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Systematics have really interesting physics!



Why study ICM turbulence?

e Turbulent support biases cluster mass estimates
e Turbulent heating in cool cores
e Constraints on ICM (high-f3) plasma transport

e |Implications on thermal instability & condensation,
extrapolation to puzzling CGM observations (turbulent
BLs, cloudlets, tcool/teday,. . .)

e Convert SB (X-ray maps) & projected pressure
fluctuations (resolved SZ maps) to vi
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Isotropic, homogeneous turbulence Turbulence with heating & cooling

To test scalings of density/pressure Tl leads to much larger density fluctuations
fluctuations with rms Mach number

0, P, v Power spectra: p/P spectra smaller by It cold gas condenses out of ICM, teool <tmix

a factor of M2 as compared to v Constraints v & turbulent heating to be small
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Turbulence simulations

s,
£V (pv) =0,
8 [ Solenoidal forcing at selected ks

9(pv) | V-(pv®V)+VP:F‘,/

ﬁgt Power input by turbulent forcing heats the gas
oy +V-(E+P)v)=F-v

/

3-D periodic box, isotropic/homogeneousi|stirring
Using PLUTO code
2563, 5123 simulations




o/P fluctuations vs M
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o/P fluctuations vs M
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While ratio is constant in inertial range, it increases
with increasing M, unlike in stratified turbulence
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Implications for converting
density fluctuations to velocity
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p/SB spectra
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SB power spectrum is steeper by unity, as expected!
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Stably stratified turbulence

Courtesy NASA/JPL-Caltech
Spiral structures in ICM!

N? i In(p/p7)

Ri(l) = Fr2(l) = = 2°nr
v (1) /17 v(l)/1

Anisotropy crucial for Ri>>1, not so much for the ICM that has a shallow entropy profile

d
gdlnfr

In ‘[’ for magnetized plasmas, which is even shallower

Turbulence dominates at small scales.

Caveat for the present work: background stratification & gravity are ignored
Background gravity also suppresses multiphase condensation due to local Tl



Turbulence, heating & cooling
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d(pv)
Ot
OFE

ot

-V (E

-V - (pv) =0,

Solenoidal forcing at selected ks

/
V- (ov®vVv)+ VP =F,

Power input by turbulent forcing = fturb <£>

P)v) =F <

(] _fturb) <£>

added as thermal energy

Imposed observed thermal balance

3-D periodic box, isptropic/h

0-L

— neniA[T] floor T=106 K

40 kpc

mogeneops stirring
tions




K41 Estimates

thermal balance, driving at large scales

’ 2 3 . : o,
Eturb ~ PV /tlllix,[ ~ PV [l = frurbEcool = fturbU/cool

COOl/tIIIIX,L ftuxbU/zK ftUIerms

If cold gas is to condense out of the hot phase, Tcool 5 tmix

of, M z 1 for fturb ~ ]

For driving at small scales, an equivalent estimate is
2 Aq—2 -
ﬁcurb(L/l) Mrms < lforl > L

A smaller/reasonable ./\/l]mmS for small scale driving & smaller fturb

tcool / tmix =>> 1 Ok if most cold gas does not condense out but say is uplifted
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LS & SS driving
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Adjustlng Jturb to match Hitomi
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Condensation for fiurb~0.1

DB: data.0007.vik
Cycle: 7 Time:54.8497
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pP/P fluctuations vs M
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Density fluctuations|much larger,
even before congdensation
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Power spectra w htg/clg
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pectrum much larger/shallower than K41

s rum matches K41

to velocity,



Conclusions

e cooling+heating can lead to large density fluctuations in CCs; Tl must be
accounted for in converting density fluctuations to vims

e M<1 implies that fiuro<<1 if cold gas is to condense out of the ICM
‘fturb~0.1 to match Hitomi vios In our setup

e Density power spectrum larger/shallower with htg/clg

* Role of background stratification in p-vims relation? tcool/t?

e Synergies w high resolution tSZ, X-ray and direct velocity measurements
(Hitomi successor)

e MHD, plasma effects!
Thank You!



