) Ax = 0.5,Ay = 0.5 fx = 1, fy = 1
Lx = 1024, Ly = 1024 (b1) Ax = 0.1,Ay = 0.1 fx = 3, fy = 3
Lx = 1024, Ly = 1024 (b2) Ax = 0.2,Ay = 0.2 fx = 3, fy = 3
Lx = 1024, Ly = 1024 (b3) Ax = 0.3,Ay = 0.3 fx = 3, fy = 3
Lx = 1024, Ly = 1024 (b4) Ax = 0.4,Ay = 0.4 fx = 3, fy = 3
Lx = 1024, Ly = 1024 (b5) Ax = 0.5,Ay = 0.5 fx = 3, fy = 3

Tissue Lx = 1024, Ly = 1024 (c1) Ax = 0.1,Ay = 0.1 fx = 5, fy = 5
Lx = 1024, Ly = 1024 (c2) Ax = 0.2,Ay = 0.2 fx = 5, fy = 5
Lx = 1024, Ly = 1024 (c3) Ax = 0.3,Ay = 0.3 fx = 5, fy = 5
Lx = 1024, Ly = 1024 (c4) Ax = 0.4,Ay = 0.4 fx = 5, fy = 5
Lx = 1024, Ly = 1024 (c5) Ax = 0.5,Ay = 0.5 fx = 5, fy = 5
Lx = 1024, Ly = 1024 (d1) Ax = 0.1,Ay = 0.1 fx = 7, fy = 7
Lx = 1024, Ly = 1024 (d2) Ax = 0.2,Ay = 0.2 fx = 7, fy = 7
Lx = 1024, Ly = 1024 (d3) Ax = 0.3,Ay = 0.3 fx = 7, fy = 7
Lx = 1024, Ly = 1024 (d4) Ax = 0.4,Ay = 0.4 fx = 7, fy = 7
Lx = 1024, Ly = 1024 (d5) Ax = 0.5,Ay = 0.5 fx = 7, fy = 7

Table 4.3: Parameters for the PD that we use to study the wave dynamics in our square simulation

domain in both TP06 and TNNP04 ventricular models.

pseudocolor plots of Vm in Figs. 4.10(a)-(c), for t = 0.4 s, and Figs. 4.10(d), (e), and

(f), for t = 0.8 s, t = 1.2 s, and t = 1.6 s, for three representative cases with the

following PDs: (a) Ax = Ay = 0.4, fx = fy = 3.0 Hz (Figs. 4.10(a) and (d)), (b) Ax = Ay =
0.5, fx = fy = 1.0 Hz (Figs. 4.10(b) and (e)), and (c) Ax = Ay = 0.5, fx = fy = 3.0 Hz

(Figs. 4.10(c) and (f)); the pseudocolor plots of Vm near the final, spiral-absorption

states are shown in Figs. 4.10(d)-(f). The spatiotemporal evolution of Vm is shown

in the animations (b4), (a5), and (b5) in Video S6 for the time interval 0 s ≤ t ≤ 4 s.

To illustrate the rich variety of spatiotemporal patterns here, we summarize our

results for the TP06 model, with the initial condition IC1, by presenting a selection

of pseudocolor plots of Vm in Figs. 4.11 (a1)-(d5) (for parameter sets see Table. 4.3).

The animations in Video S6 show the spatiotemporal evolution of Vm for these cases

in the time interval 0 s ≤ t ≤ 4 s. To examine this evolution, we obtain the local time

series of Vm(x, y, t), from the representative points (x = 125 mm, y = 125 mm); these

are shown in Fig. S7 (Supplementary Material S1); from these local time series,

we obtain the plots of the ibi (Fig. S8 in the Supplementary Material S1) and the
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Figure 4.11: Illustrations of the rich variety of spatiotemporal patterns for the TP06 model, with

PD and the initial condition IC1: Representative pseudocolor plots of Vm with the initial condition

IC1 (Fig. 4.3(c)) and the parameter sets given in Table. 4.3. The animations in Video S6 show

the spatiotemporal evolution of Vm for these cases in the time interval 0 s ≤ t ≤ 4 s. To examine

this evolution, we obtain the local time series of Vm(x, y, t), from the representative points (x =
125 mm, y = 125 mm); these are shown in Fig. S7 in the Supplementary Material S1; from these local

time series, we obtain the plots of the ibi (Fig. S8 in the Supplementary Material S1) and the power

spectra (Fig. S9 in the Supplementary Material S1).

power spectra (Fig. S9 in the Supplementary Material S1). The plots of the ibi use

2×105 data points; for each one of the power spectra E(ω) we use 2×105 data points.

The analogs of the pseudocolor plots of Vm in Figs. 4.11 (a1)-(d5) for initial con-

ditions IC2 for IC3 are given, respectively, in Figs. 4.12 (a1)-(d5) and Figs. 4.13

(a1)-(d5); and the counterparts of Figs. S7, S8, and S9 in the Supplementary Mate-

rial S1 for initial conditions IC2 for IC3 are given, respectively, in Figs. S10, S11,

and S12 and Figs. S13, S14, and S15 in the Supplementary Material S1.

For the initial conditions IC2 and IC3 the analogs of the animations in Video S6

are given, respectively, in Videos S7 and S8. For IC2, with PD along both axes and
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Figure 4.12: Illustrations of the rich variety of spatiotemporal patterns for the TP06 model, with

PD and the initial condition IC2: The analogs of the pseudocolor plots of Vm in Figs. 4.11 for the

initial conditions IC2; the plots (a1)-(d5) here use the same PD parameters as their counterparts

in Figs. 4.11; the Video S4 shows the spatiotemporal evolution of Vm for these cases for the time

interval 0 s ≤ t ≤ 4 s; and the counterparts of Figs. S7, S8, and S9 in the Supplementary Material S1

for initial condition IC2 are Figs. S10, S11, and S12 in the Supplementary Material S1.

different values of the amplitude and the frequency, we examine the time series of

Vm(x, y, t), from a representative point in the simulation domain (Figs. S10 in the

Supplementary Material S1), the plots of the ibi (Figs. S11 in the Supplementary

Material S1) and the power spectrum E(ω) (Figs. S12 in the Supplementary Ma-

terial S1), and the spatiotemporal evolution of Vm (given by the the animations in

Video S7) and conclude therefrom that, in this case, we obtain either (a) a Q state

with no spirals (see animations (a4), (a5), (b4), (b5), (d4) and (d5) in Video S7) or (b)

anMST state with broken spiral waves (see the remaining animations in Video S7).

A similar analysis, for IC3 and PD along both x and y axes, based on time series of

Vm (Figs. S13 in the Supplementary Material S1), plots of the ibi (Figs. S14 in the
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Figure 4.13: Illustrations of the rich variety of spatiotemporal patterns for the TP06 model, with

PD and the initial condition IC3: The analogs of the pseudocolor plots of Vm in Figs. 4.11 for the

initial conditions IC3; the plots (a1)-(d5) here use the same PD parameters as their counterparts

in Figs. 4.11; the Video S6 shows the spatiotemporal evolution of Vm for these cases for the time

interval 0 s ≤ t ≤ 4 s; and the counterparts of Figs. S7, S8, and S9 in the Supplementary Material S1

for initial condition IC2 are Figs. S13, S14, and S15 in the Supplementary Material S1.

Supplementary Material S1), the power spectrum (Figs. S15 in the Supplementary

Material S1), and the spatiotemporal evolution of Vm (the animations in Video S8)

suggests that here we can have (a) a Q state with no spirals (see animations (b3)

(b4), (b5), (c4), (d4) and (d5) in Video S8), (b) an SMST state (see animations (a1)

and (a5) in Video S8), or (c) an MST state with with broken spiral waves (see the

rest of the animations in Video S8).

The TNNP04 model with PD also exhibits a rich variety of spatiotemporal pat-

terns with spiral waves like the TP06 model. The initial conditions we use are

shown via pseudocolor plots of Vm in Fig. S3 in the Supplementary Material S1.

In particular, for initial conditions of types IC1, IC2, and IC3 (Fig. S3(c), (f), and
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(i), respectively, in the Supplementary Material S1), the TNNP04 analogs of the

pseudocolor plots of Vm (Fig. 4.11, Fig. 4.12, and Fig. 4.13 for the TP06 model) are

given in Fig. S16, Fig. S17, and Fig. S18, respectively, in the Supplementary Ma-

terial S1, and the Videos S9, S10, and S11. The time series of Vm(x, y, t), from a

representative point in the simulation domain, and the associated plots of the ibi

and the power spectra are given in Figs. S19, S20, and S21, for IC1, Figs. S22, S23,

and S24, for IC2, and Figs. S25, S26, and S27, for IC3, in the Supplementary Ma-

terial S1. These figures and videos show that spiral-wave dynamics with PD in the

TNNP04 model is quantitatively different from, but qualitatively similar to, that in

the TP06 model. In particular, the TNNP04 model shows several quiescent states

Q, e.g, (i) for IC1, in Fig. S16(b5) (Supplementary Material S1) and the animation

(b5) in Video S9, (ii) for IC2, in Figs. S17(d4) and (d5) (Supplementary Material S1)

and the animations (d4) and (d5) in Video S10, and (iii) for IC3, in Figs. S18(a1),

(b2), (b3), (c4) and (c5) (Supplementary Material S1) and the animations (a1), (b2),

(b3), (c4), and (c5) in Video S11; we obtain states with RS, which are associated

with cyclic motions of various orders, in Figs. S20(a2), (a3), (c1), (c3), (c4), (d1),

(d2), (d3) and (d4) in the Supplementary Material S1, for IC1, Figs. S23(a1), (a2),

(a3), (b1), (c1), (c2) and (d1) in the Supplementary Material S1, for IC2; finally, we

observe a variety of states with spiral-wave turbulence in Fig. S20(c5) in the Sup-

plementary Material S1 and the animation (c5) in Video S9, for IC1, Figs. S23(b5),

(c4) and (c5) in the Supplementary Material S1 and the animations (b5), (c4) and

(c5) in Video S10, for IC2, and Figs. S26(a2), (a3), (a4), (a5), (b1), (b4), (b5), (c1),

(c2), (c3), (d1), (d2), (d3), (d4) and (d5) in the Supplementary Material S1 and the

animations (a2), (a3), (a4), (a5), (b1), (b4), (b5), (c1), (c2), (c3), (d1), (d2), (d3), (d4)

and (d5) in Video S11, for IC3.

We have discussed spiral-wave dynamics in TP06 and TNNP04 models in the

presence of PD along both x and y directions, with initial conditions of types IC1,

IC2, and IC3. We have also carried out systematic simulations of spiral-wave dy-

namics in both these models, with PD along only one (say x) direction. Here too our

results are, in the main, qualitatively similar to those we have presented above. Of

course, there is anisotropic diffusion if the PD is only along on direction. However,

Q, RS, and ST states appear; an overview of their spatiotemporal evolution is given

in Figs. S28, S29, S30, S31, S32 and S33, in the Supplementary Material S1, and

Videos S12, S13, S14, S15, S16 and S17.
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Figure 4.14: Spiral-wave control in the TP06 model, in the absence of PD, by low-amplitude pulses

on square and line meshes: We illustrate spiral-wave control, via low-amplitude control pulses, in

the TP06 model, in the absence of PD, by presenting pseudocolor plots of Vm. The spiral state, at

time t = 0 s (a), with the IC1 initial condition, evolves, in the absence of the control, to an RS state

(b), at time t = 0.2 s; this state is suppressed by the both square- and line-mesh control methods

as shown in (c) and (d), at t = 0.2 s and t = 0.6 s, respectively. Similar plots for the IC2 and IC3

initial conditions are given, respectively, in (e)-(h) and (i)-(l). The Video S18, which comprises nine

animations of pseudocolor plots of Vm, show the spatiotemporal evolution of these spiral waves, with

and without control pulses, for the time interval 0 s ≤ t ≤ 1 s. In all these cases we apply a control

pulse of amplitude 75 pA/pF for t = 0.2 ms for the square mesh and an amplitude of 125 pA/pF for

t = 0.6 ms for the line mesh.

4.3.4 Control of Spiral waves

One of the principal goals of our extensive numerical studies of spiral-wave dynam-

ics in the TP06 and TNNP04 models with PD is to understand its role in enhancing

or suppressing spiral-wave turbulence; this is an important step in developing an

effective, low-amplitude control technique for the elimination of turbulence with

single or multiple spirals. We have provided an overview of some low-amplitude

control schemes, in the absence of PD, in earlier studies [18, 33, 34]; the most suc-

cessful of these is based on an external current stimulus, which is applied on a

square mesh on the simulation domain; this control scheme [18, 19, 39] can sup-

press spiral waves of electrical activation even in the presence of conduction, ionic,
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Figure 4.15: Spiral-wave control by low-amplitude pulses in the TP06 model with PD along only

the x direction: We impose PD along the x direction and the illustrative amplitude Ax = 0.3 and

frequeny fx = 5 Hz; (a)-(l) are the analogs of Figs. 4.14(a)-(l), respectively. With the initial condition

IC1, the spiral in (a), at t = 0 s, evolves, in the absence of control, to an MST state (b), at t = 0.2 s;

this MST can be suppressed by both square- and line-mesh control (c) and (d) at t = 0.2 s and 0.6 s,

respectively. For the IC2 and IC3 initial configurations, the analogs of these states are shown in

(e)-(h) and (i)-(l), respectively; clearly, both our control schemes are successful in eliminating spiral

turbulence with PD along one direction. For the spatiotemporal evolution of these spiral waves see

Video S19 in the Supplementary Material.

and fibroblast heterogeneities [18, 19, 39]. We now investigate the efficacy of this

mesh-based control scheme for both TP06 and TNNP04 models in the presence of

PD.

In this mesh-based control scheme, we apply a current pulse of amplitude 75 pA/pF

for 0.2 s over a mesh that divides our square simulation domain with L = 256 mm

into 64 square cells of side l = 32 mm each; this pulse makes the links of the mesh

refractory and, thereby, effectively imposes Neumann boundary conditions for any

block inside the mesh; therefore, spiral waves inside a block are absorbed on the

links of the mesh that bound the block. We have also extended this mesh-based

scheme to one that uses control pulses on a set of parallel lines; in this line-based

scheme, we apply a current pulse of amplitude 125 pA/pF for 0.6 s over a set of par-

allel lines separated from each other by l = 32 mm. As we show below, both these
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Figure 4.16: Spiral-wave control by low-amplitude pulses in the TP06 model with PD along both

x and y directions: We impose PD along both x and y directions with the illustrative amplitudes

Ax = Ay = 0.3 and frequencies fx = fy = 5 Hz; for this case (a)-(l) are the analogs of Figs. 4.15 (a)-(l),

respectively. With the initial condition IC1, the spiral in (a), at t = 0 s, evolves, in the absence

of the control, to the MST state in (b), at t = 0.2 s; this MST can be suppressed by the square-

mesh technique but not by the line-mesh technique as we show in (c) and (d) at t = 0.2 s and 0.6 s,

respectively; the parameters on the control mesh are as in Fig. 4.15. For the initial conditions

IC2 and IC3, the analogs of these states are shown, respectively, in (e)-(h) and (i)-(l). Thus, with

PD along both directions, spiral turbulence can be suppressed by our square-mesh control but not

the line-mesh method for IC1 and IC3 initial conditions (see the animations in Video S20 in the

Supplementary Material).

schemes succeed in controlling spiral-wave turbulence in the TP06 and TNNP04

models without PD; the line-based scheme uses a higher amplitude for the con-

trol pulse and a longer duration of application than the mesh-based one because

the former has fewer control-pulse segments than the latter. Furthermore, we

show below that the line-based scheme works with PD only if the PD is applied

along one spatial direction. However, a slight modification of our line-based con-

trol scheme can suppress spiral-wave turbulence; this is a rectangular-mesh-based

control scheme, in which we add a few control lines perpendicular to the parallel

lines of the line-based control scheme; here we apply a current pulse of amplitude
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Figure 4.17: Comparison of spiral-wave control by low-amplitude pulses on square, line, and rect-

angular control meshes in the TP06 model, with PD along both x and y directions: We impose

PD along both x and y directions with the illustrative amplitudes Ax = Ay = 0.3 and frequencies

fx = fy = 5 Hz for the initial configurations IC1, IC2, and IC3 (pseudocolor plots of Vm in (a), (e),

and (f), respectively). We apply the following control pulses: amplitude 75 pA/pF for t = 0.2 s over

a square mesh ((b), (f), and (j)), with each square block of side l = 32 mm; amplitude 125 pA/pF for

t = 0.6 s over a line mesh ((c), (g), and (k)), with inter-line spacing l = 32 mm; amplitude 125 pA/pF

for t = 0.6 s over a rectangular mesh ((d), (h), and (l)), with block sides lx = 32 mm and ly = 64 mm.

These pseudocolor plots of Vm and the associated animations in Video S21 of the Supplementary

Material show that these spiral states, with IC1, IC2, and IC3 initial conditions, are suppressed by

both square- and rectangular-mesh control but not line-mesh control.

125 pA/pF for 0.6 s over a rectangular mesh whose unit cells have sides lx = 32 mm

and ly = 64 mm.

In Fig. 4.14 we illustrate spiral-wave control, via low-amplitude control pulses,

in the TP06 model, in the absence of PD, by presenting pseudocolor plots of Vm. The

spiral state, at time t = 0 ms (Fig. 4.14(a) with the IC1 initial condition) evolves,

in the absence of the control, to an RS state (Fig. 4.14(b)) at time t = 0.2 s; this

state is suppressed, by both square- and line-mesh control methods, as shown in

Fig. 4.14(c) and Fig. 4.14(d), at t = 0.2 ms and t = 0.6 ms, respectively. Similar plots

for the IC2 and IC3 initial conditions, Figs. 4.14(e)-(h) and Figs. 4.14(i)-(l), respec-

tively, illustrate square- and line-mesh control of states with spiral turbulence. The
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Video S18, which comprises nine animations of pseudocolor plots of Vm, shows the

spatiotemporal evolution of these spiral waves, with and without control pulses, for

the time interval 0 s ≤ t ≤ 1 s. The results of similar studies for the TNNP04 model

are given in Fig. S34 (Supplementary Material S1) and Video S22.

We turn now to spiral-wave control in the TP06 model, with PD along the x di-

rection and the illustrative amplitude Ax = 0.3 and frequency fx = 5 Hz; for this

case Figs. 4.15 (a)-(l) are the analogs of Figs. 4.14(a)-(l), respectively. With the ini-

tial condition IC1, the spiral in Fig. 4.15(a), at t = 0 ms, evolves, in the absence of

control, to an MST state (Fig. 4.15(b)) at t = 0.2 s; however, this MST can be sup-

pressed by both square- and line-mesh control techniques as shown in Fig. 4.15(c)

and Fig. 4.15(d) at t = 0.2 ms and 0.6 ms, respectively. For the IC2 and IC3 ini-

tial configurations, the analogs of these states are shown in Figs. 4.15(e)-(h) and

Figs. 4.15(i)-(l), respectively; clearly, both our control schemes are successful in

eliminating spiral turbulence with PD along one direction, as can be seen best in

the animations, which show the spatiotemporal evolution of these spiral waves,

in Video S19. The results of similar studies for the TNNP04 model are given in

Fig. S35 (Supplementary Material S1) and Video S23.

In Fig. 4.16 we illustrate spiral-wave control via pseudocolor plots of Vm by low-

amplitude pulses in the TP06 model with PD along both x and y directions and the

amplitudes Ax = Ay = 0.3 and frequencies fx = fy = 5 Hz; for this case Figs. 4.16

(a)-(l) are the analogs of Figs. 4.15 (a)-(l), respectively. With the initial condition

IC1, the spiral in Fig. 4.16(a), at t = 0 ms, evolves, in the absence of the control, to

the MST state in Fig. 4.16(b) at t = 0.2 s; this MST can be suppressed by the square-

mesh technique but not by the line-mesh technique as we show in Fig. 4.16(c) and

Fig. 4.16(d) at t = 0.2 ms and 0.6 ms, respectively. For the initial conditions IC2

and IC3 the analogs of these states are shown, respectively, in Figs. 4.16(e)-(h)

and Figs. 4.16(i)-(l). Thus, with PD along both directions, spiral turbulence can

be suppressed by our square-mesh control but not the line-mesh method for IC1

and IC3 initial conditions; this is illustrated clearly by the animations in Video

S20. The results of similar studies for the TNNP04 model are given in Fig. S36

(Supplementary Material S1) and Video S24.

A minor modification of our line-based control scheme suppresses spiral-wave

turbulence: we use a rectangular-mesh-based control scheme, in which we add

a few control lines perpendicular to the parallel lines of the line-based control

scheme. We present a comparison of spiral-wave control by low-amplitude pulses

on square, line, and rectangular control meshes in the TP06 model, with PD along

both x and y directions: We impose PD along both x and y directions with the il-
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lustrative amplitudes Ax = Ay = 0.3 and frequencies fx = fy = 5 Hz for the initial

configurations IC1, IC2, and IC3 (pseudocolor plots of Vm in Figs. 4.17 (a), (e), and

(f), respectively). We apply the following control pulses: (i) pulses with amplitude

75 pA/pF for t = 0.2 s over a square mesh (Figs. 4.17 (b), (f), and (j)), with each

square block of side l = 32 mm; (ii) pulses with amplitude 125 pA/pF for t = 0.6 s

over a line mesh (Figs. 4.17 (c), (g), and (k)), with inter-line spacing l = 32 mm; (iii)

pulses with amplitude 125 pA/pF for t = 0.6 s over a rectangular mesh (Figs. 4.17

(d), (h), and (l)), with block sides lx = 32 mm and ly = 64 mm. These pseudocolor

plots of Vm and the associated animations in Video S21 show that such spiral-wave

states, with IC1, IC2, and IC3 initial conditions, are suppressed by both square-

and rectangular-mesh control but not by line-mesh control. Our rectangular-mesh

control scheme is a significant improvement over the square-mesh one because

it uses fewer control lines than the latter. The results of similar studies for the

TNNP04 model are given in Fig. S37 (Supplementary Material S1) and Video S25.

4.4 Discussion and Conclusion

We have carried out detailed and systematic numerical studies of the effects of peri-

odic deformation (PD) on spiral-wave dynamics in ionically realistic mathematical

models for cardiac tissue by introducing PD in the recently developed TP06 and

TNNP04 mathematical models for human ventricular tissue [27, 28], in which we

include PD as in Refs. [22–24]. We also investigate, in 2D simulations with PD,

the efficacies of square-, rectangular-, and line-mesh-based, low-amplitude control

schemes in the suppression of spiral-wave turbulence in these models for cardiac

tissue [18,19,33,34].

We have first considered simulations in cable-type domains, which are ideally

suited for the calculation of CV and λ. We find that PD leads to a periodic, spatial

modulation of CV and a temporally periodic modulation of λ (see Fig. 4.2); the

degrees of these modulations depend on the amplitude Ax and frequency fx of the

PD. To the best of our knowledge, such modulations have not been quantified in

any earlier study, although a few [23, 24] have suggested, in the context of spiral

waves, that such modulations can arise because of a Doppler-type effect [10].

We have considered three types of initial spiral-wave configurations, IC1, IC2,

and IC3, which are depicted in Figs. 4.3(c), (f), and (i), for the TP06 model, and

Figs. S3(c), (f), and (i) (Supplementary Material S1), for the TNNP04 model. In

the TP06 model, these configurations evolve, respectively, to (a) an RSC state, (b)

an SMST state, and (c) an MST state, in the absence of PD; in the TNNP04 model
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they evolve, respectively, to (a) an RSC state, (b) an RSZ state, and (c) an MST

state, in the absence of PD. We have used such initial conditions because various

experimental and computational studies [6–8,10,18,27,50–55] have suggested that

spiral-wave dynamics in cardiac tissue can lead to (a) a stable rotor [6,7,50], as in

our RSC state, (b) a single, meandering rotor whose time series is chaotic [51–53],

as in our SMST state, and (c) multiple rotors, which yield a state with spatiotem-

poral chaos [8, 53–55], as in our MST state. Thus, our initial conditions, IC1, IC2,

and IC3, lead to the three major types of spiral-wave evolutions, and slight variants

thereof (e.g., RSZ), which have been seen in earlier studies and whose evolution we

study now with PD. A rich variety of spiral-wave behaviors result when we add PD

to the TP06 and TNNP04 models. We have discussed these in detail above. Our

principal findings here can be summarized as follows: In the presence of PD, an

RS state may show (a) periodic behavior with high-order cycles in time, (b) tempo-

rally quasiperiodic (QP) evolution, (c) a state with spiral-wave turbulence, or (d) a

quiescent state Q. For an ST state, which can be of SMST or MST types, PD can

either leave the system in an ST state or make it evolve to a Q state, in which all

spirals either annihilate each other or are absorbed at the boundaries of the simu-

lation domain. Precisely which one of these states is obtained depends sensitively

on our initial conditions and on the PD parameters Ax, Ay, fx, and fy of the PD.

Thus, our study systematizes the effects of PD on spiral-wave dynamics and tur-

bulence in two, biophysically realistic mathematical models for cardiac tissue; and

it complements earlier studies of spiral-wave dynamics, in such models, that have

concentrated on the dependence of such dynamics on ion-channel and electrophys-

iological properties [14–16,53] and on conduction [17,18,21,56] and ionic inhomo-

geneities [18–20]. By using the biophysically realistic TP06 and TNNP04 models

for cardiac tissue, our study generalizes the work of Refs. [22–24] on spiral-wave

instabilities in a simple, two-variable model for cardiac tissue, which is subject to

PD.

Moreover, as we have mentioned above, our studies have used three types of

spiral-wave initial configurations to examine, via extensive and systematic numer-

ical calculations, the transitions between different states of our system as the am-

plitude and frequency of the PD are varied. Our work extends significantly earlier

studies of periodic deformation, [22–24] and mechanical deformation [25, 26, 29].

In particular, Refs. [22–26,29] have focused on simple, two-variable, mathematical

models for cardiac tissue. Thus, these studies cannot address spiral-wave dynam-

ics in such tissue at the detailed ionic level we consider in our work by using state-

of-the-art, ionically realistic mathematical models for ventricular tissue. Further-
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more, the authors of Refs. [22–24] study the effects of PD on spiral-wave dynamics

for a limited set of initial conditions. For example, in Ref. [22], the authors have

studied the behavior of a single rotating spiral (RS) in the presence of PD; the

authors of Ref. [23] have used a broken-spiral state as an initial configuration to

study the elimination of spirals from the system in the presence of PD; in Ref. [24],

the authors have studied an RS initial configuration and its spatiotemporal evolu-

tion with PD. The authors in Refs. [25,26,29] have used an RS initial configuration

to examine the effect of realistic PD on this RS state; they have not investigated

the transitions between different spiral-wave states. None of these studies have

carried out the detailed numerical investigations of spiral-wave dynamics that we

present in our work, which considers a variety of initial conditions.

Furthermore, we have shown that square- and line-mesh-based, low-amplitude

control schemes suppress spiral-wave turbulence in both the TP06 and TNNP04

models in the absence of PD; this line-based control scheme is a significant im-

provement over the square-mesh control scheme of Refs. [18, 19, 33, 34] because

it has fewer control lines. However, we have found that the line-based scheme

works with PD only if the PD is applied along one spatial direction. We have then

shown that a minor modification of our line-based control scheme can suppress

spiral-wave turbulence: in particular, we introduce a rectangular-mesh-based con-

trol scheme, in which we add a few control lines perpendicular to the parallel lines

of the line-based control scheme; this rectangular-mesh scheme is also a significant

improvement because it uses fewer control lines than the one based on a square

mesh.

The formation of patterns in reaction-diffusion type system with various types

of flows have been investigated in Refs. [57–60]; in particular, break up of spiral

excitation waves has been observed in a moving excitable medium as suggested in

Ref. [57]; these studies have shown that linear shear flow can cause spiral-wave

breakup in an excitable medium. Recent studies in Refs. [61–63] have investi-

gated pattern formation in a gel medium that can be oscillated mechanically; the

effect of these mechanical oscillations on the underlying spatiotemporal chemical

oscillations, because of a Belousov-Zhabotinsky (BZ) reaction, can be studied in

such systems. Our work here presents the cardiac-tissue analogs of such chemical-

oscillation studies.

Various stretching devices have been developed to control the contraction and

expansion of a cell [64–66] and a layer of cells in culture [67–71]. In these de-

vices, both uniaxial and biaxial [72] stretching methods can be used to deform

substrates; moreover, in some of these devices, the stretching can be applied in a
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cyclic manner at different frequencies. This stretching-induced deformation of the

substrate leads, in turn, to the deformation of a layer of culture cells that are at-

tached to the substrate. Examples of such studies include the following: The study

in Ref. [64] has measured the strain that develops in cultured vascular smooth

muscle cells when they are deformed by the stretching of a substrate to which they

adhere. The authors of Ref. [67] have used a device, which applies homogeneous,

equibiaxial strains of 0−10% to a cell-culture substrate, to verify quantitatively the

transmission of substrate deformation to a 2D sheet of cultured cardiac cells. The

studies in Ref. [68] have used endothelial cells in tissue culture, on a silicon elas-

tic membrane, and have designed an apparatus that allows for the control of the

magnitude and frequency of the dynamical stretching that is applied uniformly to

these cells to produce equibiaxial dynamical stretches, with area changes ranging

from 0% to 55% and frequencies ranging from 0 to 2 Hz. The authors of Ref. [69]

have developed a system for the imposition of cyclic biaxial strain to stretch cul-

tured pulmonary epithelial cells; similar techniques have been used in Ref. [70] to

study the effects of strain in cell cultures and in vitro experiments. The authors

of Ref. [71] have studied the response to such stretching in cultured neonatal rat

atrial cardiomyocytes by using a device that can impose homogeneous equibiax-

ial deformation. Other recent studies include those of Refs. [65, 66], which have

studied the mechanical activities of living cell, fiber, and tissue by applying both

equiaxial and uniaxial deformation, and recording the dynamics of the response

of these systems by using high-resolution imaging techniques; the former experi-

ment has used fibroblasts and the latter endothelial cells in culture. We suggest

that such experimental studies of the responses of cell cultures to an applied stress

can be easily generalized to study the types of problems we have concentrated on

here. In particular, by imposing a periodic deformation on cardiac tissue or cell cul-

tures, experiments should be able to verify the predictions we have made, on the

basis of our in silico studies, about the modulations of CV and λ in the presence of

PD (Figs. 4.2(a), (b), and (c)) and the effects of PD on spiral-wave dynamics, which

we have discussed in detail in the previous Section.

We end with some limitations of our model for PD. The first limitation is that

our model does not include stretch-activated currents [25,26,29] explicitly; but Vm

depends on PD and all ionic currents depend on Vm, so PD affects all such cur-

rents implicitly. Next, the PD in our model affects the electrical activation of our

medium but it is not, in turn, affected by this activation; by contrast, the model for

PD used in Refs. [25, 26, 29] allows for electrical feedback to affect PD; our model

does not include soft-tissue mechanics, which can be incorporated in mathemati-
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cal models for cardiac tissue by including stress and strain tensors, from elasticity

theory [73–75], as in the PD studies of Refs. [25,26,29]; however, these studies use

only a two-variable model for cardiac tissue and not the ionically realistic TP06 or

TNNP04 models that we employ. Moreover, because of the absence of detailed ion-

channel dynamics, the simple, two-variable models for cardiac tissue, which have

been used in the PD studies of Refs. [25,26,29], do not account for the effects of PD

on ion-channel activity and the intracellular calcium concentration as suggested in

Refs. [76–78]. In spite of the simplicity of our model for PD, our study captures var-

ious features of spiral-wave dynamics that have been observed in models that in-

clude stretch-activated currents [25]; in particular, our model displays spiral-wave

breakup because of PD. The only qualitative effect that our study misses is PD-

induced pacemaker activity, for which it has been argued [26, 29, 79] that stretch-

activated currents are essential. To the best of our knowledge, our elucidation of

the effects of PD on spiral-wave dynamics in mathematical models for cardiac tis-

sue, though simple in its modelling of PD, is the first study that explores the effects

of PD on spiral-wave dynamics in ionically realistic mathematical models for ven-

tricular tissue. A complete study of a realistic model for PD, with stretch-activated

currents, and such ionically realistic mathematical models lies beyond the scope of

the present paper. Our model does not include mechano-electrical feedback in a re-

alistic way, as we have described above. Therefore, we have not attempted to study

how different mechanical stimuli, other than the PD we consider, initiate or effect

spiral-waves in our model; studies of other mechanical stimuli lie beyond the scope

of our paper. In Ref. [26] it has been noted that both electrical and mechanical

stimuli can cause the formation of a pacemaker in cardiac tissue; and mechanical

stimuli can translate the mechanical energy into an electrical stimulus, as argued

in Refs. [80,81]. We use a monodomain description for cardiac tissue; and we do not

use an anatomically realistic simulation domain [82,83], muscle-fiber orientation,

and transmural heterogeneity [20, 84]; the inclusion of these features lies beyond

the scope of this study. We note, however, that recent studies [85] have compared

potentials resulting from normal depolarization and repolarization in a bidomain

model with those of a monodomain model; these studies have shown that the dif-

ferences between results obtained from a monodomain model and those obtained

from a bidomain model are extremely small.
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1 Supporting Information

Video S1 Spatiotemporal evolution of plane waves in cable-type domains, with

PD along the axial-direction of the cables, for the TP06 model, shown via pseu-

docolor plots of the transmembrane potential Vm; the time evolution is shown for

0 s ≤ t ≤ 2 s; we use 10 frames per second (fps); in real time each frame is separated

from the succeeding frame by 8 ms.

Video S2 Spatiotemporal evolution of plane waves in cable-type domains, with

PD along the axial-direction of the cables, for the TNNP04 model, shown via pseu-

docolor plots of the transmembrane potential Vm; the time evolution is shown for

0 s ≤ t ≤ 2 s; we use 10 frames per second (fps); in real time each frame is separated

from the succeeding frame by 8 ms.

Video S3 Spatiotemporal evolution of the transmembrane potential Vm initi-

ated by the S1-S2 cross field protocol in the TP06 and TNNP04 models; the time

evolution is shown for 0 s ≤ t ≤ 0.8 s; we use 10 frames per second (fps); in real time

each frame is separated from the succeeding frame by 8 ms.

Video S4 Spiral-wave dynamics in the TP06 and TNNP04 models in the ab-

sence of PD; the time evolution of pseudocolor plots of the transmembrane poten-

tial Vm is shown for 0 s ≤ t ≤ 4 s; we use 10 frames per second (fps); in real time each

frame is separated from the succeeding frame by 8 ms.

Video S5 Spatiotemporal evolution of circular waves for the TP06 model in the

presence of PD along both x and y directions with an initial condition of type IC1;

the time evolution of pseudocolor plots (top panel) and contour plots (bottom panel)

of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 0.8 s; we use 10 frames

per second (fps); in real time each frame is separated from the succeeding frame by

8 ms.

Video S6 Spiral-wave dynamics for the TP06 model in the presence of PD along

both x and y directions with an initial condition of type IC1; the time evolution

of pseudocolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S7 Spiral-wave dynamics for the TP06 model in the presence of PD along

both x and y directions with an initial condition of type IC2; the time evolution

of pseudocolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S8 Spiral-wave dynamics for the TP06 model in the presence of PD along

both x and y directions with an initial condition of type IC3; the time evolution
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of pseudocolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S9 Spiral-wave dynamics for the TNNP04 model in the presence of PD

along both x and y directions with an initial condition of type IC1; the time evolu-

tion of pseudocolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s;
we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S10 Spiral-wave dynamics for the TNNP04 model in the presence of PD

along both x and y directions with an initial condition of type IC2; the time evolu-

tion of pseudocolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s;
we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S11 Spiral-wave dynamics for the TNNP04 model in the presence of PD

along both x and y directions with an initial condition of type IC3; the time evolu-

tion of pseudocolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s;
we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S12 Spiral-wave dynamics for the TP06 model in the presence of PD

along x direction with an initial condition of type IC1; the time evolution of pseu-

docolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s; we use 10

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S13 Spiral-wave dynamics for the TP06 model in the presence of PD

along x direction with an initial condition of type IC2; the time evolution of pseu-

docolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s; we use 10

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S14 Spiral-wave dynamics for the TP06 model in the presence of PD

along x direction with an initial condition of type IC3; the time evolution of pseu-

docolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s; we use 10

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S15 Spiral-wave dynamics for the TNNP04 model in the presence of PD

along x direction with an initial condition of type IC1; the time evolution of pseu-

docolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s; we use 10



1. Supporting Information 190

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S16 Spiral-wave dynamics for the TNNP04 model in the presence of PD

along x direction with an initial condition of type IC2; the time evolution of pseu-

docolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s; we use 10

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S17 Spiral-wave dynamics for the TNNP04 model in the presence of PD

along x direction with an initial condition of type IC3; the time evolution of pseu-

docolor plots of the transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s; we use 10

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S18 Spiral-wave dynamics in the TP06 model, in the absence of PD, with

and without control pulses, for the time interval 0 s ≤ t ≤ 1 s; we depict pseudocolor

plots of Vm and use 10 frames per second (fps); in real time each frame is separated

from the succeeding frame by 8 ms. In all these cases we apply a control pulse

of amplitude 75 pA/pF for t = 0.2 ms for the square mesh and an amplitude of

125 pA/pF for t = 0.6 ms for the line mesh.

Video S19 Spiral-wave dynamics in the TP06 model, in the presence of PD

along only the x direction (Ax = 0.3 and fx = 5 Hz), with and without control pulses,

for the time interval 0 s ≤ t ≤ 1 s; we depict pseudocolor plots of Vm and use 10

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms. In all these cases we apply a control pulse of amplitude 75 pA/pF

for t = 0.2 ms for the square mesh and an amplitude of 125 pA/pF for t = 0.6 ms for

the line mesh.

Video S20 Spiral-wave dynamics in the TP06 model, in the presence of PD

along both x and y directions (Ax = Ay = 0.3 and fx = fy = 5 Hz), with and with-

out control pulses, for the time interval 0 s ≤ t ≤ 1 s; we depict pseudocolor plots of

Vm and use 10 frames per second (fps); in real time each frame is separated from

the succeeding frame by 8 ms. In all these cases we apply a control pulse of ampli-

tude 75 pA/pF for t = 0.2 ms for the square mesh and an amplitude of 125 pA/pF for

t = 0.6 ms for the line mesh.

Video S21Comparison of spiral-wave control by low-amplitude pulses on square,

line, and rectangular control meshes in the TP06 model, with PD along both x and

y directions, for the time interval 0 s ≤ t ≤ 1 s; we depict pseudocolor plots of Vm

and use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms. In all these cases we apply a control pulse of amplitude
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75 pA/pF for t = 0.2ms for the square mesh, an amplitude of 125 pA/pF for t = 0.6 ms

for the line mesh, and an amplitude of 125 pA/pF for t = 0.6 ms for the rectangular

mesh.

Video S22 Spiral-wave dynamics in the TNNP04 model, in the absence of PD,

with and without control pulses, for the time interval 0 s ≤ t ≤ 1 s; we depict pseu-

docolor plots of Vm and use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms. In all these cases we apply a control

pulse of amplitude 75 pA/pF for t = 0.2 ms for the square mesh and an amplitude of

125 pA/pF for t = 0.6 ms for the line mesh.

Video S23 Spiral-wave dynamics in the TNNP04 model, in the presence of PD

along only the x direction (Ax = 0.3 and fx = 5 Hz), with and without control pulses,

for the time interval 0 s ≤ t ≤ 1 s; we depict pseudocolor plots of Vm and use 10

frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms. In all these cases we apply a control pulse of amplitude 75 pA/pF

for t = 0.2 ms for the square mesh and an amplitude of 125 pA/pF for t = 0.6 ms for

the line mesh.

Video S24 Spiral-wave dynamics in the TNNP04 model, in the presence of PD

along both x and y directions (Ax = Ay = 0.3 and fx = fy = 5 Hz), with and without

control pulses, for the time interval 0 s ≤ t ≤ 1 s; we depict pseudocolor plots of Vm

and use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms. In all these cases we apply a control pulse of amplitude

75 pA/pF for t = 0.2 ms for the square mesh and an amplitude of 125 pA/pF for

t = 0.6 ms for the line mesh.

Video S25Comparison of spiral-wave control by low-amplitude pulses on square,

line, and rectangular control meshes in the TNNP04 model, with PD along both x

and y directions, for the time interval 0 s ≤ t ≤ 1 s; we depict pseudocolor plots of Vm

and use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms. In all these cases we apply a control pulse of amplitude

75 pA/pF for t = 0.2ms for the square mesh, an amplitude of 125 pA/pF for t = 0.6 ms

for the line mesh, and an amplitude of 125 pA/pF for t = 0.6 ms for the rectangular

mesh.
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1 Supplementary Material S1

Figure S1: Schematic diagrams for illustrative periodic deformations of a small part of the simula-

tion domain, with 5×5 grid points; in these diagrams, blue, open circles and blue, dashed lines show,

at a particular instant of time, the deformed simulation domain superimposed on the undeformed

one, which is represented by black, solid circles and black, full lines. The case of expansion, with

deformations along only x (with amplitude Ax = 0.3 and frequency fx = 3 Hz), only y (with ampli-

tude Ay = 0.3 and frequency fy = 3 Hz), or both x and y directions (with amplitudes Ax = Ay = 0.3
and frequencies fx = fy = 3 Hz) are shown, respectively, in (a), (b) and (c), at time t = 20 ms; the

corresponding plots for contraction, at time t = 180 ms, are shown in (d), (e), and (f).
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Figure S2: Pseudocolor plots of the transmembrane potential Vm for the TNNP04 model illustrating

plane-wave propagation in a cable-type domain, with PD along the axial-direction of the cable, and

the following parameter sets: (a00) no PD; (a01) Ax = 0.1, fx = 1.0 Hz; (a02) Ax = 0.2, fx = 1.0 Hz;

(a03) Ax = 0.3, fx = 1.0 Hz; (a04) Ax = 0.4, fx = 1.0 Hz; (a05) Ax = 0.5, fx = 1.0 Hz; (a06) Ax = 0.1, fx =
3.0 Hz; (a07) Ax = 0.2, fx = 3.0 Hz; (a08) Ax = 0.3, fx = 3.0 Hz; (a09) Ax = 0.4, fx = 3.0 Hz; (a10) Ax =
0.5, fx = 3.0 Hz; (a11) Ax = 0.1, fx = 5.0 Hz; (a12) Ax = 0.2, fx = 5.0 Hz; (a13) Ax = 0.3, fx = 5.0 Hz; (a14)
Ax = 0.4, fx = 5.0 Hz; (a15) Ax = 0.5, fx = 5.0 Hz; (a16) Ax = 0.1, fx = 7.0 Hz; (a17) Ax = 0.2, fx = 7.0 Hz;

(a18) Ax = 0.3, fx = 7.0 Hz; (a19) Ax = 0.4, fx = 7.0 Hz; and (a20) Ax = 0.5, fx = 7.0 Hz. The Video S2

comprises 21 animations that show the spatiotemporal evolution of these plane waves.
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Figure S3: Initiation of spiral waves in the TNNP04 model by the S1-S2 cross field protocol (see

main text): Pseudocolor plots of the transmembrane potential Vm showing the time evolution of spi-

ral waves for initial conditions (see text) IC1 ((a)-(c)), IC2 ((d)-(f)), and IC3 ((g)-(i)). The animations

(d), (e), and (f) in the Video S3 show the the spatiotemporal evolution of Vm for these cases.
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Figure S4: Spatiotemporal evolution of Vm for the initial condition IC1 for the TNNP04 model in

the absence of PD: (a)-(c)Pseudocolor plots of Vm at times t = 0 s, t = 2 s, and t = 4 s, respectively,

showing the evolution towards a state with a rotating spiral (RS); the animation (d) in Video S4

shows the spatiotemporal evolution of Vm for this case. (d) The local time series of Vm(x, y, t), from
the representative point (x = 125 mm, y = 125 mm) (the asterisk in (c)) for 2 s ≤ t ≤ 6 s; (e) a plot

of the inter beat interval (ibi), which we obtain from this time series, of length 4 × 105 iterations;

(f) the power spectrum E(ω), obtained from the local time series of (d), with discrete peaks at the

fundamental frequency ωf ≃ 3.75 Hz and its harmonics. The spiral-tip trajectory traces a roughly

circular path, with radius lc ≃ 25 mm, which is shown, for 3.6 s ≤ t ≤ 4 s, by the white line that has

been superimposed on the pseudocolor plot of Vm in (c); an expanded version of this path is shown

in (g).
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Figure S5: Spatiotemporal evolution of Vm for the initial condition IC2 for the TNNP04 model in the

absence of PD: (a)-(g) show, for the initial condition IC2 in the absence of PD, the exact analogs of

Figs. S4(a)-(g); and the animation (e) in Video S4 shows the spatiotemporal evolution of Vm for this

case. (d) The local time series of Vm(x, y, t), from the representative point (x = 125 mm, y = 125 mm)

(the asterisk in (c)) for 2 s ≤ t ≤ 6 s; (e) a plot of the inter beat interval (ibi), which we obtain

from this time series, of length 4 × 105 iterations; (f) the power spectrum E(ω), obtained from the

local time series of (d), with two principal frequencies, ω1 = 4 Hz and ω2 = 8.25 Hz. The spiral-

tip trajectory traces a Z-type path, with linear extents lc ≃ 43 mm, which is shown, for 3.6 s ≤
t ≤ 4 s, by the white line that has been superimposed on the pseudocolor plot of Vm in (c); an

expanded version of this path is shown in (g). The local time series, the oscillating ibi, and more

than one principal frequency in the power spectrum show that the initial condition IC2 leads to a

quasiperiodic temporal evolution.
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Figure S6: Spatiotemporal evolution of Vm for the initial condition IC3 for the TNNP04 model in

the absence of PD: (a)-(f) show, for the initial condition IC3 in the absence of PD, the exact analogs

of Figs. S4(a)-(f); and the animation (f) in Video S4 shows the spatiotemporal evolution of Vm for

this case. This animation, the pseudocolor plots of Vm ((a)-(c)), the representative local time series

of Vm (d), the plot of the ibi (e), and the power spectrum E(ω) (f) show that the initial condition

IC3 leads to spatiotemporal chaos and spiral turbulence (ST) with broken spirals in the simulation

domain.
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Figure S7: Plots of the local time series of Vm(x, y, t), recorded from the representative points (x =
125 mm, y = 125 mm), in the TP06 model with the initial condition IC1 and PD along both spatial

directions; the spatiotemporal patterns of Vm are shown in Fig. 11 in the main text.
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Figure S8: Plots of the ibi versus the beat number n that we obtain from the time series shown in

Fig. S7.
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Figure S9: Plots of the power spectrum E(ω) of Vm obtained from a time series of length 2 × 105 for

the data points in Fig. S7.
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Figure S10: Plots of the local time series of Vm(x, y, t), recorded from the representative points

(x = 125 mm, y = 125 mm), in the TP06 model with the initial condition IC1 and PD along both

spatial directions; the spatiotemporal patterns of Vm are shown in Fig. 12 in the main text.
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Figure S11: Plots of the ibi versus the beat number n that we obtain from the time series shown in

Fig. S10.
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Figure S12: Plots of the power spectrum E(ω) of Vm obtained from a time series of length 2×105 for
the data points in Fig. S10.
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Figure S13: Plots of the local time series of Vm(x, y, t), recorded from the representative points

(x = 125 mm, y = 125 mm), in the TP06 model with the initial condition IC1 and PD along both

spatial directions; the spatiotemporal patterns of Vm are shown in Fig. 13 in the main text.
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Figure S14: Plots of the ibi versus the beat number n that we obtain from the time series shown in

Fig. S13.
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Figure S15: Plots of the power spectrum E(ω) of Vm obtained from a time series of length 2×105 for
the data points in Fig. S13.



1. Supplementary Material S1 214

Figure S16: Illustrations of the rich variety of spatiotemporal patterns for the TNNP04 model, with

PD along both x and y directions and the initial condition IC1: Representative pseudocolor plots

of Vm with the initial condition IC1 (Fig. S3(c)) and the following PD parameters: (a1) Ax = Ay =
0.1, fx = fy = 1.0 Hz, (a2) Ax = Ay = 0.2, fx = fy = 1.0 Hz, (a3) Ax = Ay = 0.3, fx = fy = 1.0 Hz, (a4)

Ax = Ay = 0.4, fx = fy = 1.0 Hz, (a5) Ax = Ay = 0.5, fx = fy = 1.0 Hz, (b1) Ax = Ay = 0.1, fx = fy = 3.0 Hz,

(b2) Ax = Ay = 0.2, fx = fy = 3.0 Hz, (b3) Ax = Ay = 0.3, fx = fy = 3.0 Hz, (b4) Ax = Ay = 0.4, fx =
fy = 3.0 Hz, (b5) Ax = Ay = 0.5, fx = fy = 3.0 Hz, (c1) Ax = Ay = 0.1, fx = fy = 5.0 Hz, (c2) Ax = Ay =
0.2, fx = fy = 5.0 Hz, (c3) Ax = Ay = 0.3, fx = fy = 5.0 Hz, (c4) Ax = Ay = 0.4, fx = fy = 5.0 Hz, (c5)

Ax = Ay = 0.5, fx = fy = 5.0 Hz, (d1) Ax = Ay = 0.1, fx = fy = 7.0 Hz, (d2) Ax = Ay = 0.2, fx = fy = 7.0 Hz,

(d3) Ax = Ay = 0.3, fx = fy = 7.0 Hz, (d4) Ax = Ay = 0.4, fx = fy = 7.0 Hz, and (d5) Ax = Ay = 0.5, fx =
fy = 7.0 Hz; the animations in Video S9 show the spatiotemporal evolution of Vm for these cases in

the time interval 0 s ≤ t ≤ 4 s.
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Figure S17: Illustrations of the rich variety of spatiotemporal patterns for the TNNP04 model, with

PD along both x and y directions and the initial condition IC2: The analogs of the pseudocolor plots

of Vm in Fig. S16 for the initial conditions IC2; the plots (a1)-(d5) here use the same PD parameters

as their counterparts in Fig. S16; the Video S10 shows the spatiotemporal evolution of Vm for these

cases for the time interval 0 s ≤ t ≤ 4 s.
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Figure S18: Illustrations of the rich variety of spatiotemporal patterns for the TNNP04 model, with

PD along both x and y directions and the initial condition IC3: The analogs of the pseudocolor plots

of Vm in Fig. S16 for the initial conditions IC3; the plots (a1)-(d5) here use the same PD parameters

as their counterparts in Fig. S16; the Video S11 shows the spatiotemporal evolution of Vm for these

cases for the time interval 0 s ≤ t ≤ 4 s.
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Figure S19: Plots of the local time series of Vm(x, y, t), recorded from the representative points

(x = 125 mm, y = 125 mm), in the TNNP04 model with the initial condition IC1 and PD along both

spatial directions; the spatiotemporal patterns of Vm are shown in Fig. S16.
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Figure S20: Plots of the ibi versus the beat number n that we obtain from the time series shown in

Fig. S19.
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Figure S21: Plots of the power spectrum E(ω) of Vm obtained from a time series of length 2×105 for
the data points in Fig. S19.
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Figure S22: Plots of the local time series of Vm(x, y, t), recorded from the representative points

(x = 125 mm, y = 125 mm), in the TNNP04 model with the initial condition IC2 and PD along both

spatial directions; the spatiotemporal patterns of Vm are shown in Fig. S17.
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Figure S23: Plots of the ibi versus the beat number n that we obtain from the time series shown in

Fig. S22.
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Figure S24: Plots of the power spectrum E(ω) of Vm obtained from a time series of length 2×105 for
the data points in Fig. S22.
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Figure S25: Plots of the local time series of Vm(x, y, t), recorded from the representative points

(x = 125 mm, y = 125 mm), in the TNNP04 model with the initial condition IC3 and PD along both

spatial directions; the spatiotemporal patterns of Vm are shown in Fig. S18.
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Figure S26: Plots of the ibi versus the beat number n that we obtain from the time series shown in

Fig. S25.
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Figure S27: Plots of the power spectrum E(ω) of Vm obtained from a time series of length 2×105 for
the data points in Fig. S25.
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Figure S28: Illustrations of the rich variety of spatiotemporal patterns for the TP06 model, with

PD along the x direction and the initial condition IC1: Representative pseudocolor plots of Vm with

the initial condition IC1 (Fig. S3(c)) and the following PD parameters: (a1) Ax = 0.1, fx = fy = 1.0 Hz,

(a2) Ax = 0.2, fx = fy = 1.0 Hz, (a3) Ax = 0.3, fx = fy = 1.0 Hz, (a4) Ax = 0.4, fx = fy = 1.0 Hz,

(a5) Ax = 0.5, fx = fy = 1.0 Hz, (b1) Ax = 0.1, fx = fy = 3.0 Hz, (b2) Ax = 0.2, fx = fy = 3.0 Hz,

(b3) Ax = 0.3, fx = fy = 3.0 Hz, (b4) Ax = 0.4, fx = fy = 3.0 Hz, (b5) Ax = 0.5, fx = fy = 3.0 Hz,

(c1) Ax = 0.1, fx = fy = 5.0 Hz, (c2) Ax = 0.2, fx = fy = 5.0 Hz, (c3) Ax = 0.3, fx = fy = 5.0 Hz, (c4)

Ax = 0.4, fx = fy = 5.0 Hz, (c5) Ax = 0.5, fx = fy = 5.0 Hz, (d1) Ax = 0.1, fx = fy = 7.0 Hz, (d2)

Ax = 0.2, fx = fy = 7.0 Hz, (d3) Ax = 0.3, fx = fy = 7.0 Hz, (d4) Ax = 0.4, fx = fy = 7.0 Hz, and (d5)

Ax = 0.5, fx = fy = 7.0 Hz; the animations in Video S12 show the spatiotemporal evolution of Vm for

these cases in the time interval 0 s ≤ t ≤ 4 s.
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Figure S29: Illustrations of the rich variety of spatiotemporal patterns for the TP06 model, with

PD along the x direction and the initial condition IC2: The analogs of the pseudocolor plots of Vm in

Fig. S28 for the initial conditions IC2; the plots (a1)-(d5) here use the same PD parameters as their

counterparts in Fig. S28; the Video S13 shows the spatiotemporal evolution of Vm for these cases

for the time interval 0 s ≤ t ≤ 4 s.
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Figure S30: Illustrations of the rich variety of spatiotemporal patterns for the TP06 model, with

PD along the x direction and the initial condition IC3: The analogs of the pseudocolor plots of Vm in

Fig. S28 for the initial conditions IC3; the plots (a1)-(d5) here use the same PD parameters as their

counterparts in Fig. S28; the Video S14 shows the spatiotemporal evolution of Vm for these cases

for the time interval 0 s ≤ t ≤ 4 s.
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Figure S31: Illustrations of the rich variety of spatiotemporal patterns for the TNNP04 model, with

PD along the x direction and the initial condition IC1: Representative pseudocolor plots of Vm with

the initial condition IC1 (Fig. S3(c)) and the following PD parameters: (a1) Ax = 0.1, fx = fy = 1.0 Hz,

(a2) Ax = 0.2, fx = fy = 1.0 Hz, (a3) Ax = 0.3, fx = fy = 1.0 Hz, (a4) Ax = 0.4, fx = fy = 1.0 Hz,

(a5) Ax = 0.5, fx = fy = 1.0 Hz, (b1) Ax = 0.1, fx = fy = 3.0 Hz, (b2) Ax = 0.2, fx = fy = 3.0 Hz,

(b3) Ax = 0.3, fx = fy = 3.0 Hz, (b4) Ax = 0.4, fx = fy = 3.0 Hz, (b5) Ax = 0.5, fx = fy = 3.0 Hz,

(c1) Ax = 0.1, fx = fy = 5.0 Hz, (c2) Ax = 0.2, fx = fy = 5.0 Hz, (c3) Ax = 0.3, fx = fy = 5.0 Hz, (c4)

Ax = 0.4, fx = fy = 5.0 Hz, (c5) Ax = 0.5, fx = fy = 5.0 Hz, (d1) Ax = 0.1, fx = fy = 7.0 Hz, (d2)

Ax = 0.2, fx = fy = 7.0 Hz, (d3) Ax = 0.3, fx = fy = 7.0 Hz, (d4) Ax = 0.4, fx = fy = 7.0 Hz, and (d5)

Ax = 0.5, fx = fy = 7.0 Hz; the animations in Video S15 show the spatiotemporal evolution of Vm for

these cases in the time interval 0 s ≤ t ≤ 4 s.
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Figure S32: Illustrations of the rich variety of spatiotemporal patterns for the TNNP04 model, with

PD along the x direction and the initial condition IC2: The analogs of the pseudocolor plots of Vm in

Fig. S31 for the initial conditions IC2; the plots (a1)-(d5) here use the same PD parameters as their

counterparts in Fig. S31; the Video S16 shows the spatiotemporal evolution of Vm for these cases

for the time interval 0 s ≤ t ≤ 4 s.
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Figure S33: Illustrations of the rich variety of spatiotemporal patterns for the TNNP04 model, with

PD along the x direction and the initial condition IC3: The analogs of the pseudocolor plots of Vm in

Fig. S31 for the initial conditions IC2; the plots (a1)-(d5) here use the same PD parameters as their

counterparts in Fig. S31; the Video S17 shows the spatiotemporal evolution of Vm for these cases

for the time interval 0 s ≤ t ≤ 4 s.
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Figure S34: Spiral-wave control in the TNNP04 model, in the absence of PD, by low-amplitude

pulses on square and line meshes: We illustrate spiral-wave control, via low-amplitude control

pulses, in the TP06 model, in the absence of PD, by presenting pseudocolor plots of Vm. The spiral

state, at time t = 0 s (a), with the IC1 initial condition, evolves, in the absence of the control, to an

RS state (b), at time t = 0.2 s; this state is suppressed by the both square- and line-mesh control

methods as shown in (c) and (d), at t = 0.2 s and t = 0.6 s, respectively. Similar plots for the IC2 and

IC3 initial conditions are given, respectively, in (e)-(h) and (i)-(l). The Video S22, which comprises

nine animations of pseudocolor plots of Vm, show the spatiotemporal evolution of these spiral waves,

with and without control pulses, for the time interval 0 s ≤ t ≤ 1 s. In all these cases we apply a

control pulse of amplitude 75 pA/pF for t = 0.2ms for the square mesh and an amplitude of 125 pA/pF

for t = 0.6 ms for the line mesh.
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Figure S35: Spiral-wave control by low-amplitude pulses in the TNNP04 model with PD along only

the x direction: We impose PD along the x direction and the illustrative amplitude Ax = 0.3 and

frequency fx = 5 Hz; (a)-(l) are the analogs of Figs. S34(a)-(l), respectively. With the initial condition

IC1, the spiral in (a), at t = 0 s, evolves, in the absence of control, to an MST state (b), at t = 0.2 s;

this MST can be suppressed by both square- and line-mesh control (c) and (d) at t = 0.2 s and 0.6 s,

respectively. For the IC2 and IC3 initial configurations, the analogs of these states are shown in

(e)-(h) and (i)-(l), respectively; clearly, both our control schemes are successful in eliminating spiral

turbulence with PD along one direction. For the spatiotemporal evolution of these spiral waves see

Video S23.
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Figure S36: Spiral-wave control by low-amplitude pulses in the TNNP04 model with PD along both

x and y directions: We impose PD along both x and y directions with the illustrative amplitudes

Ax = Ay = 0.3 and frequencies fx = fy = 5 Hz; for this case (a)-(l) are the analogs of Figs. 4.15 (a)-(l),

respectively. With the initial condition IC1, the spiral in (a), at t = 0 s, evolves, in the absence

of the control, to the MST state in (b), at t = 0.2 s; this MST can be suppressed by the square-

mesh technique but not by the line-mesh technique as we show in (c) and (d) at t = 0.2 s and 0.6 s,

respectively; the parameters on the control mesh are as in Fig. 4.15. For the initial conditions IC2

and IC3, the analogs of these states are shown, respectively, in (e)-(h) and (i)-(l). Thus, with PD

along both directions, spiral turbulence can be suppressed by our square-mesh control but not the

line-mesh method for IC1 and IC3 initial conditions (see the animations in Video S24).
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Figure S37: Comparison of spiral-wave control by low-amplitude pulses on square, line, and rect-

angular control meshes in the TNNP04 model, with PD along both x and y directions: We impose

PD along both x and y directions with the illustrative amplitudes Ax = Ay = 0.3 and frequencies

fx = fy = 5 Hz for the initial configurations IC1, IC2, and IC3 (pseudocolor plots of Vm in (a), (e),

and (f), respectively). We apply the following control pulses: amplitude 75 pA/pF for t = 0.2 s over

a square mesh ((b), (f), and (j)), with each square block of side l = 32 mm; amplitude 125 pA/pF for

t = 0.6 s over a line mesh ((c), (g), and (k)), with inter-line spacing l = 32 mm; amplitude 125 pA/pF

for t = 0.6 s over a rectangular mesh ((d), (h), and (l)), with block sides lx = 32 mm and ly = 64 mm.

These pseudocolor plots of Vm and the associated animations in Video S25 show that this spiral

states, with IC1, IC2, and IC3 initial conditions, are suppressed by both square- and rectangular-

mesh control but not line-mesh control.



Chapter 5

Spiral-wave dynamics in a Mathematical Model of

Human Ventricular Tissue with Myocytes and

Purkinje fibres

This Chapter follows closely a paper that we will submit for publication very soon.

The authors are Alok Ranjan Nayak, AV Panfilov, and Rahul Pandit.

5.1 Introduction

In mammalian hearts, Purkinje fibers are among the special conduction systems [1]

that carry electrical impulses from the bundle of His to the interior of ventricu-

lar tissue, namely, the endocardium. These impulses excite endocardial myocytes

and the resulting excitations propagate across ventricular tissue to develop the

mechanical force that is necessary for pumping blood to the whole body. Exper-

iments [1–3] suggest that these Purkinje fibers branch out to form a network

that spreads across the interior of the ventricular wall. Computational studies

of electrical-wave propagation in the presence such Pukinje-fiber networks are in

their infancy compared to studies of electrical-wave propagation in mathematical

models of cardiac tissue that include only myocytes. It is important, therefore, to

study the dynamics of spiral waves of electrical activation in mathematical mod-

els that include both myocytes and networks of Purkinje fibers, because there is a

general consensus that such waves can play an important role in life-threatening

cardiac arrhythmias like ventricular tachycardia (VT) and ventricular fibrillation

(VF), which are often associated, respectively, with an unbroken spiral wave and

broken spiral waves of electrical activation in cardiac tissue [4–6]. In mathematical

models of cardiac tissue, the simplest analogs of VT and VF are a single, unbroken,

236



5.1. Introduction 237

rotating spiral (RS) wave and spiral-wave turbulence (ST) with multiple broken

spirals, respectively [4–9].

To study electrical-wave propagation in cardiac tissue in the presence of the

Purkinje-fiber conduction network, we must incorporate mathematical models for

Purkinje fibers with those for myocytes. Examples of the latter include the Luo-

Rudy models [10, 11], the model of ten Tusscher, Noble, Noble, and Panfilov [12],

and that of ten Tusscher and Panfilov [13]. Several mathematical models have been

developed for ventricular Purkinje cells by including hyperpolarized ionic currents

and by modifying the major ionic currents in some ventricular-myocyte models. To

the best of our knowledge, 9 models have been developed for ventricular Purkinje

fibers; these models are (a) the 1962 model of Noble [14], (b) the 1975 one of McAl-

lister, et al. [15], (c) the 1985 model of DiFrancesco, et al. [16], (d) the 2008 model

of ten Tusscher, et al. [17], (e) the 2009 model of Stewart, et al. [18], (f) the 2009

model of Aslanidi, et al. [19], (g) the 2010 model of Sampson, et al. [20], (h) the

2011 model of Li, et al. [21], and (i) the 2011 model of Corrias, et al. [22]. Short

summaries of the Purkinje-fiber models due to Noble [14], McAllister, et al. [15],

and DiFrancesco [16] can be found in Refs. [17, 18]; we present brief overviews of

the remaining Purkinje-fiber models.

We use the model of Stewart, et al. [18], who have developed a mathematical

model for a human Purkinje cell by modifying two major ionic currents, namely,

the transient outward current Ito and the inward rectifier K+ current IK1 in the

human ventricular-cell mathematical model developed by ten Tusscher and Pan-

filov (henceforth the TP06 model) [13]; furthermore, this Purkinje-cell model in-

cludes two more ionic currents, namely, the sustained K+ current Isus and the

hyperpolarization-activated current If ; the maximal channel conductances for the

Na+ current (INa) and for both rapid and slow delayed rectifier K+ currents (IKr

and IKs, respectively) are modifed to observe the correct channel kinetics for this

Purkinje cell. This group has studied, for an isolated Purkinje cell, the contribution

of individual ionic currents to various features of the action-potential morphology

(APM), such as, the maximum upstroke velocity, dV /dtmax, the maximum AP am-

plitude, Vmax, the maximum of the plateau potential, Vplateau, and the AP duration

(measured at 90 % of repolarization in the final phase of repolarization, denoted

by APD90), and the resting membrane potential, Vrest; such studies are carried out

by the partial (50 %) or complete (100 %) blocking of the channel for a given ionic

current. The main focus of this study is to quantify how the authorhythmic cy-

cle length (CL) varies as a function of the individual ionic currents for a single

Purkinje cell.
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Aslanidi, et al. [19] have modelled a canine Purkinje cell by modifying major

ionic currents, such as, the L-type and T-type Ca2+ currents, ICaL and ICaT , the

transient outward current, Ito, the fast and slow delayed rectifier currents, IKr and

IKs, and the inward rectifierK+ current, IK1, of the original canine model developed

for an endocardial cell [23]. They have compared (a) the AP and the ionic currents

in their Purkinje-cell model with their counterparts in the original mathematical

model for canine myocytes and (b) AP morphological properties, such as, dV /dtmax,

Vmax, Vplateau, APD90, and Vrest, and the restitution of the AP with experimental

results; they obtain good agreement with such experiments.

Sampson, et al. [20] have developed a mathematical model for a Purkinje-cell

by using the major membrane currents from experimental data from an isolated

canine Purkinje cell. They have also updated the kinetics of the ion channels com-

pared to earlier Purkinje-cell models [18, 19] and have studied the contribution of

ionic currents to the Purkinje action potential by suppressing, partially or com-

pletely, the corresponding channel conductances; and they have compared their

results with experimental results on Purkinje cells (in these experiments drugs

are administered to block some specific ion channels).

Li, et al. [21] have developed a mathematical model for a canine, Purkinje-cell

model by incorporating Ca2+ cycling; this part of their model differs greatly from

its counterpart in the mathematical model for a canine ventricular myocyte. With

these models, they study the properties of the action-potential-duration restitu-

tion (APDR) for both isolated Purkinje and myocyte cells and, because their model

accounts for Ca2+ dynamics in detail, they also study Ca2+ alternans.

Corrias, et al. [22] have modelled rabbit Purkinje cell with inputs from experi-

mental data; and they have studied the AP morphology for such a cell.

ten Tusscher, et al. [17] have developed a mathematical model for a Purkinje

cell by modifying their (TP06) model for a human ventricular cell [13]. In essence,

they have adjusted two conductances, namely, GNa (associated with the fast sodium

current INa) and GKs (associated with the slow delayed rectifier current IKs) in the

TP06 model to obtain a higher upstroke velocity V̇max and a longer action potential

duration (APD) than those in a ventricular myocyte cell.

One of the basic goals of developing such complex, but ionically realistic, math-

ematical models for Purkinje cells is to characterize the AP morphology, alternans,

APDR, and the ion dynamics in great detail. The results from numerical studies of

such models have been compared with experimental results to validate the models.

Once this validation has been carried out, as, e.g., in some of the studies mentioned

above [18–21], it is important to investigate the contribution of Purkinje fibers to
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electrical-impulse propagation in mathematical models for cardiac tissue, which

include both myocytes and Purkinje fibers, to enhance our understanding of ar-

rhythmias such as VT and VF (see below). Only a few groups have studied the

contibution of Purkinje fibers to the propagation of electrical signals in in vitro and

in silico studies. In these in silico studies, Purkinje fibers are modelled as a two-

dimensional (2D), network-type structure embedded in the interior of ventricular

tissue, namely, the endocardium. We give a brief overview of the results of such

studies.

Arnar, et al. [24] have studied the origin of focal electrical activities that lead to

VT, in canine cardiac tissue, by using an activation-mapping technique. They have

shown that more than 60% of the cases of such VT originate from the Purkinje-

fiber system; they have also studied the activation delay of such focal electrical

activity from the Purkinje fibers to epicardial and endocardial layers. In another

study, Arnar, et al. [25] have shown that such VT, which originates in the Purkinje-

fiber system, can be controlled by changing the electrical-activation properties via

α2-adrenoceptors in Purkinje fibers. Xing, et al. [26], have studied the propaga-

tion delay of electrical waves from Purkinje fibers to endocardial tissue, from the

endocardium to the mid-myocardium, and from the mid-myocardial to the epicar-

dial layers in in vitro, activation-mapping experiments on canine cardiac tissue.

Similar studies by Tabereaux, et al. [27] have shown that electrical activation can

appear focally in the endocardium because of autorhythmic activities in the Purk-

inje system; such focal activation in the endocardial layer may help to produce

abnormal or trigger activities, which can maintain pre-existing VF in the ventric-

ular myocardium. These studies show that the Purkinje system plays a significant

role in electrical activation and, thereby, affects VT and VF in cardic tissue.

Computational studies have also investigated the contribution of the Purkinje

network to the electrical activation in ventricular models. In particular, they have

studied the electrical-activation sequence and its propagation delay as it travels

from the Purkinje system through the ventricular layers. For example, Vigmond, et

al. [28] have studied the electrical activation in an isolated, anatomically realistic,

Purkinje network, which is based on a rabbit heart and with the network embed-

ded in a mathematical model for ventricular tissue; these authors have used the

model of DiFrancesco, et al. [16] for the Purkinje system and the modified, Beeler-

Reuter model [29] for the ventricular system. Numerical simulations have been

performed by ten Tusscher, et al. [17] of a human-ventricular model in an anatom-

ically realistic geometry and with the His-Purkinje system; they have studied the
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electrical-activation sequence here and have also investigated bundle-branch reen-

try.

Aslanidi, et al. [19] have studied the relation between the conduction velocity

(CV) and its safety factor (SF), which is the ratio of the charge generated in and the

charge consumed by a cell during its excitation, at a Purkinje-ventricular junction

(PVJ) of a domain that contains a transmural slice of ventricular tissue connected

to a thin strip of Purkinje tissue. In their computational study they have calcu-

lated CV and SF for different values of structural and functional parameters, such

as, the width d of the Purkinje tissue and its diffusion coefficient D. They have

shown that neither very fast nor very slow conduction is safe; but there is an op-

timal velocity that provides the maximum SF for conduction through the junction;

and the conduction-time delay across the PVJ is a natural consequence of the elec-

trophysiological and morphological differences between the Purkinje-fiber system

and ventricular tissue.

Bordas, et al. [30] have carried out numerical simulations of electrical activation

in ventricles, with a realistic, free-running, Purkinje-network system and the bun-

dle of His, and a rabbit-ventricular model in an anatomically detailed geometry,

obtained from a high-resolution, magnetic-resonance (MR) data set; their Purkinje

network is also obtained from such an MR data set. These authors have shown

that the inclusion of the Purkinje system results in slightly faster and more coordi-

nated activation of the ventricles than in a simple, ventricular model that neglects

the Purkinje-fiber system.

Recent studies by Cherry, et al. [31] have investigated electrical-wave propa-

gation in a two-dimensional (2D) simulation domain comprising a mathematical

model for ventricular tissue with a Purkinje system. They have used the canine

mathematical model of Hund, et al., [32] to model their ventricular tissue; to model

the Purkinje system thay have followed Aslanidi, et al. [19], for the ionic currents;

for the network they have used a digitized-reconstruction technique in conjunction

with a high-resolution photograph of a canine ventricle; they have connected their

Purkinje network to the endocardial layer at the terminating ends of the network.

Their study has shown that the inclusion of the Purkinje network can either accel-

erate reentry termination or generate wave breakup (which does not occur if the

same initial condition is used in the ventricle tissue alone).

To the best of our knowledge, hardly any computational studies have investi-

gated the effects of the Purkinje-fiber system on spiral-wave dynamics in an ion-

ically realistic mathematical model for cardiac tissue, an important exception be-

ing the recent study by Cherry et al. [31]. To make up for this lacuna, we carry
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out a systematic numerical study of spiral-wave dynamics in the human endocar-

dial model developed by ten Tusscher et al. [13], in which we include the human,

Purkinje-fiber model developed by Stewart et al. [18]; because we use both endocar-

dial (E) and Purkinje (P) cells, we refer to our mathematical model as the EP-tissue

model. We also study the efficacy of a low-amplitude control scheme, which has

been suggested for the control of spiral-wave turbulence in mathematical models

for cardiac tissue [8, 9, 33, 34], in our EP-tissue model; such low-amplitude-control

schemes have never been studied in mathematical models of cardiac tissue that

include Purkinje fibers. We begin with a brief overview of our principal results.

We first carry out systematic numerical studies on a composite, single-unit cell

that contains an endocardial cell (E cell) and a Purkinje cell (P cell); we call this

unit an EP composite. Our results show that the gap-junctional, diffusive coupling

Dgap at the PVJ in an EP composite is responsible for the slow cycle length of

autorhythimic activity of the P cell. We also observe that the APDR of an E cell in

an EP composite can be altered by changing the value of Dgap; thus, we can expect

that Dgap is an important control parameters that should govern the dynamics of

the propagating waves in cardiac tissue.

The remaining part of this paper is organized as follows. In Sec. 5.2, we describe

the formulation of our EP model, for a single, composite cell and for 2D tissue; we

also describe the numerical schemes that we use. In Sec. 5.3, we present the re-

sults of our numerical calculations of spiral-wave dynamics in our EP-tissue model;

we then describe the low-amplitude control scheme, which we have developed ear-

lier [33,34], for the elimination of spiral-wave turbulence in models for cardiac tis-

sue and examine its efficacy in our 2D EP-tissue model. In Sec. 5.4, we discuss the

results of our calculations and compare them with results from other experimental

and computational studies in this area. The Supplementary Material S1 contains

a detailed specification of the human-endocardial and Purkinje models, with a list

of all the variable we use, the equations that govern their evolution, their initial

values, and the additional figures that augment the results in the main body of this

paper.

5.2 Methods

The dynamics of E and P cells is governed by the following ordinary differential

equations (ODEs) [35,36]

Cm

∂Vm

∂t
= −Iion,m + Iext,m, (5.1)
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where m stands either for an E cell or a P cell and, for the cell m, Cm is the capac-

itance per unit surface area of the cell, Vm is the transmembrane potential, Iion,m

is the sum of all the ionic currents that cross the cell membrane, and Iext,m is the

externally applied current.

We use biophysically realistic ionic models for human endocardial and Purkinje

cells; these models have been developed recently. In particular, we use (a) the

ventricular model developed by ten Tusscher, et al. (the TP06 model) [13], and (b)

the Purkinje model developed by the Stewart, et al. [18]. The equations for these

models, including the ordinary differential equations for the ion-channel gating

variables and the ion dynamics, are given in the Supplementary Material S1.

When an EP composite is coupled, via a heterocellular coupling, at a PVJ site

with strength κ [37], the transmembrane potentials for the E and P cells obey the

following equations:

∂Ve

∂t
= −

Iion,e

Ce

− κ(Ve − Vp); (5.2)

∂Vp

∂t
= −

Iion,p

Cp

+ κ(Ve − Vp); (5.3)

here, κ =Dgap/∆z2 decides the amount of flux that flows from the Pcell to the E cell

(or vice versa) because of the coupling between E and P cells.

In our two-dimensional (2D) model, we arrange Purkinje fibers in a sheet [38]

that lies on top of a layer of endocardial cells. We allow the P cells in the top

layer to be connected to the E cells in the bottom layer at some, but not neces-

sarily all, sites; at these sites, we have EP composites that follow Eqs. (5.2) and

(5.3) [38,39]; the cells in each layer are coupled diffusively, with diffusion constants

Dmm and Dpp for the endocardial and Purkinje layers, respectively. The motivation

for developing such bilayer 2D model comes from Refs. [24–26], which study the

electrical-activation delay from Purkinje fibers to the epicardial surface in in vitro

experiments by using an activation-mapping technique; by doing so, these studies

construct the electrical-activation pattern of Purkinje, endocardial, and epicardial

layers. Our 2D, bilayer, EP-tissue model can be thought of as a very simple approx-

imation for endocardial tissue with Purkinje fibers embedded on its surface.

The transmembrane potentials Ve and Vp of E and P cells, respectively, for such

a 2D bilayer simulation domain can be modelled by the following discrete-reaction-

diffusion equations:
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⎡⎢⎢⎢⎢⎣
∂tVe(i, j)
∂tVp(i, j)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
1 0

0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
−Iion,e(i,j)

Ce
−Iion,p(i,j)

Cp

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
Dgap 0

0 Dgap

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Vp(i,j)−Ve(i,j)
(∆z)2

Ve(i,j)−Vp(i,j)
(∆z)2

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
Dee 0

0 Dpp

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Ve(i+1,j)−2Ve(i,j)+Ve(i−1,j)
(∆x)2 +

Ve(i,j+1)−2Ve(i,j)+Ve(i,j−1)
(∆y)2

Vp(i+1,j)−2Vp(i,j)+Vp(i−1,j)
(∆x)2 +

Vp(i,j+1)−2Vp(i,j)+Vp(i,j−1)
(∆y)2

⎤⎥⎥⎥⎥⎦ ;
(5.4)

hereDee andDpp represent, respectively, diffusion constants in the endocardial and

Purkinje layers.

We use a 2D square domain consisting of two layers with 1024 × 1024 grid points

and lattice spacing ∆x = ∆y = 0.25 mm, so the side of each square domain is L =
256 mm; one of these layers contains endocardial cells and the other Purkinje cells.

These two layers are separated by a distance ∆z = 0.25 mm. We use a forward-

Euler method for the time evolution of the transmembrane potentials with a time

step ∆t = 0.02 ms. We use no-flux (Neumann) boundary conditions on the edges of

the simulation domain.

To examine the spatiotemporal evolution of the transmembrane potentials, we

obtain the local time series of Vm(x, y, t), from the representative point (x = 125 mm,

y = 125 mm) that is shown by an asterisk in all pseudocolor plots of Vm; here the

subscript m can be e (endocardial case) or p (Purkinje case), as we have mentioned

above. To obtain the plots of the inter-beat interval ibi, we use this local time series

with 4×105 data points after removing the initial 0.4×105 data points; for the power

spectra E(ω) we use the local time series of Vm with 2×105 data points, after the ini-

tial 2.4 × 105 data points have been removed to eliminate transients. Furthermore,

we show animations of pseudocolor plots of transmembrane potentials as videos,

which have 10 frames per second and in which each pseudocolor plot is separated

from its predecessor by 8 ms.

5.3 Results

We carry out a set of simulations by examining the properties of the AP of an EP

composite with the E and P cells coupled via Dgap, as described in Sec. 5.2. We

perform simulations by varying Dgap in the range 0 ≤Dgap ≤Dmm; we do not include

values of Dgap that exceed the value of Dmm because the heterocellular, myocyte-

Purkinje coupling is always lower than its homocellular counterparts (i.e., myocyte-

myocyte and Purkinje-Purkinje diffusive couplings); therefore, the heterocellular,
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Parameter GNa Gkr Gks GpCa GpK σf

sets (nS/pF ) (nS/pF ) (nS/pF ) (nS/pF ) (nS/pF )
P1 14.838 0.153 0.392 0.1238 0.0146 1

P2 5×14.838 0.153 0.392 0.1238 0.0146 1

P3 14.838 0.172 0.441 0.8666 0.00219 2

Table 5.1: Parameter sets P1, P2, and P3 for an endocardial (E) cell in our model; here, σf is the

scale factor of the time constant τf (see Appendix).

diffusion coefficient Dgap is lower than Dmm; in particular, Ref. [40] uses a value for

Dgap that is about 6% of the homocellular coupling.

In our studies, we vary the time constant for the f gate, τf (see Appendix)

and the four ionic conductances [13] for the E cell; these are (a) GKr, related to

rapid-delayed-rectifier-current of K+, namely, IKr, (b) GKs, related to slow-delayed-

rectifier-current of K+, namely, IKs, (c) GpCa for the plateau Ca++ current, IpCa, and

(d) GpK for the plateau K+ current, IpK , to get the parameter sets P1, P2, and P3,
which lead, respectively, to states with a rotating-spiral (RS) or broken spirals with

spiral turbulence (ST) in the two-dimensional (2D) endocardial, simulation domain

(see, Sec. 5.3.2); we list these parameters in Table. 5.1.

5.3.1 An EP composite

Purkinje cells can display autorhythmicity [1, 41] when the sinoatrial node (SAN)

fails to fire action potentials; occasionally, premature impulses can be transmitted
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Figure 5.1: Autorhythmic activity of an isolated Purkinje cell and an EP composite with Dgap =
Dmm/900. (a) Plots of the Purkinje action potential Vp for an isolated Purkinje cell (blue, solid lines)

and an EP composite (red, dashed lines); (b) the inter-beat interval (ibi) versus the beat number n

(see Methods for the length of the time series) for an isolated Purkinje cell (blue, filled circles) and

an EP composite (red, open diamonds); (c) power spectra E(ω) versus the frequency ω (see Methods)

an isolated Purkinje cell (blue, filled circles) and an EP composite (red, open diamonds).
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to the ventricles by Purkinje fibers if a conduction delay occurs in the atrioventric-

ular node (AVN). A Purkinje cell has a longer action potential duration (APD) than

a myocyte and it can fire an AP with between 15 − 40 beats per minute. Therefore,

we have carried out simulations to examine how the autorhythmic activity of a P

cell changes, in our EP composite (Eqs. (5.2) and (5.3)), as a function of Dgap. Fig-

ure 5.1(a) shows plots of the transmembrane potential Vp for an isolated Purkinje

cell (blue solid lines) and an EP composite (red dashed lines), with Dgap =Dmm/900,
in the time interval 32 ≤ t ≤ 40 s; the corresponding plots of the interval-beat inter-

vals (ibi), calculated with time series data of length 2×106, versus the beat number

n are shown in Fig. 5.1(b); Fig. 5.1(c) shows plots of the power spectra E(ω) ver-
sus the frequency ω (obtained from time-series of Vp of length 106 after removing

the initial 106 data points). We find that an isolated Purkinje cell fires APs with

a cycle length CL ≃ 1.3 s and with APD90% ≃ 324 ms (here, APD90% is the time at

which the AP attains 90% of its final repolarization value); in contrast, CL ≃ 2.1 s

and APD90% ≃ 331 ms for an EP composite with Dgap = Dmm/900; in both these

cases APD90% is greater than that for an isolated endocardial cell (for which it is

≃ 304 ms [17, 42]). We do not calculate the APD and CL of an EP composite by

pacing the Purkinje cell externally; such external pulses, with a certain cycle, arise

because of the pacemaker activities of the SAN. Therefore, the autorhythmic activ-

ity of a P cell is completely suppressed by the SAN pacemaker activities, and the

P cell in an EP composite fires a train of APs with the same cycle length as those

from the SAN. Hence, the autorhythmic cycle of an EP composite, when paced ex-

ternally, is independent of Dgap.

In our first set of simulations, we excite (a) an endocardial cell, (b) a Purkinje

cell, and (c) both cells in an EP composite by applying a current pulse of strength

52 pA/pF for 3 ms; we then observe the AP for these three cases. We also compute

the flux that flows from the E to the P cell during the course of an AP. These

simulations help us to understand the basic mechanism of the propagation delay

of electrical waves as they travel from the Purkinje fibers to the endocardium and

vice-versa, which we have described briefly in Sec. 5.1. We show the results of

our simulations for an EP composite for two representative values of Dgap, namely,

Dgap =Dmm/10 and Dgap =Dmm/100. Figure 5.2(a) shows plots of the Purkinje action

potential Vp (full symbols and solid lines) and the endocardial action potential Ve

(open symbols and dashed lines), when an external stimulus is applied to both cells;

here, blue squares and red triangles represent Dgap = Dmm/10 and Dgap = Dmm/100,
respectively; and black circles show the plot for an uncoupled endocardial cell. In

Fig. 5.2(b) we show plots similar to those in Fig. 5.2(a), but with the stimulus
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Figure 5.2: Action potentials for E and P cells coupled diffusively via the heterocellular gap-

junctional coupling Dgap: (a) Plots of the action potentials Vp (full symbols and solid lines) and

Ve (open symbols and dashed lines), when a stimulus of strength 52 pA/pF is applied, for 3 ms, to

both cells in our EP composite with Dgap = Dmm/10 (blue squares), Dgap = Dmm/100 (red triangles),

and uncoupled cells, i.e., Dgap = 0 (black circles). (b) Plots as in (a), but with a stimulus applied to

the E cell only. (c) Plots as in (a), but with a stimulus applied to the P cell only. (d) Plots of the rate

of change of potential, κ(Ve − Vp), versus t, with parameters and symbols as in (a). (e) and (f): Plots

as in (d), but with parameters as in (b) and (c), respectively.

applied only to the endocardial cell in an EP composite; analogous plots are shown

in Fig. 5.2(c), but with the stimulus applied only to the Purkinje cell in an EP

composite. In Figs. 5.2(d), (e), and (f) we show the rate of change of the potential,

i.e., κ(Ve − Vp), between E and P cells; we see spikes in the downward direction

in the depolarization phase of the AP, when the stimulus is applied to both cells

(Fig. 5.2(d)) and P cells only (Fig. 5.2(f)); this implies that the flow of flux from the

P cell to the E cell occurs in this early phase of depolarization, i.e., the P cell acts

as a stimulation-current source for the E cell. If, instead, we apply a stimulus to

the E cell in an EP composite, we see spikes in both directions in the depolarization

phase of the AP (Fig. 5.2(e)); this ensures that the flux is in both directions, i.e., a

P cell can behave both as a source and a sink.

The restitution of the action potential duration (APD) plays an important role

in the stability of spiral waves in mathematical models for cardiac tissue [44–

48]. It has been postulated that a steep, increasing, initial segment in the action-

potential-duration-restitution (APDR) curve, a plot of the APD versus the diastolic
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Figure 5.3: Action potential duration restitution (APDR) of an endocardial (E) cell with different

sets of parameters (see text). The plots in (a), (b), and (c) show the APDR for an isolated E cell

for parameter sets P1, P2, and P3 (see Table. 5.1), respectively. The plots in (d), (e), and (f) are,

respectively, the analogs of (a), (b), and (c) for our EP composite with Dgap = Dmm/10; and their

counterparts, for Dgap = Dmm/100 are shown, respectively, in (g), (h), and (i). We find the slopes

of the APDR curve by fitting the initial 20 data points, in such APDR plots, with straight lines, as

shown, e.g., in (a), (b), and (c), where the slopes of the APDR are ≃ 1.1, ≃ 1.1, and ≃ 2.0.

interval (DI), leads to a spiral-wave instability. Therefore, we carry out a set of

simulations to obtain such a plot for an isolated E cell and an EP composite. In

Figs. 5.3(a), (b), and (c), we show, respectively, the static APDR of an endocardial

cell for parameter sets P1, P2, and P3 (Table. 5.1); we apply a series of 50 S1 pulses,

of basic cycle length (BCL) 300 ms and strength 1500 pA/pF, before we apply the fi-

nal S2 pulse, for which we keep BCL in the range 20 ms to 500 ms. We calculate

the slopes of the APDR curves by fitting straight lines to the initial 20 data points

(see red straight lines in Figs. 5.3(a), (b), and (c)); these slopes are ≃ 1.1, ≃ 1.1, and
≃ 2.0 for parameter sets P1, P2, and P3, respectively, for an isolated E cell. In
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Figs. 5.3(d), (e), and (f), we show similar plots for a P cell coupled to an E cell in an

EP composite with Dgap = Dmm/10; analogous plots are shown in Figs. 5.3(g), (h),

and (i), for Dgap = Dmm/100. Note that, for the EP composite with Dgap = Dmm/10,
the APDR slope decreases, relative to its value for an isolated E cell, for parameter

sets P1 and P2, and first increases (for 50 ≤ DI ≤ 100 ms) and then decreases for

the parameter set P3 ; However, when Dgap = Dmm/100, the variation of APD as

function of DI, for an EP comppsite, shows biphasic behavior for all these three

parameter sets.

5.3.2 Wave dynamics in a 2D simulation domain

We begin with our investigations of wave dynamics in individual layers of E and

P cells and then study wave propagation in both cable-type and 2D, bilayer, EP

domains, in which E cells in a layer are connected to P cells in the adjoining layer,

as we have described in Sec. 5.2. We use the following two representative values

of diffusive gap-junctional couplings: (a) Dgap = Dmm/10 and (b) Dgap = Dmm/100,
where Dmm = 0.00154 cm2/ms. Wave dynamics in a 2D bilayer, whose EP compos-

ites are coupled with values that lie in the range Dmm/100 ≤ Dgap ≤ Dmm/10, are
qualitatively similar to those for one of the above specified Dgap values. We al-

low for connections between E and P cells in an EP composite bilayer at various,

periodically-spaced points in our simulation domain; these points are the analogs

of Purkinje-ventricular junctions (PVJs) in our mathematical model. We now study

the dependence of spiral-wave dynamics in our EP composite bilayer as a function

of the density of PVJs; we use the following values for R, the ratio of the total num-

ber of sites to the number of PVJs in our simulation domain: (a) R = 1, (b) R = 2, (c)
R = 4, (d) R = 8, (e) R = 16, and (f) R = 32.

Plane waves in a cable

To study plane-wave propagation we use a cable-type domain, which is a thin do-

main, consisting of 4096 × 64 grid points (gpts), with spacing ∆x = 0.25 mm, i.e.,

edge lengths Lx = 1024 mm and Ly = 16 mm. We use the parameter sets P1, P2,
and P3 (Table 5.1) for the endocardial cable layer. Reference [43] suggests that the

conduction velocity CV for a Purkinje-fiber network lies in the range 200−300 cm/s;

therefore, we adjust the value ofDpp, the diffusive, gap-junctional coupling between

P cells, to obtain CV in this range (see below). To initiate a plane wave, we apply

a stimulus current Istim = 150 pA/pF for 3 ms at the left end of the cable. We then

measure CV and the wave length λ, in this cable-type domain, by recording the

positions of the wave front at times t and t+δt and by using CV = δx/δt, where δx is
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the distance travelled by the wave front in the time interval δt. We locate the po-

sition of the wave front by finding the value of x at which Vm ≃ 0 mV; we define the

position of the wave back as the point, behind the wave front, at which a secondary

action potential can just be initiated by an additional stimulus (this turns out to

occur at a value of Vm ≃ 75% of the repolarization phase of the AP). We obtain λ by

measuring the distance between the wave front and the wave back at time t.

In Figs. S1(a)-(f) in the Supplementary Material S1, we show pseudocolor plots

of the transmembrane potential Vm at time t = 400 ms in our cable-type domain for

(a) E cells with the parameter set P1, (b) E cells with the parameter set P2, (c) E
cells with the parameter set P3, (d) P cells with Dpp = Dmm, (e) P cells with Dpp =
2×Dmm, and (f) P cells withDpp = 3×Dmm. These plots show that the parameter sets

P1, P2, and P3 yield CV ≃ 71 cm/s and λ ≃ 216 mm, CV ≃ 103 cm/s and λ ≃ 315 mm,

and CV ≃ 71 cm/s and λ ≃ 216 mm, respectively, for the case of E cells. For P

cells we require Dpp = 3 × Dmm to obtain a biophysically reasonable value of CV

for the Purkinje cable; in particular, we obtain CV ≃ 210 cm/s and λ ≃ 580 mm for

Dpp = 3 ×Dmm; therefore, we choose Dpp = 3 ×Dmm to study wave dynamics in 2D

layers of EP composites, in all the calculations that follow. The Video S1 has six

animations that show the spatiotemporal evolution of the plane waves depicted in

Figs. S1(a)-(f).

We now couple two layers of cable-type domains, with E cells in one layer and P

cells in the other, at PVJ sites and examine the dependence, of plane-wave propa-

gation, on R. In Figs. 5.4, we show the evolution of the transmembrane potential,

in both endocardial and Purkinje layers, with Dgap =Dmm/10 and the parameter set

P1; we apply the stimulus current (see section on Methods) to the left end of the

endocardial simulation domain. Figures 5.4(e1), (e2), (e3), (e4), and (e5) are, re-

spectively, the pseudocolor plots of Ve at time t = 400 ms for R = 1, 2, 4, 8, and 16; the

corresponding plots for Vp are shown, respectively, in Figs. 5.4(p1), (p2), (p3), (p4),

and (p5); the Video S2 has ten animations that show the spatiotemporal evolutions

of Ve and Vp for these cases. The presence of Dgap at the PVJ within such range

of values provides an idealised realization of a Purkinje sheet, albeit one with a

regular network. Note that CV = 202 cm/s and λ = 615 mm, in both E and P layers,

if R = 1; these are close to the values of CV and λ in an isolated P layer; if R = 2,
there is a slight increase of λ and a decrease of CV . ForR = 1 andR = 2, plane-wave

dynamics in the E layer follows that in the P layer. However, if R = 4, 8, and 16,

the values of CV and λ in the E layer (in the EP bilayer) are roughly equal to their

values in an uncoupled E layer; however, conduction delay occurs in the P layer,

and multiple plane waves are initiated after the P layer recovers because of the



5.3. Results 250

Figure 5.4: Plane-wave propagation in a cable-type, EP-bilayer domain: Pseudocolor plots of Ve

((e1)-(e5)) and Vp ((p1)-(p5)), at t = 400 ms in a thin, cable-type EP-bilayer domain (see text), whose

dimension is Lx = 1024 mm and Ly = 16 mm, with the P1 parameter set for the E-cell layer, Dgap =
Dmm/10, Dpp = 3 ×Dmm for the P-cell layer, and R = 1 ((e1),(p1)), R = 2 ((e2),(p2)), R = 4 ((e3),(p3)),

R = 8 ((e4),(p4)), and R = 16 ((e5),(p5)). The Video S2 illustrates the spatiotemporal evolution of

these plane waves.

flow of flux from the plane-wave front, in the E layer, to the P layer via the PVJs

(see Figs. 5.4 and the animations in Video S2). This mismatch of the CV in E-cell

and P-cell layers and multiple plane waves in the P-cell layer may cause reentrant

activity in 2D simulation domains, as suggested in Refs. [17, 19, 27, 28]; we dis-

cuss this below. Similar results follow for plane-wave dynamics for parameter sets

P2 and P3, with EP composites coupled diffusively, Dgap = Dmm/10, and the values

of R given above (see Videos S3 and S4 for the spatiotemporal evolution of plane

waves for parameter sets P2 and P3, respectively). The Videos S5, S6, and S7 have

ten animations that show the spatiotemporal evolutions of the waves for the pa-

rameter sets P2, P2, and P3 when EP composite are coupled with Dgap = Dmm/100
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Figure 5.5: Initiation of spiral waves, in a 2D simulation domain consisting of endocardial cells,

by using the S1-S2 cross-field protocal. An S2 pulse is applied at time t = 0.482 s for all three

parameter sets to initiate spirals (see text for details). (a), (b), (c), and (d) show pseudocolor plots

of Ve at times t = 0.48, 0.56, 4.8, and 8.8 s, respectively, for the parameter set P1; their analogs, for

the parameter sets P2 and P3 are given, respectively, in (e)-(h) and (i)-(l). The animations (a), (b)

and (c) in Video S8 illustrate the spatiotemporal evolution of these spiral waves. To examine the

spatiotemporal evolution of Ve, we record the local time series of Ve(x, y, t), from the representative

point (x = 125 mm, y = 125 mm) that is shown by an asterisk in plots (d), (h), and (l).

and R = 1, 2, 4, 8, and 16; plane-wave dynamics here are similar to these we have

obtained above for Dgap =Dmm/10.
Spiral waves in a 2D domain

We use a slightly modified version of the standard S1-S2 cross-field protocol [49] to

initiate a spiral wave in a square simulation domain of side L = 256 mm. In this

protocol, we apply an S1 stimulus at the left boundary of the domain for a certain

interval of time; this initiates a plane wave in the domain. We then apply an S2

stimulus, of the same strength and duration as the S1 stimulus, to the bottom

half of the simulation domain; this produces a spiral wave in the medium. We

initiate spiral waves in the endocardial, Purkinje, and EP-composite domains by

using such S1 and S2 stimuli with strengths 150 pA/pF for 3 ms; we apply the S2

stimulus over the region 0 mm ≤ y ≤ 125 mm.
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In Fig. 5.5 we show the initiation of spiral waves in our simulation domain via

pseudocolor plots of the endocardial transmembrane potential Ve for a 2D, E layer

when an S2 stimulus is applied at time t = 482 ms; Figures 5.5 (a), (b), (c), and (d)

show Ve at times t = 480, 560, 4800, and 8800 ms, respectively, for the parameter set

P1. The exact analogs of the pseudocolor plots of Ve in Figs. 5.5(a)-(d) for param-

eter sets P2 and P3 are given, respectively, in Figs. 5.5(e)-(h) and Figs. 5.5(i)-(l).

The animations (a), (b), and (c) in Video S8 show the time evolution of these spiral

waves for the time interval 0 ≤ t ≤ 8.8 s and the parameter sets P1, P2, and P3,
respectively. To check the spatiotemporal evolution of the transmembrane poten-

tial, we examine the local time series of Ve(x, y, t), the inter beat interval (ibi), and

the power spectra E(ω). In Figs. 5.6 (a)-(c) we show these time series; Figures 5.6

(e), (f), and (g) show plots of ibi; in Figs. 5.6 (h), (i), and (j) we show plots of the

power spectra E(ω), which we have obtained from the local time series of Vm. For

the parameter set P1, the plots of Ve in Figs. 5.5(c) and (d), and the animation (a) in

Video S8, show a single, rotating spiral (RS); the periodic nature of the time series

(Fig. 5.6 (a)), the flattening of the ibi (Fig. 5.6 (e)) after the initial 10 beats, and the

discrete, strong peaks in E(ω) (Fig. 5.6 (h)), provide additional evidence for the pe-

riodic motion of this spiral wave, whose average rotation period τrot ≃ 210 ms can be

estimated from the ibi plot in Fig. 5.6 (e). The power spectrum shows a peak at the

fundamental frequency ωf = 4.75 Hz and its harmonics; not surprisingly, τrot ≃ 1/ωf .

For the parameter set P2, the plots of Ve in Figs. 5.5 (g) and (h) and the animation

(b) in Video S8 exhibit single, meandering, spiral turbulence (SMST), in which the

spiral arms and core evolve chaotically in space and time; the resulting irregular

time series of Ve (Fig. 5.6(b)), the oscillations in the plot of the ibi (Fig. 5.6(f)), and

the development of subsidiary peaks in E(ω) (Fig. 5.6(i)), confirm that the temporal

evolution of the SMST state is chaotic. For the parameter set P3, the plots of Ve in

Figs. 5.5(k) and (l) and the animation (c) in Video S8 display a state with multiple-

spiral turbulence (MST), which leads to an irregular time series for Ve (Fig. 5.6 (c)),

a plot of the ibi (Fig. 5.6(g)) that shows irregular oscillations, and a broad-band

power spectrum (Fig. 5.6(j)).

In Figs. 5.7(a)-(d) we show pseudocolor plots of the transmembrane potential of

the Purkinje layer Vp at the times t = 360, 440, 4800, and 8800 ms, for the diffusive

coupling, Dpp = 3 ×Dmm; we apply an S2 stimulus at t = 360 ms to initiate spiral

wave. The animation (d) in Video S8 shows the spatiotemporal evolution of this

spiral wave in the time interval 0 ≤ t ≤ 8.8 s; from this animation we see that we

have an RS state in the P-cell layer. We also record the time series for Vp from

the representative point shown by an asterisk in Fig. 5.7(d); in Fig. 5.7(e) we show
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Figure 5.6: Plots of the local time series, inter-beat-interval (ibi), and power spectra E(ω) for an

isolated E-cell layer with the parameter sets P1, P2, and P3. The plots in (a), (b), and (c) show

the time series obtained at the position (x = 125 mm, y = 125 mm), shown by asterisks in Figs. 5.5

(d), (h), and (l), for the parameter sets P1, P2, and P3, respectively. The plots in (d)-(f) and (g)-(i)

show, respectively, the ibi and powerspectra calculated by using the above time series (see Methods

for the length of time series). The periodic time series (plot (a)), the flattening ibi (plot (d)), after

the initial 10 beats, with an average rotation period τrot ≃ 210 ms, and the discrete, strong peaks

in E(ω) at 4.75 Hz and its harmonics (plot (g)), provide additional evidence for the existence of an

RS for the parameter set P1 (see Figs. 5.5(a)-(d) and the animation (a) in Video S8). The irregular

time series (plot (b)), the oscillating ibi (plot (f)), and the development of subsidiary peaks in E(ω)
(plot (i)), confirm that the temporal evolution of the state here is quite chaotic; the pseudocolor

plots in Figs. 5.5(e)-(h) and the animation (b) in Video S8 show the existence of single, meandering,

spiral turbulence (SMST), in which the spiral arms and core evolve chaotically in space and time.

An irregular time series (plot (c)), the irregular oscillations in ibi (plot (g)), and a broad-band E(ω)
show the existence of multiple-spiral turbulence (MST) for the parameter set P3 (see Figs. 5.5(i)-(l)

and the animation (c) in Video S8).
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Figure 5.7: Initiation of spiral waves in a 2D simulation domain of Purkinje cells by using S1-S2

cross-field protocal. An S2 pulse is applied at time t = 0.360 s to initiate spirals (see text). The

plots (a), (b), (c), and (d) show the pseudocolor plots of Vp at times t = 0.36, 0.44, 4.8, and 8.8 s,

respectively, for the diffusive coupling Dpp = 3 × Dmm. The animation (d) in Video S8 shows the

spatiotemporal evolution of this spiral wave. (e) Plot of the local time series recorded at position

(x = 125 mm, y = 125 mm) shown by an asterisk in (d); the plots in (f) and (g) show the ibi and

E(ω) calculated using above time series (see Methods for the length of time series). The periodic

time series, and power spectra with discrete peaks with fundamental frequency (ω0 ≃ 2.75 Hz), are

signatures of the existence of a periodic rotating spiral; however, the ibi displays a slight upward

trend; this implies that, although the temporal evolution is nearly periodic, there is a slight drift,

towards lower frequencies, in the rotation rate of the dominant spiral.

this time series for 4.8 ≤ t ≤ 8.8 s. Figure 5.7 (f) displays a plot of the ibi versus n,

which shows that, after initial transients that last for the first 5 beats, the spiral

wave rotates almost periodically with an average rotation period τrot ≃ 360 ms.

Furthermore, we see that the ibi displays a slight upward trend; this implies that,

although the temporal evolution is nearly periodic, there is a slight drift, towards

lower frequencies, in the rotation rate of the dominant spiral. In Fig. 5.7 (f) we
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Figure 5.8: Spiral-wave dynamics in our EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 1 (see Table 5.2); (a)-(c) show

pseudocolor plots of Ve; (d)-(e) show psuedocolor plots of Vp; the animations in the top-left panel of

Video S9 (labelled by R = 1) illustrate the spatiotemporal evolution of these spiral waves. The local

time series data, for the transmembrane potential Ve and Vp, are recorded from the representative

points (x = 125 mm, y = 125 mm) of both E- and P- layers (the asterisks in (c) and (f)). (g) Plot

of the time series for Ve (blue, solid line) and Vp (red, dashed line); (h) plot of inter-beat interval

(ibi) versus the beat number n associated with the E-layer (blue, open circles) and P-layer (filled,

red squares); (i) plot of the power spectra E(ω) versus the frequency ω for the E-layer (blue, open

circles) and P-layer (filled, red squares).

show the power spectrum E(ω) that we have obtained from the local time series

of Vp; E(ω) has discrete peaks at the fundamental frequency ωf = 2.75 Hz and its

harmonics; not surprisingly, ωf ≃ 1/τrot.
We now carry out a set of simulations to study the spatiotemporal evolutions of

spiral waves, for the parameter sets P1, P2, and P3, when an E-cell layer is coupled

with a P-cell layer withDgap andR in the ranges mentioned above. We obtain spiral

waves in our EP-composite, 2D bilayer by using the S1-S2 protocol (see Methods)

in (a) the E-cell layer, (b) the P-cell layer, or (c) both these layers. The motivation
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for this set of simulations comes from the studies in Refs. ??, which study (a) the

propagation of electrical signals from the Purkinje system to the endocardium and

vice-versa and (b) the propagation delay of these signals under the influence of the

SAN system.

In Figs. 5.8(a)-(c), we show, respectively, pseudocolor plots of Ve in the E-cell

layer at times t = 0.44, 4.8, and 8.8 s for the parameter set P1 with Dgap = Dmm/10
and R = 1; similar plots are shown in Figs. 5.8(d)-(f) for Vp in the P-cell layer; here,

with the S2 stimulus is applied at t = 360 ms to the E-cell layer to initiate spiral

waves in the EP bilayer; the complete spatiotemporal evolutions of Ve and Vp, given

in the first two boxes on the left of the top panel of Video S9, show that the spiral

waves in these two layers are very similar and rotate in phase. We record the

local time series for Ve and Vp from the representative points, in both E- and P-

cell layers, marked by asterisks in Figs. 5.8(c) and 5.8(f); in Fig. 5.8(g), we show

these time series for Ve (blue, solid line) and Vp (red, dashed line), which lead to the

plots of the ibi versus n shown by blue, open circles (E-cell layer) filled, red squares

(P-cell layer) in Fig. 5.8(h); after the initial transients decay, the ibi plots show

that the spirals in both layers rotate periodically with an average rotation period

τrot = 235 ms, which is consistent with the inverse of the frequency ωf ≃ 4 Hz that

follows from the power spectra of Figure 5.8(i). Three features are worth noting

here: (a) the time series of Ve and Vp (Fig. 5.8(g)) display autorhythmicity, insofar

as they show a train of APs that are in phase in the two layers; (b) the plot of the

ibi (Figs. 5.8(h)) shows an upward trend, which indicates that the rotation period of

the spiral waves increases slowly with time; and (c) τrot in our EP bilayer assumes

an average value that is close to its value in a pure E-cell layer (cf. Fig. 5.6(e)) and

considerably smaller than in a pure P-cell layer.

Plots similar to those in Figs. 5.8 are shown in the Supplementary Material in

Figs. S2 and S3 for R = 2 and R = 4, respectively, with the S2 stimuli applied at

t = 400 ms and 480 ms to the E-cell layer to initiate spiral waves in the EP bilayer.

The complete spatiotemporal evolution of Vm for these cases is shown in the left

part of the middle panel, labelled R = 2, left part of the bottom panel, labelled

R = 4, of Video S9. Spiral-wave dynamics, with R = 2 and R = 4, is qualitatively

similar to that in the case R = 1 as far as the existence of the RS state is concerned

(see above). However, by comparing the animations, which are labelledR = 1,R = 2,
and R = 4 in Video S9, we see that the width of the spiral-wave arms decreases as

R increases and the rate of rotation of the spiral wave increases; moreover, the

premature spiral-wave, which tries to form near the main spiral core for R = 1

and rotates in a sense opposite to that of the principal spiral wave, is suppressed
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Figure 5.9: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 8 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. 5.8(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the top-right panel of Video S9 (labelled R = 8) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.

as R increases. Therefore, plots of the ibi versus the beat number n flatten with

increasing R (see Fig. S3(h) in the Supplementary Material).

In Fig. 5.9 we show the counterpart of Fig. 5.8 for R = 8, where we initiate

the spiral wave by applying an S2 stimulus at t = 480 ms to the E-cell layer. The

resulting spatiotemporal evolution of Ve and Vp shown, respectively, in Figs. 5.9(a)-

(c) and (d)-(f) and in the top-right panel (labelled R = 8) of Video S9, illustrate that,

for R = 8, spatiotemporal evolutions of Ve and Vp are not strongly correlated with

each other, as they are when 1 ≤ R ≤ 4. Note the spiral-wave breakup occurs far

away from the spiral core in the E-cell layer; this is because of the activation of

waves in the P-cell layer that causes slow conduction block for the E-cell layer. We

record the local time series for Ve and Vp from the representative points, in both E-
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and P-cell layers, marked by asterisks in Figs. 5.9(c) and 5.9(f); in Fig. 5.9(g), we

show these time series for Ve (blue, solid line) and Vp (red, dashed line), which lead

to the plots of the ibi versus n shown by blue, open circles (E-cell layer) filled, red

squares (P-cell layer) in Fig. 5.9(h); in Fig. 5.9(i) we show plot of E(ω) for E- and P-

cell layers represented by blue open circles, and filled red squares, respectively. The

local time series plot of Ve and its corresponding ibi and E(ω) confirm that spiral-

wave activation in the E-cell layer is not in the form of a periodically rotating

spiral. Furthermore, the non-periodic oscillating behavior, associated with focal-

wave activations in the P-cell layer, which can be confirmed from the local time

series of Vp and the corresponding plots of the ibi and E(ω), arises because the

reflection of a non-periodic, rotating spiral in the E-layer.

The plots shown in Figs. S4 and S5 in the Supplementary Material are the exact

analogs of Fig. 5.9 for R = 16 and R = 32, respectively. The complete spatiotemporal

evolution of Vm for these cases is shown in the right part of the middle panel,

labelled R = 16, and the right part of the bottom panel, labelled R = 32, of Video

S9. The spiral-wave dynamics for R = 16 and R = 32 are qualitatively similar to

R = 8. However, spiral-wave breakup does not occur at all in the E-cell layer (see

R = 16 and R = 32 in Video S9). From the time series of Ve (thick blue line in plots

of Figs. S4(g) and S5(g)), the ibi (open blue circles in plots of Figs. S4(h) and S5(h)),

and the power spectra (blue open circles in Figs. S4(i) and S5(i)) give the additional

evidence for a stable RS in the E layer of the EP-bilayer; the P-cell layer shows

autorhythmic excitations, which can be confirmed from the time series (red dashed

line in Figs. S4(g) and S5(g)), the ibi (red filled squares in Figs. S4(h) and S5(h)),

and the power spectra (red filled squares in Figs. S4(i) and S5(i)); the above time

series, ibi, and power spectra for the P-cell layer of the EP-bilayer show that such

autorhythmic activities rate decrease as R decreases.

We now investigate spiral-wave dynamics in the EP-bilayer for the parameter

set P2 when an E-cell layer is coupled with a P-cell layer with Dgap and R in the

ranges mentioned above; here, we obtain spiral waves in our EP-composite, 2D

bilayer by using the S1-S2 protocol in the E-cell layer. Our results for the parame-

ter set P2 are qualitatively similar to those for P1 with two important excitations:

With the parameter set P2 our EP-bilayer domain also exhibits spiral-absorption

(SA) and single-meandering-spiral-turbulence (SMST) states. We present below

the principal results very briefly.

For the parameter set P2 and with R = 1 and R = 2, we observe an RS state

in both E- and P-cell layers of our EP-composite bilayer. In Fig. 5.10 we show the

exact analogs of Fig. 5.8 for R = 1, where we initiate the spiral wave by applying
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Figure 5.10: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 1 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. 5.8(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the top-left panel of Video S10 (labelled R = 1) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.

an S2 stimulus at t = 480 ms to the E-cell layer; the animation in the top-left panel

(labelled R = 1) of Video S10, illustrates, for R = 1, the spatiotemporal evolutions of

Ve and Vp; analogs plots and animations are shown in Fig. S6 in the Supplemental

Material S1 and the animation in the top-middle panel (labelled R = 2) of Video

S10, respectively, for R = 2.
In Figs. 5.11(a)-(c) and (d)-(f), respectively, the pseudocolor plots of Vm for the

E- and P-layers of our EP-bilayer for P2 and R = 4, we show SA, in both E- and

P-layers of EP-bilayer, which occurs because of the absorption of a spiral wave at

the boundary (see animation in the bottom-left panel (labelled R = 4) of Video S10).

Plots similar to Figs 5.10, for P2 with R = 8, are shown in Figs. S7 in the Sup-

plementary Material S1; the animation labelled by R = 8 in the top-right panel of
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Figure 5.11: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 4 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. 5.8(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the bottom-left panel of Video S10 (labelled R = 4) illustrate the spatiotemporal

evolution of these spiral waves.

Video S10 show the spatiotemporal evolution of Vm; these illustate the SMST state

in the E-layer; the P-layer produces non-periodic focal waves because of SMST

state in E-layer of EP-bilayer.

The analogs of the plots in Fig. 5.10, for P2 with R = 16, are shown in Fig. 5.12;

and the animation labelled by R = 16 in the middle-right panel of Video S10 shows

the spatiotemporal evolution of Vm; these show that we have an SMST state in the

E-layer, whereas the P-layer produces periodic focal waves, i.e., autorhythmicity.

Such autorhythmic behaviors in the P-layer arises because of the low interaction

between EP-composites in the EP-bilayer; we obtain similar results for P2 and

R = 32 (see Fig. S8 in the Supplementary Material S1 and the animation labelled

by R = 32 in the bottom-right panel of Video S10).

We turn now to spiral-wave dynamics in the EP-bilayer for the parameter set P3
and various ranges of R (see Sec. 5.2); in all these cases, we initiate spiral waves,

in our EP-composite, 2D bilayer, by using the S1-S2 protocol in the E-cell layer.

Our results for the parameter set P3 are qualitatively similar to those for either

P1 or P3. However, we find that the MST state, which we obtain for an isolated

E-layer with parameter set P3, can lead to a transition to (a) an SMST state, (b) an
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Figure 5.12: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/10, and R = 16 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. 5.8(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the middle-right panel of Video S10 (labelledR = 16) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.

RS state, and (c) an SA state depending on the value of R; in some cases, the state

remain same in the MST state. We present below our principal results very briefly.

For the parameter set P3 and R = 1, we observe an SMST state in both E- and

P-cell layers of our EP-composite bilayer. In Fig. S9 in the Supplementary Material

S1 we show the pseudocolor plots of Vm (Figs. S9(a)-(c) for Ve and (d)-(f) for Vp), the

local time series (Fig. S9(g)), the ibi (Fig. S9(h)), and the power spectra (Fig. S9(i));

the animation in the top-left panel (labelled R = 1) of Video S11, illustrates, for

R = 1, the spatiotemporal evolutions of Ve and Vp. Analogs plot and animation, for

R = 2, are shown in Fig. 5.13 and the animation in the top-middle panel (labelled

R = 2) of Video S11, respectively; from this plot and animation we observe an RS

state in both E- and P-cell layers of our EP-composite bilayer. The pseudocolor
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Figure 5.13: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 2 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. 5.8(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the middle-left panel of Video S11 (labelled R = 2) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.

plots of Vm for the E- and P-layers of the EP-bilayer, for P2 and R = 4, are shown

in Figs. 5.14(a)-(c) and (d)-(f), respectively; animations correspond to Ve and Vp

are shown bottom-left panel (labelled R = 4) of Video S11; from these animation

we observe that an SA exist in both E- and P-layers of EP-bilayer. Plots similar to

Figs 5.13, for P2withR = 8, are shown in Figs. 5.15; the animation labelled byR = 8
in the top-right panel of Video S11 shows the spatiotemporal evolution of Vm; these

illustate the SMST state in the E-layer; the P-layer produces non-periodic focal

waves because of the SMST state in the E-layer of the EP-bilayer. The analogs of

the plots in Fig. 5.14, for P3 with R = 16, are shown in Fig. 5.16; and the animation

labelled by R = 16 in the middle-right panel of Video S11 shows the spatiotemporal

evolution of Vm; these show that we have an SA state in the E-layer, whereas the P-
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Figure 5.14: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 4 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. 5.8(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the bottom-left panel of Video S11 (labelled R = 4) illustrate the spatiotemporal

evolution of these spiral waves.

layer produces non-periodic focal waves. Such non-periodic behaviors in the P-layer

arises because of the low interaction between EP-composites in the EP-bilayer. The

plots similar to Fig. 5.16 and its corresponding animation, for P2 and R = 32, are
shown in Fig. S10 in the Supplementary Material S1 and the animation labelled

by R = 32 in the bottom-right panel of Video S11. We observe an MST state in the

E-layer, whereas the P-layer produces periodic focal waves, i.e., autorhythmicity;

note that here the MST state in E-layer can not alter the autorhythmic excitation

in P-cell layer of the EP-bilayer because of low coupling. i.e., higher R value.

The details of our results, that we described above, with parameter sets P1,
P2, and P31, E- and P-layers diffusive coupling Dgap = Dmm/10 (high EP-composite

coupling), R = 1, 2, 4, 8, and 16, and S1-S2 protocol to E-layer, are summarized in

Table. 5.2. The animations in Videos S9, S10, and S11 show the spatiotemporal

evolution of the transmembrane potential Ve and Vp for 0 s ≤ t ≤ 4 s; all these videos

use 10 frames per second and each frame is separated from the succeeding frame

by 8 ms.

We also investigate spiral-wave dynamics in the EP-bilayer for the parame-

ter set P1, P2, and P3 when an E-cell layer is coupled with a P-cell layer with
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Figure 5.15: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 8 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. 5.8(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the top-right panel of Video S11 (labelled R = 8) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.

Dgap = Dmm/100, i.e., low EP-composite coupling, and R in the ranges mentioned

above; here, we obtain spiral waves in our EP-composite, 2D bilayer by using the

S1-S2 protocol in the E-cell layer. The Table 5.3 summarizes the final state of E-

and P-cell layers. Our qualitative results for such set of simulations remain same

depnding on the parameter set and the parameter set and R value. We give some

of the illustative results here: For P1 and R = 1, we observe an RS state in both

E- and P-cell layers of our EP-composite bilayer (see Fig. S11 in the Supplemen-

tary Material S1); we observe an RS state in the E-layer and the P-layer produces

autorhythmic excitation of the EP-bilayer, for P1 and R = 8 (see Fig. S12 in the

Supplementary Material S1); for P2 and R = 1, we observe an RS state in both E-

and P-cell layers of our EP-composite bilayer (see Fig. S13 in the Supplementary
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Figure 5.16: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/10, and R = 16 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. 5.8(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the middle-right panel of Video S11 (labelledR = 16) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.

Material S1); we observe an SMST state in the E-layer and the P-layer produces

autorhythmic excitation of the EP-bilayer, for P2 and R = 8 (see Fig. S14 in the

Supplementary Material S1); for P3 and R = 1, we observe an RS with non station-

ary ibi state in both E- and P-cell layers of our EP-composite bilayer (see Fig. S15

in the Supplementary Material S1); we observe an MST state in the E-layer and

the P-layer produces autorhythmic excitation of the EP-bilayer, for P3 and R = 8

(see Fig. S16 in the Supplementary Material S1).

We also study spiral wave dynamics by applying the S1-S2 protocol in (a) the

P-cell layer and (b) both EP-cell layers simultaneously of the EP-composite bilayer.

We present a few representative cases of our numerical results, which are sum-

marized in Table 5.3. We begin with S1-S2 excitation of the P-cell layer for the
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initiation of spiral waves. We observe 4-cycle motion with an RS state in both E-

and P-cell layers of our EP-composite bilayer, for Dgap = Dmm/10, P1 and R = 1 (see

Fig. S17 in the Supplementary Material S1). An RS state in both E- and P-cell

layers of our EP-composite bilayer is observed, for Dgap = Dmm/10, P1 and R = 2

(see Fig. S18 in the Supplementary Material S1). For Dgap = Dmm/10, P2 and R = 1
(Fig. S19 in the Supplementary Material S1), we observe an RS state in both E-

and P-cell layers of our EP-composite bilayer. For Dgap = Dmm/10, P2 and R = 2

(Fig. S20 in the Supplementary Material S1), we observe 2-cycle motion in both E-

and P-cell layers of our EP-composite bilayer. For Dgap = Dmm/10, P3 and R = 1

(Fig. S21 in the Supplementary Material S1), we observe an SMST state in both

E- and P-cell layers of our EP-composite bilayer. For Dgap = Dmm/10, P3 and R = 2
(Fig. S22 in the Supplementary Material S1), we observe an RS state in both E-

and P-cell layers of our EP-composite bilayer.

We turn now to cases in which we employ the S1-S2 protocol in both E- and P-cell

layers. For Dgap = Dmm/10, P1 and R = 4 (Fig. S23 in the Supplementary Material

S1), we observe an RS state in both E- and P-cell layers of our EP-composite bilayer.

For Dgap = Dmm/10, P2 and R = 4 (Fig. S24 in the Supplementary Material S1), we

observe an SMST state in both E- and P-cell layers of our EP-composite bilayer.

For Dgap = Dmm/10, P3 and R = 4 (Fig. S25 in the Supplementary Material S1), we

observe an MST state in both E- and P-cell layers of our EP-composite bilayer.

5.3.3 Controlling Spiral Waves in the EP-bilayer Domain

One of the basic goals of our extensive numerical studies of E-cell, P-cell, and EP-

bilayer domains in mathematical models is to understand their effects on spiral-

wave dynamics, and thus develop effective, low-amplitude control techniques for

the elimination of spiral waves, simple or chaotic, of electrical activation in such

mathematical models. An overview of some low-amplitude control schemes is given

in Ref. [8]. We use the control scheme of Ref. [33]; this eliminates spiral waves

by the application of a current pulse on a mesh, which we describe below. The

studies of Refs. [8,9,33,34,49] have shown that such a mesh-based control scheme

eliminates spiral waves even when the simulation domain has inhomogeneities [8,

9], ionic [8, 9], fibroblasts [50], or is subjected to periodic deformation [49]. In

contrast, control schemes, which use electrical stimuli at a point [51,52], work well

in homogeneous simulation domains but do not eliminate spiral-wave turbulence

in domains with inhomogeneities [8].

We begin with a brief review of the mesh-bashed control scheme of Ref. [33, 34]

for a mathematical model for cardiac tissue and a 2D, square, homogeneous domain
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Figure 5.17: Elimination of a single rotating spiral (RS) in a 2D, EP-bilayer, with the parameter set

P3, Dgap = Dmm/10, and R = 2. A current pulse of amplitude 75 pA/pF is applied to the E-cell layer

for t = 0.2 s over a mesh to control spiral waves. (a) Pseudocolor plot of Ve at t = 0 s; (b) pseudocolor

plot of Ve at t = 0.2 s in the absence of the control pulse; and (c) pseudocolor plot of Ve at t = 0.2 s

in the presence of the control pulse. The plots in (d), (e) and (f), are the analogs of (a), (b), and (c),

respectively, for the P-cell layer in the EP-bilayer. The Video S11, which comprises six animations

of pseudocolor plots of Ve and Vp, shows the spatiotemporal evolution of the spiral waves for these

cases, with and without control pulses.

with side L, which is divided into K2 smaller blocks by a mesh of lines; a current

pulse is applied for a small period of time; the mesh side ℓ = L/K is chosen to be

small enough that spiral waves cannot persist for a long time inside the blocks. The

application of the control-current pulse makes the mesh lines refractory, for a time

comparable to the pulse-application time, and so effectively simulates Neumann

boundary conditions for any block bounded by the mesh. Thus, spiral waves formed

inside the block are absorbed at the bounding mesh lines.

We use such a control scheme to suppress spiral waves in our EP-bilayer domain

as follows. We apply a current pulse of amplitude 75 pA/pF to the E-cell layer for

t = 0.2 s over a mesh that divides our square simulation domain, of side L = 256mm,

into K2 = 64 square cells of side ℓ = 32 mm each. We have carried out a set of

simulations to evaluate the efficacy of our control scheme in the EP-bilayer, with

the three parameter sets P1, P2, and P3, for the E-cell layer; and we use two

representative values of Dgap, namely, Dgap = Dmm/10 and Dgap = Dmm/100, and the

values of R that we have listed above. We illustrate the control of spiral waves,
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Figure 5.18: Suppression of spiral turbulence (ST) in a 2D, EP-bilayer, with the parameter set P3,
Dgap = Dmm/10, and R = 8. A current pulse of amplitude 75 pA/pF is applied to the E-cell layer for

t = 0.2 s over a mesh to control spiral waves. (a) Pseudocolor plot of Ve at t = 0 s; (b) pseudocolor

plot of Ve at t = 0.2 s in the absence of the control pulse; and (c) pseudocolor plot of Ve at t = 0.2 s

in the presence of the control pulse. The plots in (d), (e) and (f), are the analogs of (a), (b), and (c),

respectively, for the P-cell layer in the EP-bilayer. The Video S12, which comprises six animations

of pseudocolor plots of Ve and Vp, shows the spatiotemporal evolution of the spiral waves for these

cases, with and without control pulses.

in our 2D, EP-composite simulation domain, by the mesh-based scheme described

above, for a few representative cases. In Fig. 5.17 (a) we show a pseudocolor plot

of Ve, at time t = 0 ms, for the parameter set P3, Dgap = Dmm/10, and R = 2; we

give pseudocolor plots of Ve, at t = 0.2 s, and in the absence and presence of the

control pulse in Figs. 5.17 (b) and (c), respectively. Figures 5.17 (d), (e) and (f),

are the analogs of Figs. 5.17 (a), (b), and (c), respectively, for the P-cell layer in

the EP-bilayer. The left-half panel of Video S12, which comprises animations of

pseudocolor plots of Ve and Vp, shows the spatiotemporal evolution of the spiral

waves for these cases, with and without control pulses. From Figs. 5.17(c) and (f),

and the animations in the first two boxes at the left of the bottom panel of Video

S12, we see that our mesh-based scheme eliminates a single rotating spiral (RS)

in less than 0.2 s in a 2D, EP-bilayer simulation domain. In Fig. 5.18, we show

the exact analogs of Fig. 5.17 for P3, Dgap = Dmm/10, and R = 8; the animations in

the right-half panel of Video S12 show the spatiotemporal evolution of these spiral

waves. From the pseudocolor plots of Ve and Vp in Figs. 5.18(c) and (f), and the



5.4. Discussion and Conclusion 269

animations of the bottom panel of Video S12, we see that our mesh-based scheme

eliminates spiral turbulence (ST) in less than 0.2 s. The exact analogs of Video S12

for the parameter set P1, Dgap = Dmm/10, and R = 1, and the parameter set P1,
Dgap =Dmm/10, and R = 8, are shown in the left- and right-half panels of Video S13,

respectively; Video S14 is the exact analog of Video S13 for the parameter set P2.

5.4 Discussion and Conclusion

We have carried out detailed numerical studies of (a) a single unit of an EP compos-

ite and (b) a two-dimensional bilayer, which contains such EP composites at each

site. We have considered biophysically realistic ionic models for human endocar-

dial [13] tissue and Purkinje cells [18] to model EP composites.

Our study has been designed to elucidate the sensitive dependence, on param-

eters and initial conditions, of (a) the dynamics of EP composites and (b) the spa-

tiotemporal evolution of spiral waves of electrical activation in EP-bilayer domains.

We examine this dependence on myocyte parameters by using the three different

parameter sets P1, P2, and P3; to elucidate the initial-condition dependence we

vary the time at which we apply the S2 pulse in our S1-S2 protocol; we also in-

vestigate the dependence of the spatiotemporal dynamics of our system on the EP

coupling, via Dgap, and on the number of PVJs, which are measured here by the

ratio R.
Our studies on EP composite have shown that the frequency of autorhythimic

activity of a P cell depends on the diffusive gap-junctional conductance Dgap. We

have performed a set of simulations to understand the source-sink relation be-

tween E and P cells in an EP composite; such a source-sink relation is an impor-

tant determinant of wave dynamics at the tissue level [19]. Furthermore, we have

studied the restitution properties of an isolated E cell and a composite EP unit to

uncover their effect on wave dynamics in 2D, bilayers of EP composites. We have

also carried out a detailed, systematic, numerical calculation to study plane- and

spiral-wave dynamics in a 2D bilayer of EP composites. We discuss the principal

finding of our numerical calculations below in the light of earlier studies.

Autorhythmicity is an important property of Purkinje cells; it helps to carry

electrical signals rapidly from the bundle of His to the endocardium. Our investi-

gation of an EP composite shows that its cycle length (CL) of autorhythimic activity

decreases, compared to that of an uncoupled Purkinje cell. Furthermore, we have

found that the APD increases for an EP composite, compared to that of an uncou-

pled P cell.
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In our second set of simulations for an EP-composite unit, we have obtained the

AP morphological behaviors and the amount of flux that flows from the E to the

P cell during the course of the AP. The direction of flow of this flux is an impor-

tant quantity that identifies which one of these cells act as a source or a sink in

this EP composite, and, hence, plays an important role in spiral-wave dynamics

at the tissue level [19]. We have found that the P cell in an EP composite acts as

a stimulation-current source for the E cell in the depolarization phase of the AP,

when the stimulus is applied to both cells or to the P cell only. However, the P cell

behaves both as a source and a sink when the stimulus is applied to the E cell only.

In our third set of simulations for an EP composite unit, we have calculated the

restitution of the APD; this plays an important role in deciding the stability of spi-

ral waves in mathematical models for cardiac tissue [44–48]. Our simulation shows

that, for the EP composite with high intercellular coupling (e.g., Dgap = Dmm/10),
the APDR slope decreases, relative to its value for an isolated E cell, for parameter

sets P1 and P2, and first increases (for 50 ≤DI ≤ 100ms) and then decreases for the

parameter set P3 ; however, for low intercellular coupling (e.g., Dgap = Dmm/100),
the variation of the APD as a function of DI, for an EP composite, shows biphasic

behavior for all these three parameter sets.

We have found that the plane-wave dynamics in EP cable type domains, with

EP composites, depends sensitively on R. This sensitive dependence can be sum-

marized by comparing the final states given in Tables 5.2 for different values of R.
Conduction delays have been observed in in vitro studies which use Purkinje and

endocardial layers. For example, Xing et al. [26], have studied the propagation de-

lay of electrical waves from Purkinje tissue to the endocardium, the endocardium

to the midmyocardium, and the midmyocardium to the epicardium in their multi-

layer structures in in vitro experiments on canine myocytes; they have concluded

that the conduction delay occurrs because of the weak coupling between the Purk-

inje layer and the endocardial layer through PVJs. We hope our in silico studies

of spiral-wave dynamics in EP bilayers will stimulate more, in vitro studies that

examine such dynamics.

Tabereaux, et al. [27] have shown in an in vitro studies, that electrical activa-

tion can appear focally in the endocardium because of autorhythimic activities in

Purkinje system; such focal activation in the endocardial layer may help to pro-

duced abnormal or trigger activities, which can maintain the VF in the working

ventricular myocardium. Our in silico studies are of relevance to such experi-

ments. As we have mentioned in the introduction, other computational studies

have studied mathematical models that study the interaction of E and P cells.
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These studies range from those that look at isolated EP composites [18–21] to

those that investigate the interplay between E and P cells in anatomically realistic

domains [28, 30, 31] for a variety mammalian myocytes and Purkinje cells. Some

of the models use realistic simulation domains [28, 30, 31] and Purkinje-fiber net-

works; and they find in general that inclusion of Purkinje system results in slightly

faster and more coordinated activation of the ventricles compared to a simplified

model that neglects this structure; and they have concluded that the inclusion of

the Purkinje-fiber network can either accelerate reentry termination or generate

wave breakup (which does not occur when the same initial condition is used in the

ventricle alone).

We end with some limitations of our model: We use a monodomain descrip-

tion for cardiac tissue; and we do not use an anatomically realistic simulation

domain [53, 54], muscle-fiber orientation, and transmural heterogeneity [55, 56];

the inclusion of these features lies beyond the scope of this study. We note, how-

ever, that recent studies [57] have compared potentials resulting from normal de-

polarization and repolarization in a bidomain model with those of a monodomain

model; these studies have shown that the differences between results obtained

from a monodomain model and those obtained from a bidomain model are ex-

tremely small.
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Parameter S1-S2 Dgap R Figure Video Final state Final state

sets protocol value in E-layer in P-layer

P1 E-layer Dmm

10
1 8 S9 periodic RS periodic RS

S2 at t = 360 ms with fundamental peak at with fundamental peak at

ωe ≃ 4 Hz ωp ≃ 4 Hz

P1 E-layer Dmm

10
2 S2 S9 periodic RS periodic RS

S2 at t = 400 ms with fundamental peak at with fundamental peak at

ωe = 4 Hz ωp = 4 Hz

P1 E-layer Dmm

10
4 S3 S9 periodic RS periodic RS

S2 at t = 480 ms with fundamental peak at with fundamental peak at

ωe = 3.75 Hz ωp = 3.75 Hz

P1 E-layer Dmm

10
8 9 S9 non-periodic RS non-periodic excitation

S2 at t = 480 ms with a strong peak at with a strong peak at

ωe ≃ 4.75 Hz ωp ≃ 2 Hz

P1 E-layer Dmm

10
16 S4 S9 RS periodic excitation

S2 at t = 480 ms with fundamental peak at with fundamental peak at

ωe = 4.75 Hz ωp = 1.25 Hz

P1 E-layer Dmm

10
32 S5 S9 RS periodic excitation

S2 at t = 480 ms with fundamental peak at with fundamental peak at

ωe = 4.75 Hz ωp = 1 Hz

P2 E-layer Dmm

10
1 10 S10 RS RS

S2 at t = 360 ms with fundamental peak at with fundamental peak at

ωe = 4.25 Hz ωp = 4.25 Hz

P2 E-layer Dmm

10
2 S6 S10 RS RS

S2 at t = 400 ms with fundamental peak at with fundamental peak at

ωe = 4.25 Hz ωp = 4.25 Hz

P2 E-layer Dmm

10
4 11 S10 SA SA

S2 at t = 480 ms

P2 E-layer Dmm

10
8 S7 S10 SMST non periodic excitation

S2 at t = 480 ms with a strong peak at with a strong peak at

ωe ≃ 5.25 Hz ωp ≃ 2 Hz

P2 E-layer Dmm

10
16 12 S10 SMST periodic excitation

S2 at t = 480 ms with a strong peak at with fundamental peak at

ωe ≃ 5.25 Hz ωp = 1.25 Hz

P2 E-layer Dmm

10
32 S8 S10 SMST periodic excitation

S2 at t = 480 ms with a strong peak at with fundamental peak at

ωe ≃ 5.25 Hz ωp = 1 Hz

P3 E-layer Dmm

10
1 S9 S11 SMST SMST

S2 at t = 416 ms with a strong peak at with a strong peak at

ωe ≃ 4.25 Hz ωp ≃ 4.25 Hz

P3 E-layer Dmm

10
2 13 S11 RS RS

S2 at t = 400 ms with fundamental peak at with fundamental peak at

ωe = 4.25 Hz ωp = 4.25 Hz

P3 E-layer Dmm

10
4 14 S11 SA SA

S2 at t = 480 ms

P3 E-layer Dmm

10
8 15 S11 SMST non periodic excitation

S2 at t = 480 ms with a strong peak at with a strong peak at

ωe ≃ 4.5 Hz ωp ≃ 2 Hz

P3 E-layer Dmm

10
16 16 S11 SA non periodic excitation

S2 at t = 480 ms with a strong peak at

ωp ≃ 0.75 and 1.75 Hz

P3 E-layer Dmm

10
32 S10 S11 MST periodic excitation

S2 at t = 480 ms with a strong peak at

ωp = 1 Hz
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Table 5.2: Final states in E-cell and P-cell layers of an EP-composite bilayer; here, RS stands for

rotating spiral, SMST stands for single-meandering-spiral-turbulence, andMST stands for multiple

spiral turbulence.
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1 Supporting Information

Video S1: Spatiotemporal evolution of plane waves in cable-type domains for

(a) E cells with the parameter set P1, (b) E cells with the parameter set P2, (c)
E cells with the parameter set P3, (d) P cells with Dpp = Dmm, (e) P cells with

Dpp = 2 ×Dmm, and (f) P cells with Dpp = 3 ×Dmm, shown via pseudocolor plots of

the transmembrane potential Vm; the time evolution is shown for 0 s ≤ t ≤ 0.8 s;

we use 10 frames per second (fps); in real time each frame is separated from the

succeeding frame by 8 ms.

Video S2: Spatiotemporal evolution of plane waves in cable-type domains of an

EP-bilayer, with E cells in one layer and P cells in the other, and the P1 parameter

set for the E-cell layer,Dpp = 3×Dmm for the P-cell layer, and gap-junctional coupling

between EP-composites Dgap = Dmm/10. (e1) Ve with R = 1, (e2) Ve with R = 2, (e3)
Ve with R = 4, (e4) Ve with R = 8, (e5) Ve with R = 16, (p1) Vp with R = 1, (p2) Vp with

R = 2, (p3) Vp withR = 4, (p4) Vp withR = 8, and (p5) Vp withR = 16. The pseudocolor
plots of the transmembrane potential Ve and Vp are shown for 0 s ≤ t ≤ 1.6 s; we use

10 frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S3: Spatiotemporal evolution of plane waves in cable-type domains of an

EP-bilayer, with E cells in one layer and P cells in the other, and the P2 parameter

set for the E-cell layer,Dpp = 3×Dmm for the P-cell layer, and gap-junctional coupling

between EP-composites Dgap = Dmm/10. (e1) Ve with R = 1, (e2) Ve with R = 2, (e3)
Ve with R = 4, (e4) Ve with R = 8, (e5) Ve with R = 16, (p1) Vp with R = 1, (p2) Vp with

R = 2, (p3) Vp withR = 4, (p4) Vp withR = 8, and (p5) Vp withR = 16. The pseudocolor
plots of the transmembrane potential Ve and Vp are shown for 0 s ≤ t ≤ 1.6 s; we use

10 frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S4: Spatiotemporal evolution of plane waves in cable-type domains of an

EP-bilayer, with E cells in one layer and P cells in the other, and the P3 parameter

set for the E-cell layer,Dpp = 3×Dmm for the P-cell layer, and gap-junctional coupling

between EP-composites Dgap = Dmm/10. (e1) Ve with R = 1, (e2) Ve with R = 2, (e3)
Ve with R = 4, (e4) Ve with R = 8, (e5) Ve with R = 16, (p1) Vp with R = 1, (p2) Vp with

R = 2, (p3) Vp withR = 4, (p4) Vp withR = 8, and (p5) Vp withR = 16. The pseudocolor
plots of the transmembrane potential Ve and Vp are shown for 0 s ≤ t ≤ 1.6 s; we use

10 frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S5: Spatiotemporal evolution of plane waves in cable-type domains of an

EP-bilayer, with E cells in one layer and P cells in the other, and the P1 parameter
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set for the E-cell layer,Dpp = 3×Dmm for the P-cell layer, and gap-junctional coupling

between EP-composites Dgap = Dmm/100. (e1) Ve with R = 1, (e2) Ve with R = 2, (e3)
Ve with R = 4, (e4) Ve with R = 8, (e5) Ve with R = 16, (p1) Vp with R = 1, (p2) Vp with

R = 2, (p3) Vp withR = 4, (p4) Vp withR = 8, and (p5) Vp withR = 16. The pseudocolor
plots of the transmembrane potential Ve and Vp are shown for 0 s ≤ t ≤ 1.6 s; we use

10 frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S6: Spatiotemporal evolution of plane waves in cable-type domains of an

EP-bilayer, with E cells in one layer and P cells in the other, and the P2 parameter

set for the E-cell layer,Dpp = 3×Dmm for the P-cell layer, and gap-junctional coupling

between EP-composites Dgap = Dmm/100. (e1) Ve with R = 1, (e2) Ve with R = 2, (e3)
Ve with R = 4, (e4) Ve with R = 8, (e5) Ve with R = 16, (p1) Vp with R = 1, (p2) Vp with

R = 2, (p3) Vp withR = 4, (p4) Vp withR = 8, and (p5) Vp withR = 16. The pseudocolor
plots of the transmembrane potential Ve and Vp are shown for 0 s ≤ t ≤ 1.6 s; we use

10 frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S7: Spatiotemporal evolution of plane waves in cable-type domains of an

EP-bilayer, with E cells in one layer and P cells in the other, and the P3 parameter

set for the E-cell layer,Dpp = 3×Dmm for the P-cell layer, and gap-junctional coupling

between EP-composites Dgap = Dmm/100. (e1) Ve with R = 1, (e2) Ve with R = 2, (e3)
Ve with R = 4, (e4) Ve with R = 8, (e5) Ve with R = 16, (p1) Vp with R = 1, (p2) Vp with

R = 2, (p3) Vp withR = 4, (p4) Vp withR = 8, and (p5) Vp withR = 16. The pseudocolor
plots of the transmembrane potential Ve and Vp are shown for 0 s ≤ t ≤ 1.6 s; we use

10 frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S8: Spiral-wave dynamics in the E-cell layer for the parameter sets (a)

P1, (b) P2, and (c) P3, and (d) the diffusive coupling Dpp = 3 ×Dmm for the P-cell

layer. The pseudocolor plots of the transmembrane potential Ve and Vp are shown

for 0 s ≤ t ≤ 6 s; we use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms.

Video S9: Spiral-wave dynamics in the EP-bilayer for the parameter set P1
when an E-cell layer is coupled with a P-cell layer with Dgap = Dmm/10 and R = 1
(two boxes on the top-left panel), R = 2 (two boxes on the middle-left panel), R = 4
(two boxes on the bottom-left panel),R = 8 (two boxes on the top-right panel),R = 16
(two boxes on the middle-right panel), and R = 32 (two boxes on the bottom-right

panel); we inject spiral waves by using the S1-S2 protocol in the E-cell layer (see

text). The pseudocolor plots of the transmembrane potential Ve and Vp are shown
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for 0 s ≤ t ≤ 6 s; we use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms.

Video S10: Spiral-wave dynamics in the EP-bilayer for the parameter set P2
when an E-cell layer is coupled with a P-cell layer with Dgap = Dmm/10 and R = 1
(two boxes on the top-left panel), R = 2 (two boxes on the middle-left panel), R = 4
(two boxes on the bottom-left panel),R = 8 (two boxes on the top-right panel),R = 16
(two boxes on the middle-right panel), and R = 32 (two boxes on the bottom-right

panel); we inject spiral waves by using the S1-S2 protocol in the E-cell layer (see

text). The pseudocolor plots of the transmembrane potential Ve and Vp are shown

for 0 s ≤ t ≤ 6 s; we use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms.

Video S11: Spiral-wave dynamics in the EP-bilayer for the parameter set P3
when an E-cell layer is coupled with a P-cell layer with Dgap = Dmm/10 and R = 1
(two boxes on the top-left panel), R = 2 (two boxes on the middle-left panel), R = 4
(two boxes on the bottom-left panel),R = 8 (two boxes on the top-right panel),R = 16
(two boxes on the middle-right panel), and R = 32 (two boxes on the bottom-right

panel); we inject spiral waves by using the S1-S2 protocol in the E-cell layer (see

text). The pseudocolor plots of the transmembrane potential Ve and Vp are shown

for 0 s ≤ t ≤ 6 s; we use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms.

Video S12: Spiral-wave dynamics, without and with control pulses, in the EP-

bilayer for the parameter sets P3, Dgap = Dmm/10 and R = 2 (left-half panel) and

R = 8 (right-half panel); we apply control pulse to E-cell layer (see text). The pseu-

docolor plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 1 s; we use

10 frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S13: Spiral-wave dynamics, without and with control pulses, in the EP-

bilayer for the parameter sets P1, Dgap = Dmm/10 and R = 1 (left-half panel) and

R = 8 (right-half panel); we apply control pulse to E-cell layer (see text). The pseu-

docolor plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 1 s; we use

10 frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S14: Spiral-wave dynamics, without and with control pulses, in the EP-

bilayer for the parameter sets P2, Dgap = Dmm/10 and R = 1 (left-half panel) and

R = 8 (right-half panel); we apply control pulse to E-cell layer (see text). The pseu-

docolor plots of the transmembrane potential Vm are shown for 0 s ≤ t ≤ 1 s; we use
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10 frames per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.
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Parameter S1-S2 Dgap R Figure Video Final state Final state

sets protocol value in E-layer in P-layer

P1 E-layer Dmm

100
1 S11 − RS RS

S2 at t = 400 ms with fundamental peak at with fundamental peak at

ωe = 3.75 Hz ωp = 3.75 Hz

P1 E-layer Dmm

100
8 S12 − RS periodic excitation

S2 at t = 480 ms with fundamental peak at with fundamental peak at

ωe = 4.75 Hz ωp = 1 Hz

P2 E-layer Dmm

100
1 S13 − RS RS

S2 at t = 400 ms with fundamental peak at with fundamental peak at

ωe = 4 Hz ωp = 4 Hz

P2 E-layer Dmm

100
8 S14 − SMST periodic excitation

S2 at t = 480 ms with a strong peak with fundamental peak at

ωe ≃ 5 Hz ωp = 1 Hz

P3 E-layer Dmm

100
1 S15 − RS RS

S2 at t = 480 ms with a strong peak at with a strong peak at

ωe ≃ 3.75 Hz ωp ≃ 4 Hz

P3 E-layer Dmm

100
8 S16 − MST periodic excitation

S2 at t = 480 ms with fundamental peak at

ωp = 1 Hz

P1 P-layer Dmm

10
1 S17 − RS (4-cycle) RS (4-cycle)

S2 at t = 360 ms with fundamental peak at with fundamental peak at

ωe = 4 Hz ωp = 4 Hz

P1 P-layer Dmm

10
2 S18 − RS RS

S2 at t = 360 ms with fundamental peak at with fundamental peak at

ωe = 4 Hz ωp = 4 Hz

P2 P-layer Dmm

10
1 S19 − RS RS

S2 at t = 360 ms with fundamental peak at with fundamental peak at

ωe = 4.25 Hz ωp = 4.25 Hz

P2 P-layer Dmm

10
2 S20 − RS (2-cycle) RS (2-cycle)

S2 at t = 360 ms with fundamental peak at with fundamental peak at

ωe = 4.25 Hz ωp = 4.25 Hz

P3 P-layer Dmm

10
1 S21 − SMST SMST

S2 at t = 400 ms with a strong peak at with a strong peak at

ωe ≃ 4.25 Hz ωp ≃ 4.25 Hz

P3 P-layer Dmm

10
2 S22 − RS RS

S2 at t = 400 ms with fundamental peak at with fundamental peak at

ωe = 4.25 Hz ωp = 4.25 Hz

P1 both EP layers Dmm

10
4 S23 − RS RS

S2 at t = 480 ms with fundamental peak at with fundamental peak at

ωe = 3.75 Hz ωp = 3.75 Hz

P2 both EP layers Dmm

10
4 S24 − SMST SMST

S2 at t = 480 ms with a strong peak at with a strong peak at

ωe ≃ 4 Hz ωp ≃ 4 Hz

P3 both EP layers Dmm

10
4 S25 − MST MST

S2 at t = 480 ms

Table 5.3: Final states in E-cell and P-cell layers of an EP-composite bilayer; here, RS stands for

rotating spiral, SMST stands for single-meandering-spiral-turbulence, andMST stands for multiple

spiral turbulence.
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1 Supplementary Material S1

Figure S1: Plane waves, shown via pseudocolor plots of the transmembrane potential Vm, at t =
400 ms in a thin strip of tissue of dimensions Lx = 1024 mm and Ly = 16 mm (basically, a one

dimensional cable) for the (a) E-cell layer with parameter set P1, (b) E-cell layer with parameter

set P2, (c) E-cell layer with parameter set P3, (d) P-cell layer with Dpp = Dmm, (e) P-cell layer with

Dpp = 2 × Dmm, and (f) P-cell layer with Dpp = 3 × Dmm (see text). The animations in Video S1

illustrates the spatiotemporal evolution of these plane waves.
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Figure S2: Spiral-wave dynamics in our EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 2 (see Table 5.2); (a)-(c)

show pseudocolor plots of Ve; (d)-(e) show psuedocolor plots of Vp; the animations in the middle-

left panel of Video S9 (labelled by R = 2) illustrate the spatiotemporal evolution of these spiral

waves. The local time series data, for the transmembrane potential Ve and Vp, are recorded from

the representative points (x = 125 mm, y = 125 mm) of both E- and P- layers (the asterisks in (c) and

(f)). (g) Plot of the time series for Ve (blue, solid line) and Vp (red, dashed line); (h) plot of inter-beat

interval (ibi) versus the beat number n associated with the E-layer (blue, open circles) and P-layer

(filled, red squares); (i) plot of the power spectra E(ω) versus the frequency ω for the E-layer (blue,

open circles) and P-layer (filled, red squares).
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Figure S3: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 4 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the bottom-left panel of Video S9 (labelled R = 4) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.



1. Supplementary Material S1 287

Figure S4: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/10, and R = 16 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the middle-right panel of Video S9 (labelled R = 16) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.
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Figure S5: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/10, and R = 32 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the bottom-right panel of Video S9 (labelled R = 32) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.
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Figure S6: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 2 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the middle-left panel of Video S10 (labelled R = 2) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.
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Figure S7: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 8 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the top-right panel of Video S10 (labelled R = 8) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.
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Figure S8: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/10, and R = 32 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the bottom-right panel of Video S10 (labelledR = 32) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.
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Figure S9: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap = Dmm/10, and R = 1 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the top-left panel of Video S11 (labelled R = 1) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.
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Figure S10: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/10, and R = 32 (see Table 5.2); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively;

the animations in the bottom-right panel of Video S11 (labelledR = 32) illustrate the spatiotemporal

evolution of these spiral waves. The local time series, the ibi, and E(ω), are shown in plots (g), (h),

and (i), respectively.
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Figure S11: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/100, and R = 1 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S12: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/100, and R = 8 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S13: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/100, and R = 1 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S14: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/100, and R = 8 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S15: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/100, and R = 1 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S16: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the E-cell layer, Dgap =Dmm/100, and R = 8 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S17: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the P-cell layer, Dgap = Dmm/10, and R = 1 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S18: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the P-cell layer, Dgap = Dmm/10, and R = 2 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S19: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the P-cell layer, Dgap = Dmm/10, and R = 1 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S20: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the P-cell layer, Dgap = Dmm/10, and R = 2 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S21: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the P-cell layer, Dgap = Dmm/10, and R = 1 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S22: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the P-cell layer, Dgap = Dmm/10, and R = 2 (see Table 5.3); pseudocolor

plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f), respectively.

The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S23: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P1, with the

S1-S2 cross-field protocol in the both E- and P-cell layers, Dgap =Dmm/10, and R = 4 (see Table 5.3);

pseudocolor plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f),

respectively. The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S24: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P2, with the

S1-S2 cross-field protocol in the both E- and P-cell layers, Dgap =Dmm/10, and R = 4 (see Table 5.3);

pseudocolor plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f),

respectively. The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.
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Figure S25: Spiral-wave dynamics in an EP-composite bilayer for the parameter set P3, with the

S1-S2 cross-field protocol in the both E- and P-cell layers, Dgap =Dmm/10, and R = 4 (see Table 5.3);

pseudocolor plots of Ve and Vp, the exact analogs of Figs. S2(a)-(f), are shown in (a)-(c) and (d)-(f),

respectively. The local time series, the ibi, and E(ω), are shown in plots (g), (h), and (i), respectively.



Appendix A

A.1 The TNNP04 Model

This model has been developed for human cardiac cell [1], especially to study

the action potential morphology of endocardium, epicardium, and midmyocardium

cells. The model consists of 12 components of the ionic current, namely, the fast

inward Na+ current INa, the L-type slow inward Ca2+ current ICaL, the transient

outward current Ito, the slow delayed rectifier current IKs, the rapid delayed rec-

tifier current IKr, the inward rectifier K+ current IK1, the Na+/Ca2+ exchanger

current INaCa, the Na+/K+ pump current INaK , the plateau Ca2+ current IpCa, the

plateau K+ currentIpK , the background Na+ current IbNa, and the background Ca2+

current IbCa. It uses 17 variables: (a) 1 for the transmembrane potential Vm, (b) 12

for ion channel gates, namely, m, h, j, d, f , fCa, r, s, xs, xr1, xr2, and g, and (c) 4 for

ion concentrations dynamics, namely, Nai, Ki, Cai, and Casr.

All current densities are measured in the units of pA/pF, Vm in mV, and ion

concentrations in mM/L; the ionic currents are determined by the time-dependent

ion-channel gating variables, as given above, generically denoted by ξ, which follow

ordinary differential equations of the type

dξ

dt
=

ξ∞ − ξ

τξ
,

where ξ∞ = αξ/(αξ + βξ) is the steady-state value of ξ and τξ = 1
αξ+βξ

is its time

constant; here, αξ and βξ are voltage-dependent rate constants associated with the

gate ξ.
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Reversal potentials

At equilibrium the reversal potentials obey the Nernst equation:

EX =
RT

zF
log

Xo

Xi

for X = Na+, K+, Ca2+ (A.1)

EKs =
RT

F
log

Ko + pKNaNao

Ki + pKNaNai
, (A.2)

where R is the gas constant, T the temperature, z the valence of the ion, F the

Faraday constant, Xo and Xi the extra- and intra-cellular ionic concentrations,

pKNa the relative IKs permeability to Na+.

Ionic currents

Fast Na+ current (inward)

INa = GNam
3hj(V −ENa) (A.3)

m∞ =
1

[1 + exp(−56.86−V
9.03

)]2 (A.4)

αm =
1

1 + exp(−60−V
5
) (A.5)

βm =
0.1

1 + exp(V +35
5
) + 0.1

1 + exp(V −50
200
) (A.6)

τm = αmβm (A.7)

h∞ =
1

[1 + exp(V +71.55
7.43

)]2 (A.8)

αh = 0 if V ≥ −40 (A.9)

= 0.057exp(−(V + 80)
6.8

) (otherwise)
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βh =
0.77

0.13 [1 + exp (−(V +10.66)
11.1

)] if V ≥ −40 (A.10)

= 2.7exp(0.079V ) + 3.1 × 105exp(0.3485V ) (otherwise)
τh =

1

αh + βh

(A.11)

j∞ =
1

[1 + exp(V +71.55
7.43

)]2 (A.12)

αj = 0 if V ≥ −40 (A.13)

=
(−2.5428 × 104 exp(0.2444V ) − 6.948 × 10−6 exp(−0.04391V ))(V + 37.38)

1 + exp (0.311(V + 79.23)) (otherwise)
βj =

0.6 exp(0.057V )
1 + exp (−0.1(V + 32)) if V ≥ −40 (A.14)

=
0.02424exp(−0.01052V )

1 + exp (−0.1378(V + 40.14)) (otherwise)
τj =

1

αj + βj

(A.15)
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L-type Ca2+ current (inward)

ICaL = GCaLdffCa4
V F 2

RT

Caiexp(2V F
RT
) − 0.0341Cao

exp(2V F
RT
) − 1 (A.16)

d∞ =
1

1 + exp(−5−V
7.5
) (A.17)

αd =
1.4

1 + exp(−35−V
13
) + 0.25 (A.18)

βd =
1.4

1 + exp(V +5
5
) (A.19)

γd =
1

1 + exp(50−V
20
) (A.20)

τd = αdβd + γd (A.21)

f∞ =
1

1 + exp(V +20
7
) (A.22)

αf = 1125exp(−(V + 27)2
240

) (A.23)

βf =
165

1 + exp(25−V
10
) (A.24)

γf = 80 (A.25)

τf = αf + βf + γf (A.26)

αfCa =
1

1 + ( Cai
0.000325

)8 (A.27)

βfCa =
0.1

1 + exp(Cai−0.0005
0.0001

) (A.28)

γfCa =
0.2

1 + exp(Cai−0.00075
0.0008

) (A.29)

fCa∞ =
αfCa + βfCa + γfCa + 0.23

1.46
(A.30)

dfCa

dt
= k

fCa∞ − fCa

τfCa

(A.31)

k = 0 if fCa∞ > fCa and V > − 60 mV

= 1 (otherwise)
τfCa = 2 ms (A.32)
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Transient outward current (outward)

Ito = Gtors(V −EK) (A.33)

r∞ =
1

1 + exp(20−V
6
) (A.34)

τr = 9.5exp(−(V + 40)2
1800

) + 0.8 (A.35)

s∞ =
1

1 + exp(V +28
5
) for endocardial cell types (A.36)

=
1

1 + exp(V +20
5
) for epicardial and M − cell types (A.37)

τs = 1000exp(−(V + 67)2
1000

) + 8 for endocardial cell types (A.38)

= 85exp(−(V + 45)2
320

) + 5

1 + exp(V −20
5
) + 3 for epicardial and M − cell types(A.39)

Slow delayed rectifier current (outward)

IKs = GKsxs
2(V −EKs) (A.40)

xs∞ =
1

1 + exp(−5−V
14
) (A.41)

αxs =
1100√

1 + exp(−10−V
6
) (A.42)

βxs =
1

1 + exp(V −60
20
) (A.43)

τxs = αxsβxs (A.44)
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Rapid delayed rectifier current (outward)

IKr = GKr

√
Ko

5.4
xr1xr2(V −EK) (A.45)

xr1∞ =
1

1 + exp(−26−V
7
) (A.46)

αxr1 =
450

1 + exp(−45−V
10
) (A.47)

βxr1 =
6

1 + exp(V +30
11.5
) (A.48)

τxr1 = αxr1βxr1 (A.49)

xr2∞ =
1

1 + exp(V +88
24
) (A.50)

αxr2 =
3

1 + exp(−60−V
20
) (A.51)

βxr2 =
1.12

1 + exp(V −60
20
) (A.52)

τxr2 = αxr2βxr2 (A.53)

Inward rectifier K+ current (outward)

IK1 = GK1

√
Ko

5.4
xK1∞(V −EK) (A.54)

αK1 =
0.1

1 + exp (0.06(V −EK − 200)) (A.55)

βK1 =
3 exp (0.0002(V −EK + 100)) + exp (0.1(V −EK − 10))

1 + exp(−0.5(V −EK)) (A.56)

XK1∞ =
αK1

αK1 + βK1

(A.57)

Na+-Ca2+ exchanger current

INaCa = kNaCa

exp (γV F

RT
)Nai

3Cao − exp ( (γ−1)V F

RT
)Nao

3Caiα

(KmNai
3
+Nao

3)(KmCa +Cao)(1 + ksatexp ( (γ−1)V F

RT
)) (A.58)

Na+-K+ pump current

INaK = PNaK

KoNai(Ko +KmK)(Nai +KmNa)(1 + 0.1245 exp (−0.1V F
RT
) + 0.0353 exp (−V F

RT
))

(A.59)
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Plateau Ca2+ current (outward)

IpCa = GpCa

Cai

KpCa +Cai
(A.60)

(A.61)

Plateau K+ current (outward)

IpK = GpK

V −EK

1 + exp(25−V
5.98
) (A.62)

Background Na+ current (inward)

IbNa = GbNa(V −ENa) (A.63)

(A.64)

Background Ca2+ current (inward)

IbCa = GbCa(V −ECa) (A.65)

Ion dynamics

Ca2+ dynamics

Ileak = Vleak(Casr −Cai) (A.66)

Iup =
Vmaxup

1 + (Kup

Cai
)2 (A.67)

Irel = (arel Casr
2

brel
2
+Casr

2
+ crel)dg (A.68)

g∞ =
1

1 + ( Cai
0.00035

)6 if Cai ≤ 0.00035 (A.69)

=
1

1 + ( Cai
0.00035

)16 (otherwise)
τg = 2 ms (A.70)

dg

dt
= k

g∞ − g

τg
(A.71)

k = 0 if g∞ > g and V > −60 mV

= 1 (otherwise)
Caibufc =

Cai×Bufc

Cai +Kbufc

(A.72)
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dCaitotal

dt
= −

ICaL + IbCa + IpCa − 2INaCa

2VCF
+ Ileak − Iup + Irel (A.73)

Casrbufsr =
Casr×Bufsr

Casr +Kbufsr

(A.74)

dCasrtotal

dt
=

VC

VSR

(−Ileak + Iup − Irel) (A.75)

Na+ dynamics

dNai

dt
= −

INa + IbNa + 3INaK + 3INaCa

VCF
(A.76)

K+ dynamics

dKi

dt
= −

IK1 + Ito + IKr + IKs − 2INaK + IpK + Istim − Iax

VCF
(A.77)

Model parameters

Channel conductances

GNa: Maximal fast Na+ current (INa) conductance =14.838 nS/pF

GCaL: Maximal L-type Ca2+ current (ICaL) conductance =1.75 × 10−4 cm2
⋅ µF−1⋅s−1

Gto: Maximal transient outward current (Ito) conductance =0.294 nS/pF (for epicar-

dial and M-cell), 0.073 nS/pF (for endocardial cell)

GKs: Maximal slow delayed rectifier current (IKs) conductance =0.245 nS/pF (for

epicardial and endocardial), 0.062 nS/pF (for M-cell)

GKr: Maximal rapid delayed rectifier current (IKr) conductance =0.096 nS/pF

GK1: Maximal inward rectifier K+ current (IK1) conductance =5.405 nS/pF

GpCa: Maximal plateau Ca2+ current (IpCa) conductance =0.825 nS/pF

GpK : Maximal plateau K+ current (IpK) conductance =0.0146 nS/pF

GbNa: Maximal background Na+ current (IbNa) conductance =0.00029 nS/pF

GbCa: Maximal background Ca2+ current (IbCa) conductance =0.000592 nS/pF

Ion concentration

Nao: Extracellular Na+ concentration =140 mM

Cao: Extracellular Ca+ concentration =5.4 mM

Ko: Extracellular K+ concentration =2 mM
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Cell geometry (Volume)

VC : Cytoplasmic volume =16404 µm3

VSR: Sarcoplasmic recticulum volume =1094 µm3

Other parameters

pKNa: Relative IKs permeability to Na+ =0.03
kNaCa: Maximal Na+/Ca2+ exchanger current (INaCa) =1000 pA/pF

kmNai: Nai half-saturation constant for INaCa =87.5 mM

kmCa: Cai half-saturation constant for INaCa =1.38 mM

ksat: Saturation factor for INaCa =0.1
α: Factor enhancing outward nature of INaCa =2.5
γ: Voltage dependence parameter of INaCa =0.35
PNaK : Maximal INaK =1.362 pA/pF

KmK : Ko half-saturation constant of INaK =1 mM

KmNa: Nai half-saturation constant of INaK =40 mM

KpCa: Cai half-saturation constant of IpCa =0.0005 mM

Vleak: Maximal Ileak =0.00008 ms−1

Vmaxup: Maximal Iup =0.000425 mM /ms

Kup: Half-saturation constant of Iup = 0.00025 mM

arel: Maximal CaSR-dependent Irel =0.016464 mM /ms

brel: CaSR half-saturation constant of Irel =0.25 mM

crel: Maximal CaSR-independent Irel =0.008232 mM /ms

Bufc: Total cytoplasmic buffer concentration =0.15 mM

Bufsr: Total sarcoplasmic recticulum buffer concentration =10 mM

Kbufc: Cai half-saturation constant for cytoplasmic buffer =0.001 mM

Kbufsr: CaSR half-saturation constant for sarcoplasmic recticulum buffer =0.3 mM

Initialized gating variables and ion concentrations

m: Activation gate for INa = 0;
h: Fast inactivation gate for INa = 0.75;
j: Slow inactivation gate for INa = 0.75;
d: Activation gate for ICaL = 0;
f : Inactivation gate for ICaL = 1;
fCa: Intracellular calcium-dependent inactivation gate for ICaL = 1;
r: Activation gate for Ito = 0;
s: Inactivation gate for Ito = 1;
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xs: Activation gate for IKs = 0;
xr1: Activation gate for IKr = 0;
xr2: Inactivation gate for IKr = 1;
g: Calcium-dependent inactivation gate for Irel = 1;
Nai: Intracellular Na+ concentration =11.6 mM

Cai: Intracellular Ca+ concentration =0.0002 mM

Ki: Intracellular K+ concentration =138.3 mM

Casr: Free Ca2+ concentration in the sarcoplasmic recticulum (SR) =0.2 mM

A.2 The TP06 Model

We use the model developed by ten Tusscher and Panfilov [2] (the TP06 model) to

model an endocardial cell; this model is based on experimental data and is more re-

alistic than other human ventricular models [1,3–7]; this model has been developed

to study the action-potential morphology, alternans, intracellular ion dynamics (in

particular, calcium dynamics) at the single-cell level for epicardial, midmyocardial,

and endocardial cells. The model consists of 12 components of the ionic current,

namely, the fast inward Na+ current INa, the L-type slow inward Ca2+ current ICaL,

the transient outward current Ito, the slow delayed rectifier current IKs, the rapid

delayed rectifier current IKr, the inward rectifier K+ current IK1, the Na+/Ca2+

exchanger current INaCa, the Na+/K+ pump current INaK , the plateau Ca2+ cur-

rent IpCa, the plateau K+ currentIpK , the background Na+ current IbNa, and the

background Ca2+ current IbCa. It uses 19 variables: (a) 1 for the transmembrane

potential Vm, (b) 13 for ion-channel gates, namely, m, h, j, d, f , f2, fcass, r, s, xs, xr1,

xr2, and R̄, and (c) 5 for intracellular, ion-concentration dynamics, namely, Nai, Ki,

Cai, Casr, and Cass.

All current densities are measured in the units of pA/pF, Vm in mV, and ion

concentrations in mM/L; the ionic currents are determined by the time-dependent

ion-channel gating variables, as given above, generically denoted by ξ, which follow

ordinary differential equations of the type

dξ

dt
=

ξ∞ − ξ

τξ
,

where ξ∞ = αξ/(αξ + βξ) is the steady-state value of ξ and τξ = 1
αξ+βξ

is its time

constant; here, αξ and βξ are voltage-dependent rate constants associated with the

gate ξ.
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Reversal potentials

At equilibrium the reversal potentials obey the Nernst equation:

EX =
RT

zF
log

Xo

Xi

for X = Na+, K+, Ca2+ (A.78)

EKs =
RT

F
log

Ko + pKNaNao

Ki + pKNaNai
, (A.79)

where R is the gas constant, T the temperature, z the valence of the ion, F the

Faraday constant, Xo and Xi the extra- and intra-cellular ionic concentrations,

pKNa the relative IKs permeability to Na+.

Ionic currents

Fast Na+ current (inward)

INa = GNam
3hj(V −ENa) (A.80)

m∞ =
1

[1 + exp(−56.86−V
9.03

)]2 (A.81)

αm =
1

1 + exp(−60−V
5
) (A.82)

βm =
0.1

1 + exp(V +35
5
) + 0.1

1 + exp(V −50
200
) (A.83)

τm = αmβm (A.84)

h∞ =
1

[1 + exp(V +71.55
7.43

)]2 (A.85)

αh = 0 if V ≥ −40 (A.86)

= 0.057exp(−(V + 80)
6.8

) (otherwise)
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βh =
0.77

0.13 [1 + exp (−(V +10.66)
11.1

)] if V ≥ −40 (A.87)

= 2.7exp(0.079V ) + 3.1 × 105exp(0.3485V ) (otherwise)
τh =

1

αh + βh

(A.88)

j∞ =
1

[1 + exp(V +71.55
7.43

)]2 (A.89)

αj = 0 if V ≥ −40 (A.90)

=
(−2.5428 × 104 exp(0.2444V ) − 6.948 × 10−6 exp(−0.04391V ))(V + 37.38)

1 + exp (0.311(V + 79.23)) (otherwise)
βj =

0.6 exp(0.057V )
1 + exp (−0.1(V + 32)) if V ≥ −40 (A.91)

=
0.02424exp(−0.01052V )

1 + exp (−0.1378(V + 40.14)) (otherwise)
τj =

1

αj + βj

(A.92)
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L-type Ca2+ current (inward)

ICaL = GCaLdff2fCa4
(V − 15)F 2

RT

0.25CaSSexp(2(V −15)FRT
) −Cao

exp(2(V −15)F
RT

) − 1 (A.93)

d∞ =
1

1 + exp(−8−V
7.5
) (A.94)

αd =
1.4

1 + exp(−35−V
13
) + 0.25 (A.95)

βd =
1.4

1 + exp(V +5
5
) (A.96)

γd =
1

1 + exp(50−V
20
) (A.97)

τd = αdβd + γd (A.98)

f∞ =
1

1 + exp(V +20
7
) (A.99)

αf = 1102.5exp(−(V + 27)2
225

) (A.100)

βf =
200

1 + exp(13−V
10
) (A.101)

γf =
180

1 + exp(V +30
10
) + 20 (A.102)

τf = αf + βf + γf (A.103)

f2∞ =
0.67

1 + exp(V +35
7
) + 0.33 (A.104)

αf2 = 600exp(−(V + 25)2
170

) (A.105)

βf2 =
31

1 + exp(25−V
10
) (A.106)

γf2 =
16

1 + exp(V +30
10
) (A.107)

τf2 = αf2 + βf2 + γf2 (A.108)

fCass∞ =
0.6

1 + (CaSS

0.05
)2 + 0.4 (A.109)

τfCass =
80

1 + (CaSS

0.05
)2 + 2 (A.110)
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Transient outward current (outward)

Ito = Gtors(V −EK) (A.111)

r∞ =
1

1 + exp(20−V
6
) (A.112)

τr = 9.5exp(−(V + 40)2
1800

) + 0.8 (A.113)

s∞ =
1

1 + exp(V +28
5
) (A.114)

τs = 1000exp(−(V + 67)2
1000

) + 8 (A.115)

Slow delayed rectifier current (outward)

IKs = GKsxs
2(V −EKs) (A.116)

xs∞ =
1

1 + exp(−5−V
14
) (A.117)

αxs =
1400√

1 + exp(5−V
6
) (A.118)

βxs =
1

1 + exp(V −35
15
) (A.119)

τxs = αxsβxs + 80 (A.120)

Rapid delayed rectifier current (outward)

IKr = GKr

√
Ko

5.4
xr1xr2(V −EK) (A.121)

xr1∞ =
1

1 + exp(−26−V
7
) (A.122)

αxr1 =
450

1 + exp(−45−V
10
) (A.123)

βxr1 =
6

1 + exp(V +30
11.5
) (A.124)

τxr1 = αxr1βxr1 (A.125)

xr2∞ =
1

1 + exp(V +88
24
) (A.126)

αxr2 =
3

1 + exp(−60−V
20
) (A.127)

βxr2 =
1.12

1 + exp(V −60
20
) (A.128)

τxr2 = αxr2βxr2 (A.129)
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Inward rectifier K+ current (outward)

IK1 = GK1

√
Ko

5.4
xK1∞(V −EK) (A.130)

αK1 =
0.1

1 + exp (0.06(V −EK − 200)) (A.131)

βK1 =
3 exp (0.0002(V −EK + 100)) + exp (0.1(V −EK − 10))

1 + exp(−0.5(V −EK)) (A.132)

XK1∞ =
αK1

αK1 + βK1

(A.133)

Na+-Ca2+ exchanger current

INaCa = kNaCa

exp (γV F

RT
)Nai

3Cao − exp ( (γ−1)V F

RT
)Nao

3Caiα

(KmNai
3
+Nao

3)(KmCa +Cao)(1 + ksatexp ( (γ−1)V F

RT
)) (A.134)

Na+-K+ pump current

INaK = PNaK

KoNai(Ko +KmK)(Nai +KmNa)(1 + 0.1245 exp (−0.1V F
RT
) + 0.0353 exp (−V F

RT
))

(A.135)

Plateau Ca2+ current (outward)

IpCa = GpCa

Cai

KpCa +Cai
(A.136)

(A.137)

Plateau K+ current (outward)

IpK = GpK

V −EK

1 + exp(25−V
5.98
) (A.138)

Background Na+ current (inward)

IbNa = GbNa(V −ENa) (A.139)

(A.140)

Background Ca2+ current (inward)

IbCa = GbCa(V −ECa) (A.141)
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Ion dynamics

Ca2+ dynamics

Ileak = Vleak(Casr −Cai) (A.142)

Iup =
Vmaxup

1 + (Kup

Cai
)2 (A.143)

Irel = VrelO(Casr −Cass) (A.144)

Ixfer = Vxfer(Cass −Cai) (A.145)

O =
k1Ca2ssR̄

k3 + k1Ca2ss
(A.146)

dR̄

dt
= −k2CassR̄ + k4(1 − R̄) (A.147)

k1 =
k′1
kcasr

(A.148)

k2 = k′2kcasr (A.149)

kcasr = maxsr −
maxsr −minsr

1 + ( EC
Casr
)2 (A.150)

Caibufc =
Cai×Bufc

Cai +Kbufc

(A.151)

dCaitotal

dt
= −

IbCa + IpCa − 2INaCa

2VCF
+

VSR

VC

(Ileak − Iup) + Ixfer (A.152)

Casrbufsr =
Casr×Bufsr

Casr +Kbufsr

(A.153)

dCasrtotal

dt
= (−Ileak + Iup − Irel) (A.154)

Cassbufss =
Cass×Bufss

Cass +Kbufss

(A.155)

dCasstotal

dt
= −

1

2VSSF
ICaL +

VSR

VSS

Irel −
VC

VSS

Ixfer (A.156)

Na+ dynamics

dNai

dt
= −

INa + IbNa + 3INaK + 3INaCa

VCF
(A.157)

K+ dynamics

dKi

dt
= −

IK1 + Ito + IKr + IKs − 2INaK + IpK + Istim

VCF
(A.158)
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Model parameters

Channel conductances

GNa: Maximal fast Na+ current (INa) conductance =14.838 nS/pF

GCaL: Maximal L-type Ca2+ current (ICaL) conductance =3.98× 10−5 cm⋅µF−1⋅ms−1

Gto: Maximal transient outward current (Ito) conductance =0.073 nS/pF

GKs: Maximal slow delayed rectifier current (IKs) conductance =0.392 nS/pF

GKr: Maximal rapid delayed rectifier current (IKr) conductance =0.153 nS/pF

GK1: Maximal inward rectifier K+ current (IK1) conductance =5.405 nS/pF

GpCa: Maximal plateau Ca2+ current (IpCa) conductance =0.1238 nS/pF

GpK : Maximal plateau K+ current (IpK) conductance =0.0146 nS/pF

GbNa: Maximal background Na+ current (IbNa) conductance =0.00029 nS/pF

GbCa: Maximal background Ca2+ current (IbCa) conductance =0.000592 nS/pF

Ion concentration

Nao: Extracellular Na+ concentration =140 mM

Cao: Extracellular Ca+ concentration =5.4 mM

Ko: Extracellular K+ concentration =2 mM

Cell geometry (Volume)

VC : Cytoplasmic volume =16404 µm3

VSR: Sarcoplasmic recticulum volume =1094 µm3

VSS: Diadic subspace volume =54.68 µm3

Other parameters

pKNa: Relative IKs permeability to Na+ =0.03
kNaCa: Maximal Na+/Ca2+ exchanger current (INaCa) =1000 pA/pF

kmNai: Nai half-saturation constant for INaCa =87.5 mM

kmCa: Cai half-saturation constant for INaCa =1.38 mM

ksat: Saturation factor for INaCa =0.1
α: Factor enhancing outward nature of INaCa =2.5
γ: Voltage dependence parameter of INaCa =0.35
PNaK : Maximal INaK =2.724 pA/pF

KmK : Ko half-saturation constant of INaK =1 mM

KmNa: Nai half-saturation constant of INaK =40 mM

KpCa: Cai half-saturation constant of IpCa =0.0005 mM

Vleak: Maximal Ileak conductance =0.00036 mM /ms
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Vmaxup: Maximal Iup conductance =0.006375 mM /ms

Kup: Half-saturation constant of Iup = 0.00025 mM

Vrel: Maximal Irel conductance =0.102 mM /ms

Vxfer: Maximal Ixfer conductance =0.0038 mM /ms

k′1: R to O and RI to I Irel transition rate = 0.15 mM−2
⋅ms−1

k′2: O to I and R to RI Irel transition rate = 0.045 mM−1
⋅ms−1

k3: O to R and I to RI Irel transition rate = 0.06 ms−1

k4: I to O and RI to I Irel transition rate = 0.005 ms−1

EC: CaSR half-saturation constant of kcasr = 1.5 mM

maxsr: Maximum value of kcasr = 2.5
minsr: Minimum value of kcasr = 1.0
Bufc: Total cytoplasmic buffer concentration =0.2 mM

Bufsr: Total sarcoplasmic recticulum buffer concentration =10 mM

Bufss: Total diadic subspace buffer concentration =0.4 mM

Kbufc: Cai half-saturation constant for cytoplasmic buffer =0.001 mM

Kbufsr: CaSR half-saturation constant for sarcoplasmic recticulum buffer =0.3 mM

Kbufss: CaSS half-saturation constant for diadic subspace buffer =0.00025 mM

Initialized gating variables and ion concentrations

m: Activation gate for INa = 0;
h: Fast inactivation gate for INa = 0.75;
j: Slow inactivation gate for INa = 0.75;
d: Activation gate for ICaL = 0;
f : Slow inactivation gate for ICaL = 1;
f2: Fast inactivation gate for ICaL = 1;
fCass: Diadic subspace free calcium-dependent inactivation gate for ICaL = 1;
r: Activation gate for Ito = 0;
s: Inactivation gate for Ito = 1;
xs: Activation gate for IKs = 0;
xr1: Activation gate for IKr = 0;
xr2: Inactivation gate for IKr = 1;
R̄: Proportion of close Irel channel = 1;
O: Proportion of open Irel channel = 0;
Nai: Intracellular Na+ concentration =7.67 mM

Cai: Intracellular Ca+ concentration =0.00007 mM

Ki: Intracellular K+ concentration =138.3 mM
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Casr: Free Ca2+ concentration in the sarcoplasmic recticulum (SR) =1.3 mM

Cass: Free Ca2+ concentration in the diadic subspace (SS) =0.00007 mM

A.3 The Purkinje Model

We use the model developed by the Stewart et al. [8] to model a Purkinje cell. This

model has been developed for a human Purkinje cell by modifying two major ionic

currents, namely, transient outward current, Ito, and inward rectifier K+ current,

IK1, of the TP06 model; the Stewart et al. model also includes two more ionic cur-

rents, namely, the sustained K+ current, Isus, and the hyperpolarization-activated

current, If ; hence, the model consists of 14 ionic currents. Furthermore, the maxi-

mum channel conductances for Na+ current, INa, and both rapid and slow delayed

rectifier K+ currents, IKr and IKs, are modified to obtain the correct channel ki-

netics for a Purkinje cell. The model can reproduce the contribution of individual

ionic currents to the action potential morphology for a human Purkinje cell in both

healthy and disease cases. It uses 20 variables: (a) 1 for the transmembrane poten-

tial Vm, (b) 14 for ion channel gates, namely, m, h, j, d, f , f2, fcass, r, s, xs, xr1, xr2,

y, and R̄ , and (c) 5 for intracellular, ion-concentration dynamics, namely, Nai, Ki,

Cai, Casr, and Cass.

All current densities are measured in the units of pA/pF, Vm in mV, and ion

concentrations in mM/L; the ionic currents are determined by the time-dependent

ion-channel gating variables, as given above, generically denoted by ξ, which follow

ordinary differential equations of the type

dξ

dt
=

ξ∞ − ξ

τξ
,

where ξ∞ = αξ/(αξ + βξ) is the steady-state value of ξ and τξ = 1
αξ+βξ

is its time

constant; here, αξ and βξ are voltage-dependent rate constants associated with the

gate ξ.

Reversal potentials

At equilibrium the reversal potentials obey the Nernst equation:

EX =
RT

zF
log

Xo

Xi

for X = Na+, K+, Ca2+ (A.159)

EKs =
RT

F
log

Ko + pKNaNao

Ki + pKNaNai
, (A.160)
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where R is the gas constant, T the temperature, z the valence of the ion, F the

Faraday constant, Xo and Xi the extra- and intra-cellular ionic concentrations,

pKNa the relative IKs permeability to Na+.

Ionic currents

Fast Na+ current (inward)

INa = GNam
3hj(V −ENa) (A.161)

m∞ =
1

[1 + exp(−56.86−V
9.03

)]2 (A.162)

αm =
1

1 + exp(−60−V
5
) (A.163)

βm =
0.1

1 + exp(V +35
5
) + 0.1

1 + exp(V −50
200
) (A.164)

τm = αmβm (A.165)

h∞ =
1

[1 + exp(V +71.55
7.43

)]2 (A.166)

αh = 0 if V ≥ −40 (A.167)

= 0.057exp(−(V + 80)
6.8

) (otherwise)

βh =
0.77

0.13 [1 + exp (−(V +10.66)
11.1

)] if V ≥ −40 (A.168)

= 2.7exp(0.079V ) + 3.1 × 105exp(0.3485V ) (otherwise)
τh =

1

αh + βh

(A.169)

j∞ =
1

[1 + exp(V +71.55
7.43

)]2 (A.170)

αj = 0 if V ≥ −40 (A.171)

=
(−2.5428 × 104 exp(0.2444V ) − 6.948 × 10−6 exp(−0.04391V ))(V + 37.38)

1 + exp (0.311(V + 79.23)) (otherwise)
βj =

0.6 exp(0.057V )
1 + exp (−0.1(V + 32)) if V ≥ −40 (A.172)

=
0.02424exp(−0.01052V )

1 + exp (−0.1378(V + 40.14)) (otherwise)
τj =

1

αj + βj

(A.173)
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L-type Ca2+ current (inward)

ICaL = GCaLdff2fCa4
(V − 15)F 2

RT

0.25CaSSexp(2(V −15)FRT
) −Cao

exp(2(V −15)F
RT

) − 1 (A.174)

d∞ =
1

1 + exp(−8−V
7.5
) (A.175)

αd =
1.4

1 + exp(−35−V
13
) + 0.25 (A.176)

βd =
1.4

1 + exp(V +5
5
) (A.177)

γd =
1

1 + exp(50−V
20
) (A.178)

τd = αdβd + γd (A.179)

f∞ =
1

1 + exp(V +20
7
) (A.180)

αf = 1102.5exp(−(V + 27)2
225

) (A.181)

βf =
200

1 + exp(13−V
10
) (A.182)

γf =
180

1 + exp(V +30
10
) + 20 (A.183)

τf = αf + βf + γf (A.184)

f2∞ =
0.67

1 + exp(V +35
7
) + 0.33 (A.185)

αf2 = 600exp(−(V + 25)2
170

) (A.186)

βf2 =
31

1 + exp(25−V
10
) (A.187)

γf2 =
16

1 + exp(V +30
10
) (A.188)

τf2 = αf2 + βf2 + γf2 (A.189)

fCass∞ =
0.6

1 + (CaSS

0.05
)2 + 0.4 (A.190)

τfCass =
80

1 + (CaSS

0.05
)2 + 2 (A.191)
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Transient outward current (outward)

Ito = Gtors(V −EK) (A.192)

r∞ =
1

1 + exp(20−V
13
) (A.193)

τr = 10.45exp(−(V + 40)2
1800

) + 7.3 (A.194)

s∞ =
1

1 + exp(V +27
13
) (A.195)

τs = 85exp(−(V + 25)2
320

) + 5

1 + exp(V −40
5
) + 42 (A.196)

Sustained K+ current (outward)

Ito = Gsusa∞(V −EK) (A.197)

a∞ =
1

1 + exp(5−V
17
) (A.198)

Slow delayed rectifier current (outward)

IKs = GKsxs
2(V −EKs) (A.199)

xs∞ =
1

1 + exp(−5−V
14
) (A.200)

αxs =
1400√

1 + exp(5−V
6
) (A.201)

βxs =
1

1 + exp(V −35
15
) (A.202)

τxs = αxsβxs + 80 (A.203)
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Rapid delayed rectifier current (outward)

IKr = GKr

√
Ko

5.4
xr1xr2(V −EK) (A.204)

xr1∞ =
1

1 + exp(−26−V
7
) (A.205)

αxr1 =
450

1 + exp(−45−V
10
) (A.206)

βxr1 =
6

1 + exp(V +30
11.5
) (A.207)

τxr1 = αxr1βxr1 (A.208)

xr2∞ =
1

1 + exp(V +88
24
) (A.209)

αxr2 =
3

1 + exp(−60−V
20
) (A.210)

βxr2 =
1.12

1 + exp(V −60
20
) (A.211)

τxr2 = αxr2βxr2 (A.212)

Inward rectifier K+ current (outward)

IK1 = GK1xK1∞(V − 8 −EK) (A.213)

xK1∞ =
1

1 + exp (0.1(V + 75.44)) (A.214)

Hyperpolarization-activated current

If = IfK + IfNa (A.215)

IfK = GfKy(V −EK) (A.216)

IfNa = GfNay(V −ENa) (A.217)

y∞ =
1

1 + exp (V +80.6
6.8
) (A.218)

αy = exp (−2.9 − 0.04V ) (A.219)

βy = exp (3.6 + 0.11V ) (A.220)

τy =
4000

αy + βy

(A.221)
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Na+-Ca2+ exchanger current

INaCa = kNaCa

exp (γV F

RT
)Nai

3Cao − exp ( (γ−1)V F

RT
)Nao

3Caiα

(KmNai
3
+Nao

3)(KmCa +Cao)(1 + ksatexp ( (γ−1)V F

RT
)) (A.222)

Na+-K+ pump current

INaK = PNaK

KoNai(Ko +KmK)(Nai +KmNa)(1 + 0.1245 exp (−0.1V F
RT
) + 0.0353 exp (−V F

RT
))

(A.223)

Plateau Ca2+ current (outward)

IpCa = GpCa

Cai

KpCa +Cai
(A.224)

(A.225)

Plateau K+ current (outward)

IpK = GpK

V −EK

1 + exp(25−V
5.98
) (A.226)

Background Na+ current (inward)

IbNa = GbNa(V −ENa) (A.227)

(A.228)

Background Ca2+ current (inward)

IbCa = GbCa(V −ECa) (A.229)
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Ion dynamics

Ca2+ dynamics

Ileak = Vleak(Casr −Cai) (A.230)

Iup =
Vmaxup

1 + (Kup

Cai
)2 (A.231)

Irel = VrelO(Casr −Cass) (A.232)

Ixfer = Vxfer(Cass −Cai) (A.233)

O =
k1Ca2ssR̄

k3 + k1Ca2ss
(A.234)

dR̄

dt
= −k2CassR̄ + k4(1 − R̄) (A.235)

k1 =
k′1
kcasr

(A.236)

k2 = k′2kcasr (A.237)

kcasr = maxsr −
maxsr −minsr

1 + ( EC
Casr
)2 (A.238)

Caibufc =
Cai×Bufc

Cai +Kbufc

(A.239)

dCaitotal

dt
= −

IbCa + IpCa − 2INaCa

2VCF
+

VSR

VC

(Ileak − Iup) + Ixfer (A.240)

Casrbufsr =
Casr×Bufsr

Casr +Kbufsr

(A.241)

dCasrtotal

dt
= (−Ileak + Iup − Irel) (A.242)

Cassbufss =
Cass×Bufss

Cass +Kbufss

(A.243)

dCasstotal

dt
= −

1

2VSSF
ICaL +

VSR

VSS

Irel −
VC

VSS

Ixfer (A.244)

Na+ dynamics

dNai

dt
= −

INa + IbNa + IfNa + 3INaK + 3INaCa

VCF
(A.245)

K+ dynamics

dKi

dt
= −

IK1 + Ito + IKr + IKs + IfK + Isus − 2INaK + IpK + Istim

VCF
(A.246)
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Model parameters

Channel conductances

GNa: Maximal fast Na+ current (INa) conductance =130.5744 nS/pF

GCaL: Maximal L-type Ca2+ current (ICaL) conductance =3.98× 10−5 cm⋅µF−1⋅ms−1

Gto: Maximal transient outward current (Ito) conductance =0.08184 nS/pF

Gsus: Maximal sustained K+ current (Isus) conductance =0.0227 nS/pF

GKs: Maximal slow delayed rectifier current (IKs) conductance =0.2352 nS/pF

GKr: Maximal rapid delayed rectifier current (IKr) conductance =0.0918 nS/pF

GK1: Maximal inward rectifier K+ current (IK1) conductance =0.065 nS/pF

GfK : Maximal hyperpolarization-activatedK+ current (IfK) conductance =0.0234346
nS/pF

GfNa: Maximal hyperpolarization-activatedNa+ current (IfNa) conductance =0.0145654
nS/pF

GpCa: Maximal plateau Ca2+ current (IpCa) conductance =0.1238 nS/pF

GpK : Maximal plateau K+ current (IpK) conductance =0.0146 nS/pF

GbNa: Maximal background Na+ current (IbNa) conductance =0.00029 nS/pF

GbCa: Maximal background Ca2+ current (IbCa) conductance =0.000592 nS/pF

Ion concentration

Nao: Extracellular Na+ concentration =140 mM

Cao: Extracellular Ca+ concentration =5.4 mM

Ko: Extracellular K+ concentration =2 mM

Cell geometry (Volume)

VC : Cytoplasmic volume =16404 µm3

VSR: Sarcoplasmic recticulum volume =1094 µm3

VSS: Diadic subspace volume =54.68 µm3

Other parameters

pKNa: Relative IKs permeability to Na+ =0.03
kNaCa: Maximal Na+/Ca2+ exchanger current (INaCa) =1000 pA/pF

kmNai: Nai half-saturation constant for INaCa =87.5 mM

kmCa: Cai half-saturation constant for INaCa =1.38 mM

ksat: Saturation factor for INaCa =0.1
α: Factor enhancing outward nature of INaCa =2.5
γ: Voltage dependence parameter of INaCa =0.35
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PNaK : Maximal INaK =2.724 pA/pF

KmK : Ko half-saturation constant of INaK =1 mM

KmNa: Nai half-saturation constant of INaK =40 mM

KpCa: Cai half-saturation constant of IpCa =0.0005 mM

Vleak: Maximal Ileak conductance =0.00036 mM /ms

Vmaxup: Maximal Iup conductance =0.006375 mM /ms

Kup: Half-saturation constant of Iup = 0.00025 mM

Vrel: Maximal Irel conductance =0.102 mM /ms

Vxfer: Maximal Ixfer conductance =0.0038 mM /ms

k′1: R to O and RI to I Irel transition rate = 0.15 mM−2
⋅ms−1

k′2: O to I and R to RI Irel transition rate = 0.045 mM−1
⋅ms−1

k3: O to R and I to RI Irel transition rate = 0.06 ms−1

k4: I to O and RI to I Irel transition rate = 0.005 ms−1

EC: CaSR half-saturation constant of kcasr = 1.5 mM

maxsr: Maximum value of kcasr = 2.5
minsr: Minimum value of kcasr = 1.0
Bufc: Total cytoplasmic buffer concentration =0.2 mM

Bufsr: Total sarcoplasmic recticulum buffer concentration =10 mM

Bufss: Total diadic subspace buffer concentration =0.4 mM

Kbufc: Cai half-saturation constant for cytoplasmic buffer =0.001 mM

Kbufsr: CaSR half-saturation constant for sarcoplasmic recticulum buffer =0.3 mM

Kbufss: CaSS half-saturation constant for diadic subspace buffer =0.00025 mM

Initialized gating variables and ion concentrations

m: Activation gate for INa = 0;
h: Fast inactivation gate for INa = 0.75;
j: Slow inactivation gate for INa = 0.75;
d: Activation gate for ICaL = 0;
f : Slow inactivation gate for ICaL = 1;
f2: Fast inactivation gate for ICaL = 1;
fCass: Diadic subspace free calcium-dependent inactivation gate for ICaL = 1;
r: Activation gate for Ito = 0;
s: Inactivation gate for Ito = 1;
xs: Activation gate for IKs = 0;
xr1: Activation gate for IKr = 0;
xr2: Inactivation gate for IKr = 1;
y: Activation gate for IfK and IfNa = 0;
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R̄: Proportion of close Irel channel = 1;
O: Proportion of open Irel channel = 0;
Nai: Intracellular Na+ concentration =7.67 mM

Cai: Intracellular Ca+ concentration =0.00007 mM

Ki: Intracellular K+ concentration =138.3 mM

Casr: Free Ca2+ concentration in the sarcoplasmic recticulum (SR) =1.3 mM

Cass: Free Ca2+ concentration in the diadic subspace (SS) =0.00007 mM
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