Turbulence in the ICM

Prateek Sharma, IISc Bangalore

ICM workshop, Garching, 09/09/2018

Systematics have really interesting physics!

Why study ICM turbulence?

- Turbulent support biases cluster mass estimates
- Turbulent heating in cool cores
- Constraints on ICM (high-β) plasma transport
- Implications on thermal instability & condensation, extrapolation to puzzling CGM observations (turbulent BLs, cloudlets, t_{cool}/t_{eddy},...)
- Convert SB (X-ray maps) & projected pressure fluctuations (resolved SZ maps) to v_t

Idealized simulations

Turbulence in the intracluster medium: simulations, observables & thermodynamics

arXiv:1810.00018

Rajsekhar Mohapatra,^{1,2}* Prateek Sharma,^{1,3}*

¹Department of Physics, Indian Institute of Science, Bangalore, 560012, India

² Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

³ MPI für Astrophysik, Karl-Schwarzschild str. 1, Garching 85741, Germany

Isotropic, homogeneous turbulence

To test scalings of density/pressure fluctuations with rms Mach number

ρ, P, v Power spectra: ρ/P spectra smaller by a factor of M² as compared to v

Turbulence with heating & cooling

TI leads to much larger density fluctuations

If cold gas condenses out of ICM, t_{cool} <t_{\text{mix}}

Constraints vt & turbulent heating to be small

Idealized simulations

Turbulence in the intracluster medium: simulations, observables & thermodynamics

lf

by

arXiv:1810.00018

Rajsekhar Mohapatra,^{1,2}* Prateek Sharma,^{1,3}*

¹Department of Physics, Indian Institute of Science, Bangalore, 560012, India

² Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

³ MPI für Astrophysik, Karl-Schwarzschild str. 1, Garching 85741, Germany

S

ix

all

Isotropic, homogeneous turbulence

Caveats:

ICM is gravitationally stratified Turbulence can excite gravity waves $\delta \rho_k / \rho \sim (v_k / c_s) / \sqrt{3}$

ρ,

But Kolmogorov at small scales!

Turbulence with heating & cooling

Caveats:

Cold gas may not condense from hot ICM E.g., can be uplifted from the BCG In this case, t_{cool} can be $\gg t_{mix}$ & turbulent heating can balance cooling

Turbulence simulations

p/P fluctuations vs M

p/P fluctuations vs M

Power spectra

Power spectra

Stably stratified turbulence

$$\operatorname{Ri}(l) = \operatorname{Fr}^{-2}(l) = \frac{N^2}{v^2(l)/l^2} = \frac{\frac{g}{\gamma} \frac{d}{d\ln r} \ln(p/\rho^{\gamma})}{v^2(l)/l}$$

Anisotropy crucial for Ri>>1, not so much for the ICM that has a shallow entropy profile $g \frac{d}{d \ln r} \ln T$ for magnetized plasmas, which is even shallower Turbulence dominates at small scales.

Caveat for the present work: background stratification & gravity are ignored Background gravity also suppresses multiphase condensation due to local TI

Turbulence, heating & cooling

K41 Estimates

thermal balance, driving at large scales

$$\dot{E}_{\rm turb} \sim \rho v_l^2 / t_{\rm mix,l} \approx \rho v_l^3 / l \approx f_{\rm turb} \dot{E}_{\rm cool} = f_{\rm turb} U / t_{\rm cool}$$

$$t_{\text{cool}}/t_{\text{mix},L} \approx f_{\text{turb}}U/2K \sim f_{\text{turb}}\mathcal{M}_{\text{rms}}^{-2}$$

If cold gas is to condense out of the hot phase, $~t_{
m cool}\lesssim t_{
m mix}$ or, ${\cal M}\gtrsim 1$ for $f_{
m turb}\sim 1$

For driving at small scales, an equivalent estimate is $f_{\rm turb}(L/l)^2 {\cal M}_{\rm rms}^{-2} < 1 \, {\rm for} \ l > L$

A smaller/reasonable $\,\mathcal{M}_{
m rms}$ for small scale driving & smaller $\,f_{
m turb}$

 $t_{
m cool}/t_{
m mix} \gg 1$ Ok if most cold gas does not condense out but say is uplifted

Condensation for f_{turb} ~0.1

M, T PDF for f_{turb} ~0.1

Conclusions

- cooling+heating can lead to large density fluctuations in CCs; TI must be accounted for in converting density fluctuations to v_{rms}
- M<1 implies that f_{turb} <<1 if cold gas is to condense out of the ICM
- • f_{turb} ~0.1 to match Hitomi v_{LOS} in our setup
- Density power spectrum larger/shallower with htg/clg
- Role of background stratification in ρ-v_{rms} relation? t_{cool}/t_{ff}?
- Synergies w high resolution tSZ, X-ray and direct velocity measurements (Hitomi successor)
- MHD, plasma effects!

Thank You!