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Abstract

Many astrophysical objects (e.g., spiral galaxies, the solar system, Saturn’s rings,
and luminous disks around compact objects) occur in the form of a disk. One of
the important astrophysical problems is to understand how rotationally supported
disks lose angular momentum, and accrete towards the bottom of the gravitational
potential, converting gravitational energy into thermal (and radiation) energy.

The magnetorotational instability (MRI), an instability causing turbulent trans-
port in ionized accretion disks, is studied in the kinetic regime. Kinetic effects are
important because radiatively inefficient accretion flows (RIAFs), like the one around
the supermassive black hole in the center of our Galaxy, are collisionless. The ion
Larmor radius is tiny compared to the scale of MHD turbulence so that the drift
kinetic equation (DKE), obtained by averaging the Vlasov equation over the fast gy-
romotion, is appropriate for evolving the distribution function. The kinetic MHD
formalism, based on the moments of the DKE;, is used for linear and nonlinear stud-
ies. A Landau fluid closure for parallel heat flux, which models kinetic effects like
collisionless damping, is used to close the moment hierarchy.

We show that the kinetic MHD and drift kinetic formalisms give the same set
of linear modes for a Keplerian disk. The BGK collision operator is used to study

the transition of the MRI from kinetic to the MHD regime. The ZEUS MHD code
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is modified to include the key kinetic MHD terms: anisotropic pressure tensor and
anisotropic thermal conduction. The modified code is used to simulate the collisionless
MRI in a local shearing box. As magnetic field is amplified by the MRI, pressure
anisotropy (pi > pj) is created because of the adiabatic invariance (u o pi/B).
Larmor radius scale instabilities—mirror, ion-cyclotron, and firehose—are excited
even at small pressure anisotropies (Ap/p ~ 1/3). Pressure isotropization due to
pitch angle scattering by these instabilities is included as a subgrid model. A key
result of the kinetic MHD simulations is that the anisotropic stress can be as large as
the Maxwell stress.

It is shown, with the help of simple tests, that the centered differencing of anisotropic
thermal conduction can cause the heat to flow from lower to higher temperatures,
giving negative temperatures in regions with large temperature gradients. A new
method, based on limiting the transverse temperature gradient, allows heat to flow
only from higher to lower temperatures. Several tests and convergence studies are

presented to compare the different methods.
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Chapter 1

Introduction

Disks are ubiquitous in astrophysics. Many astrophysical objects, e.g., Saturn’s rings,
the solar system, and galaxies, are disk shaped. A disk is formed when the matter
has sufficient angular momentum for the centrifugal force to balance the attractive
gravitational force; this differs from other systems like stars and planets where grav-
itational attraction is balanced by pressure. Key astrophysical processes, like star
and planet formation, and many sources in high energy astrophysics, are based on an
accretion disk. Accretion refers to the accumulation of matter onto a central compact
object or the center of mass of an extended system. Examples of accreting systems
are: binaries where matter flows from a star to a compact object like a black hole, a
neutron star, or a white dwarf (see Figure 1.1); Active Galactic Nuclei (AGN) pow-
ered by accretion onto a supermassive black hole in the center of galaxies (see Figure

1.2); and protostellar and protoplanetary disks, the predecessors of stars and planets.

To accrete, matter has to lose angular momentum. Gravitational binding energy
released because of the infall of matter is a powerful source of luminosity. Quasars,
one of the most luminous sources in the universe, are powered by accretion [120]. The

central problem in accretion physics is, how does matter lose rotational support and



Figure 1.1: An artist’s impression of a binary accretion disk. Plasma overflows from
the stellar companion and forms an accretion disk around the compact object. Draw-
ing Credit: ST Scl, NASA; http://antwrp.gsfc.nasa.gov/apod/ap991219.html.

Figure 1.2: Inset at upper left shows X-ray emission from energetic particles in
the jet of quasar GB1508+5714. Many accretion disks have jets associated with
them. The illustration shows an accretion disk surrounding a supermassive black
hole, which launches a collimated jet. Credit: A. Siemiginowska, Illustration by
M. Weiss; http://antwrp.gsfc.nasa.gov/apod/ap031128.html.



fall in? In many disks the mass of the central object is much larger than the disk
mass, resulting in a Keplerian rotation profile (2 ~ R~%/2). In principle, the presence
of a shear viscosity allows the transport of angular momentum from the faster inner
fluid elements to the slower outer ones. However, the accretion rate obtained by
putting in a typical number for microscopic (collisional) viscosity is several orders of
magnitude smaller than needed to explain observations.

Turbulent stress due to interacting large scale (& disk height) eddies is sufficient
to provide the needed accretion rates. For turbulent stress one needs a source to
sustain the turbulence; otherwise the nonlinear motions will be damped due to vis-
cosity. Hydrodynamic disks with specific angular momentum (angular momentum
per unit mass) increasing outwards (e.g., Keplerian disks) are linearly stable. A large
Reynolds number is not sufficient to produce nonlinear turbulent motions from small
perturbations. A source to produce and to sustain the turbulence is required. A
linear instability, that can tap the free energy in differential rotation, can amplify
small amplitude fluctuations into large scale nonlinear motions, and provide such a
source. A big advance was made when Balbus and Hawley realized that the mag-
netorotational instability (MRI), an instability of magnetized, differentially rotating
flows, can cause turbulent transport in accretion disks [14, 86].

Although, the identification of the MRI as the source of turbulence in accretion
flows was a major step in understanding accretion, there are several unsolved prob-
lems. Although the MRI only requires a small amount of ionization to work [29],
protostellar disks, from which stars and planets form, are very cold and may have
such a low degree of ionization the MRI does not operate. Another topic of investi-
gation is, whether the hydrodynamic Keplerian flow, like the planar shear flow [115],
can become turbulent at large enough Reynolds numbers (discussed more in subsec-
tion 1.3.1). Another problem, a motivation for this thesis, is to understand why some

black hole accretion disks are unusually dim [138]. Understanding of the microphysics



and the global structure of accretion flows, in important physical regimes, is still in-
complete. The theoretical disk models have to be tested against the ever detailed

observations.

1.1 Accretion as an energy source

Accretion is a very efficient source of energy. Disk models, based on accretion of
matter from a stellar companion on to a compact object (first mentioned by [108]),
were used to explain novae outbursts [50], and later compact X-ray sources [152]. The
release of thermonuclear energy from stars is insufficient to account for the high lumi-
nosity, and significant X-ray (non-blackbody) luminosity. This section, including the
subsections on the Eddington limit and the emitted spectrum, are based on Chapter
1 of [61].

To illustrate the enormous power of accretion consider the following example from
[61]. For a body of mass M, and radius R,, the gravitational energy released by accre-
tion of mass m on to its surface is AE,.. = GM.,m/R,, where G is the gravitational
constant. This energy is expected to be released mainly in the form of electromag-
netic radiation. Luminosity, the energy radiated per unit time, is proportional to the
ratio M, /R, and M, the mass accretion rate.

Writing in terms of the rest mass energy, AFEy.. = 0.15(M,/Mg)(10 km/R,)mc?,
where M, is the solar mass. If the accreting body is a neutron star with R, ~ 10
km and M, ~ Mg, then the efficiency of accretion is 0.15. For comparison, the
nuclear energy released on burning hydrogen to helium is AE,,. = 0.007mc?, about
one twentieth of the accretion yield. Thus, accretion is an even more efficient energy
source than fusion (in fact by a factor of few tens)!

Since black holes have no surface, R, refers to the radius beyond which matter

does not radiate. This radius depends on black hole spin, which is difficult to measure.



Our ignorance of R, can be parameterized by an efficiency n, with AE,.. = nmc?.

Relativistic calculations give an efficiency of 6% for a non-rotating Schwarzchild black
hole, and 42.3% for a maximally rotating Kerr black hole [133] (see Appendix A.1 for
a discussion of the efficiency of black hole accretion).

For a white dwarf with M, ~ Mg, R, ~ 10° cm, nuclear burning is more efficient
than accretion by factors 40—50. Although the efficiency for nuclear burning for white
dwarfs is much higher, in many cases the reaction tends to ‘run away’ to produce an
event of great brightness but short duration, a nova outburst, in which available
nuclear fuel is rapidly exhausted. For almost all of its lifetime no nuclear burning
occurs, and the white dwarf may derive its entire luminosity from accretion. Whether

accretion or nuclear fusion dominates depends on M, the accretion rate.

1.1.1 The Eddington limit

At high luminosity, the accretion flow is affected by the outward momentum trans-
ferred from radiation to the accreting matter by scattering and absorption. We derive
an upper limit on luminosity of an accretion disk by considering spherical, steady state
accretion. Assume the accreting matter to be fully ionized hydrogen plasma. If S

2 sec™1), and o = 6.7 x 107%cm? is the electron

is radiant energy flux (erg cm™
Thomson scattering cross section, the outward radial force is orS/c. The effective
cross section can exceed op if photons are absorbed by spectral lines. Because of the
charge neutrality of plasma, radiative force on electrons couples to protons. If L is
the luminosity of the accreting source, S = L/4nr?, net inward force on proton is
(GM,m,, — Loy /4mc)/r?. The limiting luminosity for which the radial force vanishes,
the Eddington limit, is Lpgy = 4rGM.myc/or = 1.38 x 10%(M. /M) erg s™'. At
greater luminosities, the radiation pressure will halt accretion. The Eddington limit

is a crude estimate of the upper limit on the steady state disk luminosity.

If all the kinetic energy of accretion is given up at the stellar surface, R,, then



the luminosity is Lo = GM, M /R.. For accretion powered objects, the Eddington
limit implies an upper limit on the accretion rate, M < Mg = ArR.myc/or =
9.5 x 101'R, g s7!. The Eddington limit applies only for uniform, steady accretion;
e.g., photon bubble instability [6, 64, 30], a compressive instability of radiative disks
that opens up optically thin “holes” through which radiation can escape, can allow

for super-Eddington luminosity [193, 23].

1.1.2 The emitted spectrum

Order of magnitude estimates of spectral range of the emission from compact accreting
objects can be made. The continuum spectrum can be characterized by a temperature
Trea = hU/k of emitted radiation, where 7 is the frequency of a typical photon. For
an accretion disk with luminosity L,.., one can define a blackbody temperature as
Ty = (Lgee/AnR20)/*, where ¢ is the Stefan-Boltzmann constant. Thermal temper-
ature, Ty, is defined as the temperature material would reach if its gravitational po-
tential energy is converted entirely into the thermal energy. For each proton-electron
pair accreted, the potential energy released is GM,(m, +m.)/R. = GM,m,/R,, and
the thermal energy is 2 x (3/2)kT’; therefore Ty, = GM,m,/3kR.. The virial tem-
perature, T,;. = Ty, /2, is also used frequently. If the accretion flow is optically thick,
photons reach thermal equilibrium with the accreted material before leaking out to
the observer and T,,q = Tp,. Whereas, if accretion energy is converted directly into
radiation which escapes without further interaction (i.e., the intervening material is
optically thin), T,qq = T3 In general, the observed radiation temperature is expected
to lie between the two limits, Ty, < Trog S Tin-

Applying these limits to a solar mass neutron star radiating at the Eddington limit
gives, 1 keV < hv < 50 MeV; similar results would hold for stellar mass black holes.
Thus we can expect the most luminous accreting neutron star and black hole binary

disks to appear as medium to hard X-ray emitters, and possibly as ~y-ray sources.
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Similarly for white dwarf accretion disks with M, = My, R, = 10° cm, we obtain
6 eV < hv < 100 keV. Consequently, accreting white dwarfs should be optical, UV,
and possibly X-ray sources. Observations are mostly consistent with these estimates.

Nonthermal emission mechanisms also operate in disks. Examples are: syn-
chrotron emission by relativistic electrons spiraling around magnetic field lines and
inverse Compton up-scattering of photons by relativistic electrons. Line emission
because of electronic transition between energy levels provides a useful diagnostic of
density, temperature, and velocities in the emitting region.

Accretion disks, being efficient sources of energy, can be very luminous. Their
spectra are also very rich, extending all the way from radio to X-ray and ~-ray fre-
quencies. In order to interpret the radiative signatures, one needs to understand

transport and radiation processes in accretion disks.

1.2 Accretion disk phenomenology

Much of the phenomenology of accretion disks was developed in mid-1970’s when two
influential papers, by Shakura and Sunyaev [174], and Lynden-Bell and Pringle [121],
appeared. It was shown that in the presence of a shear viscosity, an infinitesimal mass
can carry away all the angular momentum of the inner fluid elements, facilitating mass
accretion [121, 153]. The structure (thick or thin) and radiation spectrum (luminous
or radiatively inefficient) of a disk depends mainly on the rate of matter inflow, M
[174]. Of course the overall luminosity and accretion time scale depends on M, the
mass of the central object.

A binary system consisting of a star and a compact object (black hole, neutron
star, or white dwarf) is likely to be very common in the Galaxy. The outflow of matter
from the star’s surface—the stellar wind—is significant (~ 107°My, /yr) for massive

O-stars and Wolf-Rayet stars (M = 20Mg). In binary systems, an additional strong
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Figure 1.3: The density-temperature diagram for hydrogen in the regime where it
behaves as a non-relativistic plasma. Many astrophysical systems including accretion
disks are in the plasma state. The figure is taken from lecture notes by Niel Brandt,
http://www.astro.psu.edu/users/niel /astro485 /lectures/lecture08-overhead07.jpg

matter outflow connected with the Roche limiting surface is possible. The Roche
surface is the surface around the star beyond which the gravitational influence of the
compact object dominates. When a star leaves the main sequence at later stages
of its evolution, it can increase in size and fill its Roche volume, giving rise to an
intensive outflow of matter mostly through the inner Lagrangian point (an unstable
equilibrium point between the star and compact object) [61]. Figure 1.1 shows an
artist’s impression of a binary accretion system, with a star filling its Roche lobe and
accreting on to a compact object via a disk. Accretion in AGN is likely to be fed
by the winds from nearby massive stars, or the infall of intergalactic gas. Once an
accretion disk is formed around the compact object, the subsequent evolution does
not depend on the source of matter.

Figure 1.3 shows the density-temperature phase diagram for hydrogen. This shows
that the accretion disks with temperatures exceeding a few eV (and reasonable den-

sities) are fully ionized. Most accretion disks, except possibly protostellar and proto-
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planetary disks, are sufficiently ionized for the plasma description to be valid [29, 16].
Even relatively cold gas disks may have enough ionization by cosmic rays [63], X-rays
93], and radioactivity [168] to be sufficiently conducting for the MHD-like phenomena
to occur.

Magnetohydrodynamics (MHD) is a good approximation for a magnetized plasma
when the mean free path is much smaller than the scales of interest, e.g., in efficiently
radiating, dense, thin disks. This is not always the case; the radiatively inefficient
accretion flows (RIAFs), a motivation for this thesis, are believed to be collisionless
with the mean free path comparable to (or even larger than) the disk size (see Table
1.2 for plasma parameters in the Galactic center disk). Ideal MHD, where resistive
effects are negligible and the field is frozen into the plasma, is a good approximation
for large scale dynamics of almost all astrophysical plasmas; as the dynamical scales
are orders of magnitude larger than the resistive scale or the gyroradius scale. Even
with a large separation between the dynamical and resistive/viscous scales, dissipation
cannot be ignored—energy cascades from large scales to smaller scales, terminating
at the dissipative scales, where it is dissipated in shocks and reconnection. In the
inertial range of isotropic, homogeneous turbulence, energy dissipation rate balances
the rate at which energy is injected, independent of resistivity and viscosity [62, 27].

In rest of the section we closely follow the review article by Balbus and Hawley to
use the conservation of mass, energy, and angular momentum to derive the transport

properties of disks. The widely used o model for turbulent stress is introduced [174].

1.2.1 Governing equations

Following [16], the conservation of total energy in magnetohydrodynamics (MHD),

gives
0 3 B?

1 2
Ry Sp+ pd 4 — []= -V Fraa, 1.1
8t<2V+2p+p +8W)+V[] \Y d (1.1)
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where p, V, p, B, and ® are density, fluid velocity, pressure, magnetic field, and
gravitational potential, respectively. The term on the right represents radiative losses.
The conservative flux term V-[ | consists of a dynamic contribution

1 ., 5 B
v <§pV + §p+p<1>) + pi (V x B), (1.2)

and a viscous contribution,

V2 VvV B

where, 1y is the microscopic kinematic shear viscosity, and np the microscopic re-
sistivity. Here we use a uniform, isotropic viscosity for simplicity. The Braginskii
viscosity is highly anisotropic as will be discussed later in the thesis. The dynamic
flux in Eq. (1.2) consists of an advective flux of kinetic and thermal energy (the first
term), and the Poynting flux of electromagnetic energy (the second term). The equa-
tion for angular momentum conservation in cylindrical, (R, ¢, z), coordinate system

is given by

0 B B2\ -
—(pRV,) + VR [pV¢V — 4—7‘?Bp + (p + —) qb]

ot 8T
R . Vv,
-~ v [%(V-V)mnm?vf} —0, (1.4)

where ¢ is the unit vector in the azimuthal direction, the subscript p refers to the
poloidal magnetic field components (the R and z components). In an accretion disk,
there is a net flux of energy and angular momentum in the radial direction, so the
divergence terms in Eqgs. (1.1) and (1.4) are dominated by the radial derivatives of

radial fluxes.
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1.2.2 Fluctuations

A fiducial disk system consists of a point mass potential situated at the center of
the disk, with the gas going around in a Keplerian rotation, Q? = GM,/R3. The
fluctuation velocity is given by Vg, 0Vy = Vi — R, and V,. When the azimuthal
velocity R() much exceeds the isothermal sound speed ¢, = \/]7 , the disk is thin;
the vertical structure is determined by hydrostatic balance, with the disk height scale
H = ¢,/ < R. In this section we consider only thin disks because they are simpler,
for the vertical dynamics and pressure forces do not play a significant role. For thick
disks, where thermal forces are equally important and vertical motion is coupled to
the motion in plane, there is no universally accepted standard model [141, 160, 31].

The radial flux of angular momentum from Eq. (1.4) is R [pVg(RQ + 0V,) — BrBy, /4.
Taking an azimuthal average, integrating over height, and averaging over a narrow
range AR in R, one obtains, XR[RQ(Vg), + (VrdVy — VarVag),|, where the surface
density ¥ = [ pdz, and for any X, (X), = 1/(2r2AR) [ X pdpdRdz. The notation
Vg, etc. denotes the Alfvén velocity, Vo = B/y/4mp. The first term in the radial
angular momentum flux is the direct inflow of angular momentum due to radially
inward accretion of matter; the second term represents an outward component of flux
due to turbulent transport because of statistical correlations in the velocity and mag-
netic stress tensors [191]. The R¢ component of the stress, responsible for angular
momentum transport (see Eq. 1.4), is Wgy = (VROVy — VarVae),.

In steady state, the angular momentum flux must be divergence free, and thus vary
as 1/R, i.e., S R?*(RQ(VR), + Wgy) is independent of R. The condition of vanishing
stress at the inner edge (R.) gives, S(QR(V,), + Wgy) = . QR (V) ,(R./R)*.
Expressing in terms of the constant accretion rate, M = —27R¥(Vg),, leads to

~MRQ/21 + SRWgy = —MR2Q,/2rR. This gives an expression for the variation
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of stress with radius as,

R\ /2
! ( *)
R

Keeping only the second order terms in the energy flux in Eq. (1.2), one gets

(1.5)

pVr(®+ R*Q?/2+ RQ6V,) — (RQ/47) BpB,. Upon averaging, height integrating, and
using the Keplerian potential ® = —R2Q2, energy flux becomes Fz = MRQ? /4w +

Y ROWgg4. Substituting for 2 and using Eq. (1.5) for the stress tensor, this reduces

9 R* 1/2
3(3)

The energy deposited by this flux is the source of disk’s luminosity. Minus the di-

to
3GM, M

Fy = 222
E 47 R?

(1.6)

vergence of the flux gives the disk surface emissivity (energy per unit area per unit

time), ). Dividing by a factor of two for each side of the disk gives

R\ /2
! ( *)
R

The Q — M relation depends on local energy conservation and is, as expected, inde-

_ 3GM.M

Q= TRAlE (1.7)

pendent of the form of the stress tensor (see [174, 153]). Eliminating M between Eqs.
(1.5) and (1.7) yields

3 3
Q = E0Wny = J5UVadV, — VarVao),, (1.8)

a kind of fluctuation-dissipation relation for accretion disks [13]. From Egs. (1.5)
and (1.8), it is clear that the correlation of velocity (and magnetic field) fluctuation
components is responsible for much of the disk transport and luminosity.

Above discussion is valid only for a cold, thin disk where pressure can be ignored.

For a radiatively inefficient, hot, thick disk the pressure term (5/2)pVx should be
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included in the radial energy flux; V-Fg = 0 in absence of radiation, and the gravita-
tional energy released from accretion is converted into thermal and kinetic energies.

Total luminosity emitted from R, to Ris, L(R, < R) = 2w|R.Fr(R.)—RFg(R)] =
(GM,M/2R,)[1 —3R/R,+(R,/R)*?]. In the limit R — oo, L = GM,M /2R, which
shows that half the binding energy of the innermost orbit is converted to radiation.
The other half is retained as kinetic energy. The fate of the residual energy depends
on the nature of central accretor. If a stellar surface is present, remaining energy will
be radiated in a boundary layer; if the central object is a black hole, the energy may

be swallowed and lost.

1.2.3 « disk models

Although the relationship between disk’s surface emissivity ) and the mass accretion
rate M is independent of stress tensor, most other relations involve a dependence on
Whre. Recognizing the central importance of Wg, and its computational inaccessi-
bility, Shakura and Sunyaev [174] suggested a natural scaling for the stress tensor,
Wre = ac?, where v < 1 is a parameter. The idea behind the « prescription is that
the turbulent velocities, whose correlation determines Wgy, are limited by the sound
speed cg, as supersonic velocities will be quickly dissipated in shocks. The « formal-
ism bypasses the thorny issue of disk turbulence, and can be thought as a closure for
the stress tensor. The a formalism can be thought of as equivalent to a “turbulent
viscosity”

v = acsH (1.9)

that is similar to microscopic viscosity in Navier Stokes equation. The role of random
particle velocity is played by ¢, and the scale height H is the effective mean free path
(eddy size). This is a closure based on plausibility arguments and is not rigorous

like the Chapman-Enskog procedure [47]. The « formalism is the basis of much of
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observationally driven disk phenomenology. The radial dependence of various phys-
ical quantities, like temperature, density, height, etc., can be obtained in terms of

parameters M and a [61].

1.3 MRI: the source of disk turbulence

A breakthrough occurred when Balbus and Hawley proposed the magnetorotational
instability (MRI), an instability of differentially rotating flows, as the source for tur-
bulence and transport in accretion disks [14]. Before this, a robust mechanism to
sustain turbulent angular momentum transport in accretion disks was unknown. Al-
though the instability was described in its global form for magnetized Couette flow
by Velikhov [197] and Chandrasekhar [44], its importance for accretion disks was not
recognized. In his classic book [45], Chandrasekhar points out the essential feature
of the MRI, “in the limit of zero magnetic field, a sufficient condition for stability
is that the angular speed, |€2|, is a monotonic increasing function of r. At the same
time, any adverse gradient of angular velocity can be stabilized by a magnetic field
of sufficient strength.”

Both local [86] and global [5, 81, 188] numerical simulations have confirmed that
the MRI can amplify small perturbations to nonlinear turbulent motions. Correla-
tions between the radial and azimuthal fields results in a sustained turbulent stress
corresponding to ow = Wgy/p ~ 0.001 — 0.5, enough to account for typical disk lumi-
nosities. Next, we discuss the inadequacy of the hydrodynamic models, followed by

the linear and nonlinear characteristics of the MRI.

1.3.1 Insufficiency of hydrodynamics

In the Boussinesq approximation (V -V = 0 in the equation of motion), if we ignore

pressure, then a fluid element disturbed slightly from its Keplerian orbit will execute
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retrograde epicycles at a frequency k (k? = %d(%?z)

), as seen by an observer in
an unperturbed Keplerian orbit. The criterion for local linear stability is simply
k > 0, i.e., specific angular momentum increases outwards, the Rayleigh criterion.!
Therefore, a Keplerian disk with specific angular momentum R*Q) ~ RY/2 increasing
outwards is linearly stable, unable to produce (and sustain) nonlinear turbulent stress.

A rotating shear flow is different from a planar shear flow because of the coriolis
force. Coriolis force is responsible for stable epicyclic oscillations in Keplerian flows,
whereas planar shear flows are marginally stable in the linear regime. Nonlinear
local shearing box simulations show that while planar shear flows can be nonlin-
early unstable and become turbulent even at relatively small Reynolds numbers [21],
10® — 10* (orders of magnitude smaller than the true Reynolds number for disks),
Keplerian disks are nonlinearly stable and give no turbulence over the same range of
Reynolds numbers [17, 85]. This is because stable epicycles prevent nonlinear insta-
bilities to develop in Keplerian flows. Whether turbulence and transport can occur
in hydrodynamic Keplerian flows, is still not universally agreed. There are exper-
imental claims that the Keplerian disks are nonlinearly unstable [164], but recent
experiments, with more carefully controlled boundary conditions (especially Eckman
flows), which directly measure the Reynolds stress, show otherwise [39]. Also, there is
some recent work on transient amplification in the linear regime, that can give rise to
nonlinear amplitudes (and maybe turbulence) in hydrodynamic differentially rotating
flows [42, 2, 195].

Convective turbulence was also proposed as a source of enhanced shear viscosity
[118]. Convection is believed to arise from heating due to energy dissipated in the
disk midplane. The hope was that somehow convective blobs can cause nonlinear cor-
relations to produce non-vanishing stress. However, the linear analysis of convective

instability in Keplerian flows gives a wrong sign of stress [166], with inward trans-

'The Rayleigh criterion applies only for axisymmetric disturbances.
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port of angular momentum. Three dimensional simulations of convectively unstable
disk show very small angular momentum transport (a ~ —107%), and in the oppo-
site direction [183]. None of the local hydrodynamic mechanisms to date are able to
give sufficient angular momentum transport.? This launches us to the study of the

dramatic effect of magnetic fields on accretion disk stability.

1.3.2 MHD accretion disks: Linear analysis

The ideal MHD equations are

% +V-(pV)=0, (1.10)
ov _(VxB)xB

0B

E—VX(VXB), (1.12)

Oe

StV (eV)==pV-V, (1.13)

where, Fy is the gravitational force, and e = p/(y — 1) relates internal energy density
and pressure (7 = 5/3 in a 3-D non-relativistic plasma). Making B = 0 in the MHD

equations gives the hydrodynamic equations.

WKB analysis in a Keplerian disk

The linear response of a Keplerian hydrodynamic flow is stable epicyclic motion,
however, addition of weak magnetic fields renders it unstable. Before considering
Keplerian flows, it is useful to study waves in a homogeneous, non-rotating equilib-
rium. Linear waves in MHD and hydrodynamics are quite different. MHD is richer
in waves with fast, Alfvén, and slow modes, compared to hydrodynamics with only

an isotropically propagating sound wave [111]. As the name suggests, the fast mode

2Global modes like Papaloizou-Pringle instability [146, 72], and spiral shocks can in principle
cause turbulence and transport, however, their role as a universal transport mechanism for Keplerian
disks is not clear [16].
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has the fastest phase speed and propagates isotropically. The Alfvén mode is inter-
mediate with propagation along the field lines, and the slow mode with the smallest
phase speed also propagates along the field lines. In addition to these, there is a non-
propagating entropy mode with anticorrelated density and temperature fluctuations.

Consider a differentially rotating disk threaded by a magnetic field with a vertical
component B, and an azimuthal component By. Consider WKB perturbations of the
form expi(k - r —wt), kR > 1. Notation is the standard one: k is the wave vector, r
the position vector, w the angular frequency, and ¢ the time. Linear perturbations are
denoted by 4. Only a vertical wave number is considered, k = kz. The local linear

equations are

—w%p + K6V, =0, (1.14)
: kB,

—ZWC;VR — 2Q5V¢ — Z47Tp(sBR = 0, (115)
, K2 kB,

—iwdVy + ﬁéVR — Z47Tp 0B, =0, (1.16)

—wéV. + k (5—p + %) =0, (1.17)

p dmp

—QJ(SBR = k’BZ(SVR, (118)

0By = 0Ba-2L L ikB.6V, — B,ikoV. (1.19)
1w o = RdlnR 7 20Vg ol 2 .

6B, =0, (1.20)

op  Hdp

— =-—. 1.21

b 3 (1.21)

The resulting dispersion relation is (Eq. (99) in [16])

[W? — (k- Va)?w! — k2w (@® + V3) + (k- Va)?kad?]

d?
— lf@2w4 — w? (/{:21@2(@2 + Vi) + (k- VA)zdlnR)}

d§¥?
2 2 . 2 =
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where a* = (5/3)P/p, Va = B/\/4mp. Only the first term in the dispersion relation,
Eq. (1.22), is non-zero in the non-rotating limit; the roots of the dispersion relation
correspond to the fast, Alfvén, and slow modes.

The effect of Keplerian rotation on the three MHD modes is shown in Fig. (15) of
Balbus and Hawley’s review article [16], with w? plotted as a function of Q2 (also see
Figure 3.4). It shows that w? becomes negative for the slow mode when dQ?/dIn R >
(k- V)2 ie., slow modes becomes unstable. This destabilized MHD slow mode in
differentially rotating flows is the MRI. For a fixed wave number there is an upper

limit on the field strength for the MRI to exist, i.e., it is a weak field instability.

Spring model of the MRI

A simple physical description of the MRI, based on the spring model of Balbus and
Hawley, is presented; the discussion closely follows [16]. It is useful to study the
instability in the Boussinesq limit, where fast waves are eliminated. The simplest
model to think is of axisymmetric perturbations on uniform vertical magnetic field
in a Keplerian disk. If a fluid element is displaced from its circular orbit by &, with
a spatial dependence ¢**, induction equation leads to 6B = ikB¢. Magnetic tension

force is then 1kBOB/41p = —(k- V)%, In an incompressible, pressure free limit,

the equations of motion become

Co — 206, = Y k-Vu)? 1.2
Er— 208 = _<dlnR+( : A))fRa (1.23)
€ +20%r = —(k-Va)%,. (1.24)

As before, 2Q and dQ2?/dIn R terms represent coriolis and tidal forces, respectively.
These equations also describe two orbiting point masses connected with a spring of
spring constant (k- V)2

Consider two point masses, initially at the same orbital location, displaced slightly
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R

Figure 1.4: Spring model of the MRI. Left part shows a top view of inner and outer
point masses m; and m, connected by a spring. Mass m; is moving faster than m,
because velocity decreases outwards in a Keplerian flow. Spring force slows down m;,
and makes m, go faster. Inner mass falls in as it loses angular momentum to the
outer one, which moves out. Right part shows a side view of a perturbed field line
that results in a restoring spring force. The field strength should be weak enough for
an unstable mode to fit within a disk height scale, H.
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in the radial direction, as shown in Figure 1.4. The inner mass m; at radius R; is
connected via a spring to outer mass m, at R,. In a Keplerian disk, the inner mass
rotates faster than the outer one. In the absence of a spring both execute stable
epicycles. However, the spring stretches and builds up a tension 7'. T" pulls backward
on m; and forward on m,. Thus, m; slows down and loses angular momentum to m,
which gains speed. This means that the slower m; (compared to the local Keplerian
velocity) cannot remain in orbit at R; and must drop to a yet lower orbit. Similarly,
m, acquire too much angular momentum to stay at R, and must move outwards.
The separation widens, the spring stretches yet more, 7" goes up, and the process
runs away. This is the essence of weak field instability in differentially rotating flows.
The presence of other field components does not affect this picture, as by selecting
k = k.Z we have ensured that only vertical field couples dynamically. It is very crucial
that the spring be weak; if spring is very stiff, there are many stable vibrations in
an orbital time and no net transport of angular momentum. The right side of Eq.
(1.23) reproduces the stability criterion for the slow mode, (k- VA)? > —dQ?/dIn R.
One can always choose a small enough k to make a Keplerian disk unstable. Thus,
the necessary and sufficient condition for the stability of a magnetized differentially
rotating disk is dQ2?/dIn R > 0.

Just how large a wavelength is permitted? In order for the WKB approximation

to be valid, at least a half wavelength needs to fit in the box height H. The stability

criterion for a Keplerian disk becomes V2 > L 4%, (6/72)c2, i.e., the Alfvén speed
must significantly exceed the sound speed, if all the modes in a disk thickness are to
be stable. The MRI is called a weak field instability because it requires pressure
to exceed magnetic energy (8 = 87p/B* > 1). It is interesting to note that there
is no lower limit on the strength of the magnetic field for the instability to exist if

dissipation scales are arbitrarily small [106].

The dispersion relation from Eqgs. (1.23) and (1.24), on assuming & ~ exp(—iwt),
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W i 4 2(k - VA + (K- Va)? ((k V) + d‘ig;) 0, (1.25)
which is precisely the a — 0o Boussinesq limit of Eq. (1.22). Eq. (1.25) is a quadratic
in w? which can be solved easily. The fastest growth rate for a Keplerian disk is
Ymaz = (3/4)€2, and occurs at (k - Vo )mae = (v/15/4)2. This is a very fast instability
that would cause amplification by ~ 10% in energy, per orbit. The instability is
very robust, independent of the magnetic field orientation. In presence of a toroidal
field the MRI is non-axisymmetric for the perturbations to couple to the field [15].

Nonlinear correlations resulting from this instability can provide a sizeable stress to

explain fast angular momentum transport in disks, as we see in the next subsection.

1.3.3 MHD accretion disks: Nonlinear simulations

Tremendous progress has been made in the understanding of growth and saturation of
the MRI. Numerical studies started with unstratified local shearing box simulations
[82, 86] using the ZEUS MHD code [185, 186]. In the shearing box limit, equations
are written in a frame rotating with the mean flow. There is shear in a Keplerian box
with dQ?/dIn R = —3/2. Boundary conditions are periodic in y- (azimuthal) and z—
(vertical) directions, and shearing periodic in z- (radial direction).?

Shearing box simulations start with a random white noise imposed on an initial
equilibrium. In simulations with a net vertical flux, magnetic energy increases expo-
nentially until the channel solution (the nonlinear form of the fastest growing mode
with k,Va,/Q ~ 1) becomes unstable to secondary Kelvin-Helmholtz type instabili-

ties [75]. Magnetic energy increases by several orders of magnitude before secondary

instabilities break the channel solutions into turbulence. Magnetic energy saturates at

3Shearing periodic means that periodic boundary conditions are applied after a time dependent
remap in y- direction at the z- boundaries [86, 16]. There is a jump of —(3/2)2L, in V, between the
inner and outer radial faces to take differential rotation into account. There are similarities between
this and the boundary conditions used in fusion energy research to handle sheared magnetic fields
in flux-tube simulations of turbulence [49, 77, 22].
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Figure 1.5: Volume averaged magnetic energy, Maxwell stress, and Reynolds stress
normalized to the initial pressure, for an initial 3 = 400 vertical field. The Maxwell
stress is ~ 3 larger than the Reynolds stress. Time and volume averaged values in the
turbulent state are: o = 0.286 and 5 = 2.56 (case ZMI in Table 4.1 from Chapter
4).

sub-equipartition (8 = 8wpy/B* ~ 1 —100), with a = ({(pV.0V, — B.B,/47)))/po ~
0.001 — 0.5, where “(())” represents a box and time average in the turbulent state.
Figure 1.5 shows the time evolution of magnetic energy, and Maxwell and Reynolds
stress for a simulation with an initial vertical field with 5 = 400. Magnetic energy is
dominated by the toroidal component. All variables show large fluctuations from the
mean in the turbulent state. Magnetic and kinetic energy power spectra are peaked
at low wave numbers, indicating significant energy at scales comparable to the box
size.

Nonlinear simulations of an initially toroidal field observe that the growth rates are
smaller than the vertical field runs [86, 124]. The growth rate of the non-axisymmetric
mode is fastest for largest vertical wave number k. [15], but in simulations, these wave
numbers are damped because of a finite resolution. In the saturated state dominated

by large wave numbers a ~ 0.01, smaller than the net vertical flux cases. Simulations
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with no net flux, (B) = 0, also result in sustained MHD turbulence and transport
at large scales. However, both magnetic energy and turbulent stress are smaller by
a factor of 10 — 100 compared with the net vertical field case [87]. Toroidal fields
and the Maxwell stress dominate the other components, irrespective of the initial
field configuration. Total stress is roughly proportional to the magnetic energy for all
cases.

Stratified shearing boxes with vertical gravity were simulated to closely model a
real accretion disk in the local limit [38, 184]. Vertical stratification allow the pos-
sibility of vertical motions driven by magnetic buoyancy. Stratified simulations are
not very different from the unstratified ones because the Mach number (the ratio of
fluid velocity and sound speed, V/cs) is much less than unity for MRI turbulence.
This ensures that the MRI timescale (1/€2 = H/c,) is much faster than the time scale
for buoyant motions at large scales (H/V'). Results are similar for the adiabatic and
isothermal equations of state [184]. While the R — ¢ dynamics is dominated by the
MRI, vertical stratification can result in significant mixing in the z— direction. Strat-
ified simulations show the eventual emergence of a magnetically dominated corona
stable to the MRI because of buoyantly rising magnetic fields [132]. It is reassuring
that irrespective of initial fields geometry, equation of state, boundary conditions,
vertical stratification, numerical methods, etc., MHD turbulence and efficient trans-
port of angular momentum always ensues. But the question of the exact saturation
level and its dependence on physical and numerical parameters, such as net verti-
cal flux, box size, or dissipation mechanisms, remain a topic of continued research
(87, 167, 198, 28, 150].

Local shearing boxes have been used extensively to understand MRI turbulence in
presence of other physical effects, e.g., resistivity [59], ambipolar diffusion [88], Hall
effect [169], radiation and the photon bubble instability [194, 193], and the thermal

instability [151].
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Figure 1.6: The inner regions of an accretion disk around a black hole calculated in
a GRMHD simulation (Figure 3 of [199]). The black hole is at the origin with an
event horizon of radius unity. The accretion disk rotates around the vertical direction.
Color contours show the density distribution, with red representing highest density
and dark blue the lowest. There is a hot magnetized corona above the disk, and
between the corona and the rotation axis there is an ejection of mildly relativistic
plasma. This example shows a non-radiating, thick disk.
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The effect of MRI turbulence was first observed in global 2-D MHD simulations
of Shibata and Uchida with a net vertical flux [178], but the reason for the disrup-
tion of the flow was not understood. Starting from the 2-D simulations [178, 187],
tremendous progress in computer hardware and algorithms has made it possible to
simulate realistic disks around rotating Kerr black holes with general relativistic MHD
(GRMHD) in 3-D [199, 105]. Figure 1.6 shows the structure of a disk from a GRMHD
simulation [199]. In addition to the efficient angular momentum transport in disks
due to the MRI, global simulations allows one to study angular momentum extrac-
tion by global mechanisms such as magnetic braking and winds [33], and extraction of
black hole spin energy in form of jets [34, 128, 102, 105]. Global simulations have also
been used to understand the structure of thick disks in radiatively inefficient accretion

flows (RIAFs, see Fig. 1.6), the subject of the next section [189, 188, 83, 155].

1.4 Radiatively inefficient accretion flows

This section borrows heavily from an unpublished document on the motivation for
studying radiatively inefficient accretion flow (RIAF) regimes, by E. Quataert. There
is growing observational evidence for the presence of supermassive black holes (SMBHs)
in galactic nuclei. High resolution imaging of the stellar orbits around a dark object
in the Galactic center, using adaptive optics, provides a compelling evidence for a
4.14 0.6 x 105M, M, SMBH [171, 71] (see Figure 1.7). Very large baseline interfer-
ometry (VLBI) observations of water masers in NGC 4258 show gas in a Keplerian
orbit about a SMBH [134]. More generally, stellar motions and radiation from hot
gas in the central regions of nearby galaxies have shown that SMBHs are present in
nearly every galaxy with a bulge component [122, 70, 58]. *

One of the puzzles about many SMBHs is their extreme low luminosity, despite

their gas rich environments. In contrast, the Active Galactic nuclei (e.g., quasars),

4The bulge component of a galaxy is the central roughly spherical region with old stars.
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” Keck/UCLA Galactic
Center Group

Figure 1.7: Keck observations of stellar orbits in the central 1 x 1 arcsec-
ond (0.13 light years) of our Galaxy are shown. Stars show significant motion
over a period of 9 years. Changing stellar locations with time, and best fit-
ting Keplerian orbits are indicated. The orbital parameters confirm the pres-
ence of a 4.1 & 0.6 x 10°M, black hole in the center of our Galaxy. Source:
http://www.astro.ucla.edu/~ghezgroup/gc/pictures/orbitsOverImage04.shtml
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Figure 1.8: Chandra X-ray image of the innermost 10 light years (= 100 times larger
than Figure 1.7) at the center of our Galaxy. The image shows an extended cloud of
hot gas surrounding the supermassive black-hole Sagittarius A* (larger white dot at
the very center of the image—a little to the left and above the smallest white dot).
This gas glows in X-rays as it has been heated to a temperature of millions of degrees
by shock waves produced by winds from young massive stars (and perhaps by super-
nova explosions). Source: http://chandra.harvard.edu/photo/2000/0204/index.html
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which are also powered by accretion onto SMBHs, are luminous enough to outshine
the rest of the galaxy. Our Galactic center (GC) is the canonical example of low
luminosity accretion (see Figure 1.8) [139]. The winds from massive stars in the
central ~ 0.1 pc of the Galactic center feed the black hole at an estimated Bondi
accretion rate of Mpgng; & 107 Mg, /yr (see Appendix A.2 for Bondi accretion model)
8, 129, 157].° If this gas were to accrete onto the black hole with ~ 10% efficiency
(typical of the Active Galactic Nuclei), the luminosity would be ~ 10" erg s7!, five

orders of magnitude larger than the observed luminosity (see Table 1.1) [156].

Table 1.1: Dim SMBHs in the Galactic center and nearby galaxies

Galaxy Msniu Mpondi Lponai” be Lx [ Londi
108 Mg | Mg yr! | ergs™t erg s~
Milky Way* 0.03 107° 6 x 10% [ 2 x 10% —10% | 3 x 1078 —-107°
NGC 13997 | 10.6 |4 x 1072 |2 x 10* < 10% <5x 1076
NGC 44724 5.6 8 x 1072 | 5 x 10% < 10% <2x107°
NGC 6166°¢ 10 3x 1072 |2 x 10" 100 5x107°
NGC 46367 0.8 [8x107°|5x 10* <3 x 10% <6x107*

@ 0.1 Mpopaic® ” 2 — 10 keV luminosity or an upper limit © [7, 8] ¢ [119] ¢ [125]
Sgr A* shows ~ 100 times larger X-ray luminosity in the flaring state as compared
to the quiescent state. The total RIAF luminosity (L) is dominated by the radio
emission, which is 2-3 orders of magnitude larger than the quiescent X-ray output in
case of Sgr A*, so that Lty /Lponai ~ 107° is still surprisingly small [156].

The Chandra X-ray Observatory, with its excellent spatial resolution (0.5 arcsec-
onds), has put stringent constraints on the nuclear emission in a large number of
nearby galaxies [90, 119, 125]. Table 1.1 gives some examples. In addition to the
observed X-ray luminosity Ly and the mass of the SMBH, the table lists the ob-
servationally inferred Bondi accretion rate and “Bondi luminosity.” Bondi rate is
the accretion rate calculated from the density and temperature in the vicinity of the

black hole (measured on ~ 1” scales, which is ~ 105 — 10® Schwarzschild radii for the

®The hot wind from the X-ray source IRS 13E1 alone supplies ~ 1073Mg, yr—! [137]; however,
much of the hot gas in the GC is gravitationally unbound, leaving only a small fraction to be accreted
by the central black hole.
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systems in Table 1.1), and assuming spherical hydrodynamic accretion (see Appendix
A.2). Bondi luminosity is the luminosity if the ambient gas accretes onto the SMBH
at the Bondi rate and emits with ~ 10% efficiency. For all cases in Table 1.1, Lx
is much less than the Bondi luminosity (which is orders of magnitude smaller than
the Eddington limit for these systems). Thus, the observed luminosities are orders of
magnitude smaller than simple theoretical predictions. Moreover, these discrepancies
are not unique to X-ray observations, but are present in high resolution observations

from the radio to the gamma-rays [89].

1.4.1 RIAF models

With compelling evidence for low luminosity SMBHs in the Galactic center and nearby
galaxies, one needs to account for their extreme dimness. The explanation for their
low luminosity must lie in how the surrounding gas accretes onto the central black
hole. The standard accretion disk model is that of a geometrically thin, optically
thick disk [174], applied extensively to luminous accreting sources in X-ray binaries
and AGN [103, 56]. Low luminosity disks are fundamentally different; radiatively
inefficient disks retain most of the accretion energy as thermal motion and puff up
to become thick. Also, RIAFs show no significant black body component in their
spectra in infrared-UV [114, 89, 161]; this emission is seen in luminous sources such
as Seyferts and quasars [103]. Most low luminosity disk models have appealed to
modes other than thin disks. Accretion disks where very little of the gravitational
potential energy of the accreting gas is radiated away is referred to as radiatively
inefficient accretion flows (RIAFS).

The plasma in RIAFSs is hot and dilute because the gravitational energy released
from accretion is stored as thermal energy. Because of the low densities and high
temperatures, Coulomb collisions are inefficient at exchanging energy between the

electrons and protons (see Table 1.2). If protons and electrons are heated to their
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respective virial temperatures without exchanging energy, then protons will be hotter
than electrons by their mass ratio m,/m. =~ 2000. But the temperatures depend
on how energy released from accretion is dissipated into electrons and ions, which
remains poorly understood. Most RIAF models assume that protons (~ 10'? K) are
much hotter than the electrons (~ 10'° — 10'? K) [156]. The electron temperature is
not well constrained but crucial as it determines the radiation that we see. The hot
RIAFs are thus very different from the thin accretion disks, which are much cooler
(~ 105—10° K) and denser. In addition, because of the different physical conditions in
the accretion flow, thin disk and RIAF models predict very different multiwavelength
spectra (e.g., RIAF's are optically thin and do not produce blackbody emission).

Two ways to make a disk radiatively inefficient are: 1) energy released from ac-
cretion at Bondi rate is channeled preferentially into poorly radiating ions, which
are eventually swallowed (with their energy) by the hole; and 2) instead of accreting
all the available gas supply, processes like winds and outflows, and convection can
constrict the net accretion (M & Mponai) onto the black hole.

The original RIAF models by Ichimaru (1977) and Rees et. al. (1982; the “ion
torus” model) [92, 163] were based on the first approach. These models were revived
in the 1990s, and extensively applied to observed systems, under the name advection-
dominated accretion flows (ADAFSs), by Narayan, Abramowicz, and others [141, 142,
1]. In ADAF models, the gas accretes at about the Bondi rate, but the radiative
efficiency is < 10%, providing a possible explanation for the very low luminosity
of most galactic nuclei [163, 57]. The radiative efficiency is very low because it is
assumed that the electrons, which produce the radiation we see, are much colder
than the ions which are advected (with their thermal energy) on to the hole. Thus,
instead of energy release in the form of radiation like in the cool, thin disks, energy
is lost forever to the black hole in ADAF models.

The past few years have seen new steps in the theoretical understanding of RIAFs.
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In particular, hydrodynamic and MHD numerical simulations of RIAFs have been
performed [189, 94, 188, 84, 83, 95, 149, 154, 155]. The hydrodynamic simulations
based on « model for stress (e.g., [189, 94, 154]) found that convection can stall
accretion, with density varying like p ~ 7~'/2 with radius, as compared to a steeper ~
773/2 dependence in ADAFs and Bondi accretion (see [141] and Appendix A.2). These
simulations motivated analytical self-similar models known as convectively dominated
accretion flows (CDAFs). The reason for a less steep dependence of density on radius
is that the mass accretion rate in CDAF's decreases as we move in towards the black
hole, M / Mapap ~ (r/Tace). The low luminosity in CDAFs is not because of low
efficiency of accretion (n ~ 0.1), but because of the reduction of mass accretion due to
convection. In global MHD simulations strong magnetic fields (5 < 10) are generated
by MHD turbulence driven by the MRI, and convection is unimportant [188; 84,
83, 95, 149, 155]. Numerical simulations by different groups (using different codes
and boundary conditions) lead to the same conclusion—magnetically driven outflows
prevent most of the mass supplied at outer regions to accrete. Outflows are natural
outcome of hot RIAF's and have been incorporated in theoretical models to account for
low accretion rates [141, 31, 32]; this adiabatic inflow-outflow solution (ADIOS) model
also predicts a smaller accretion rate in the inner regions, (M / Mapap ~ (7T ace)?,
with 0 < p < 1), and a gentle dependence of density on radius (p ~ 773/2*?) compared
to an ADAF.

The ADIOS/CDAF models look very different from ADAF models; very little
of the mass supplied at large radii actually accretes into the black holes. The ac-
cretion rate can be smaller than the Bondi estimate (e.g., Table 1.1) by a factor of
~ Ryee/Rs ~ 10°, where Rg and Ry are the inner (~ 2GM,/c?, the Schwarzschild
radius) and the outer (~ 7, = 2GM,/a* the Bondi accretion radius) radii of the
accretion flow. This very low accretion rate may explain the low luminosity of most

galactic nuclei.
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1.4.2 The Galactic center

Following Baganoff et al. [8], we apply the models discussed in the previous subsection
to Sgr A*, the RIAF in the Galactic center (GC). The high resolution Chandra X-ray
observations have enabled the detection of X-rays in the vicinity of Sgr A*, unpolluted
by the emission from other X-ray sources in the region [8]. The X-rays arise because
of thermal bremsstrahlung at larger radii, and synchrotron and Compton processes
near the SMBH (these processes need very hot electrons). By assuming a thermal
bremsstrahlung model for X-ray observations at 10”, the ambient temperature is
estimated to be T'(c0) =~ 1.3 keV and the plasma number density to be n(oco) ~ 26
cm™3. Quataert [157] has argued that the 10” observation probes the gas being
driven out of the central star cluster, while the 1.”5 observation probes the gas which
is gravitationally captured by the black hole; we use 1.”5 observations (n &~ 130 cm ™
and T =~ 2 keV) to estimate the accretion rate and to make Table 1.2.

We will use the ambient conditions and different RIAF models to estimate physical
conditions in accretion flow of Sgr A*. The Bondi capture radius is given by ry.. =

2GM/a* =~ 0.072 pc (1.”8), where a is the sound speed (see Appendix A.2). The

Bondi accretion rate is given by (see Eq. A.9)

~ 6 n kT N\ % 1
Monai ~ 3 % 10 (130 Cm_3> (2 keV) Mg yrt. (1.26)

This is an order of magnitude smaller than what is estimated from the amount of
gas available from stellar winds (see Table 1.1). The ADAF model gives Mapap ~
aMBondi, where « is the Shakura-Sunyaev viscosity parameter [142]. The mass ac-
cretion rate as a function of radius for ADIOS/CDAF models is MADIOS/CDAF ~

OéMBondi(Rs/Tacc)p- Using p = 1 corresponding to a CDAF (or a CDAF-like ADIOS),
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the accretion rate is

. _ « n kT O\ Y2 _
MCDAF/ADAF ~1.2x10 12 (ﬂ) (130 cm—3> (2 keV) M@ yr 1, (127)

much smaller than the Bondi estimate. Consistent with the CDAF/ADIOS models,
the detection of linear polarization of radio emission from Sgr A* (see [4, 36]) implies
a small Faraday rotation (indicating a small density and magnetic field) and places a

stringent upper limit on M < 1078Mg, yr~! [3, 159).

Table 1.2: Plasma parameters for Sgr A*

Parameter T = Tace T = \/TaccRs r = Rg
22x 10" em | 4.2 x 10 ¢m | 7.8 x 10" e¢m
O = /GM,/r? (s71) | 1.84x 1071 | 22x 1076 0.028
T ~ 1~ keV 2 1048 5.7 x 10°
napar ~ /% (cm™3) 130 1.56 x 109 1.95 x 1010
nepar ~ /2P (em—3) 130 3000 7 x 10*
Bipar ~ 1 (G) 0.0012 2.93 7.6 x 103
Blpap ~ 142 (G) 0.0012 0.13 14.4
Vi ApAF/ Qi ~ 132 11.4 9.4 x 1074 7.6 x 107°
Vi cpar /S ~ r3/2P 11.4 1.81 x 1070 | 262 x 10713
piapar/H ~ r~ 4 2 x 1071 9.94 x 107" | 4.59 x 10719
picpar/H ~ r~tA7p/2 2 x 1074 2.23 x 107 248 x 1077

@ equipartition field, H =~ 0.87r, p =0 for ADAF, p = 1 for ADIOS/CDAF,
v; is the ion collision frequency, p; the ion gyroradius

Ve = v;(mi/m)Y?(T,/)T;) =%/, Coulomb logarithm (In A) chosen to be 30,

pe = pi(Te/T;) " (mi/me)'/?

Table 1.2 shows different physical variables; the number density n, temperature
T, equipartition magnetic field B, etc. at three radial locations (7ace, v/7TaceRs, and
Rg) using an ADAF (equivalent to the Bondi model for a ~ 1) and CDAF/ADIOS
model with p = 1. At radii smaller than r,.., the mean free path is much larger than
the disk height scale H = ¢,/€2 ~ r; the Larmor radius is many orders of magnitudes
smaller than the disk height. This motivates us to investigate the role of plasma

kinetic effects in the physics of RIAFs, as we discuss in the next section.

37



1.5 Motivation

As discussed in the previous section, there is ample evidence that RIAFs are colli-
sionless, with the Coulomb collision time much longer than accretion time (see Table
1.2). However, most studies of the MRI have used ideal MHD equations, which are
formally valid only for collisional, short mean free path plasmas. A collisionless anal-
ysis should use the Vlasov equation [104] which describes the time evolution of the
distribution function of a collisionless plasma in a 6-D phase space. In cases when
the scales of interest are much larger than the ion Larmor radius (e.g., in RIAF's ion
Larmor radius is ~ 10% times smaller than the disk height scale, the scale of largest
eddies in MRI turbulence), one can average over the fast gyromotion to obtain the
drift kinetic equation (DKE) describing the distribution function in a 5-D phase space
[110, 180]. Collisionless plasmas are different from the collisional MHD plasmas, in
that the pressure is anisotropic with respect to the magnetic field, and rapid thermal
conduction can occur along the field lines.

Quataert and coworkers [158], used the DKE to study the collisionless MRI in the
linear regime. They found that with an equal vertical and azimuthal fields, the fastest
growing mode is twice as fast as in MHD and occurs at a much larger length scale.
The aim of the thesis is to follow up their work with numerical simulations of the
MRI in the kinetic regime. A method based on the DKE that evolves the distribution
function in a 5-D phase space is more expensive than the 3-D MHD simulations. A
less expensive approach (and equivalent to the DKE in the linear regime) is to use
the kinetic MHD (KMHD) equations with Landau fluid closure for parallel heat flux
[180]. We started by showing the equivalence of linear modes in the drift kinetic
and KMHD formalisms (the stable fast, Alfvén, slow, and entropy modes, and the
unstable MRI) in a Keplerian disk [176]. This was followed up by nonlinear KMHD
simulations in a local shearing box [177].

Transition of the MRI from collisionless to collisional regime was studied linearly,
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using a BGK collision operator [176]. Transition from kinetic to the Braginskii regime
occurs as the mean free path becomes short compared to the parallel wavelength,
Amip < A = 27/ky; for the fastest growing mode this corresponds to v < Qv/f,
where v is the collision frequency. As collision frequency is increased further (v 2 Qf),
anisotropic stress becomes negligible compared to the Maxwell stress, and transition
to MHD occurs. Differences between the kinetic and MHD regimes is striking at large
(’s. A crucial difference from MHD is the presence of damped modes, indicating
a possibility of wave-particle interactions in form of Landau and Barnes damping
[113, 18, 182]. Balbus and Islam [12, 96] have studied MRI in the weakly collisional
Braginskii regime and found agreement with our results.

The ZEUS MHD code [185, 186] is modified to include anisotropic pressure, and
parallel thermal conduction based on Landau fluid closure [180]. Nonlinear KMHD
simulations are done in a local shearing box limit [86]. The adiabatic invariant,
@ = pi/B, is conserved in collisionless plasmas, as a result, pressure anisotropy
(pL > py) is created as magnetic field is amplified by the MRI. Pressure anisotropy
cannot become large (p./py — 1 < few/3,), as mirror and ion-cyclotron instabilities
will isotropize the pressure by pitch angle scattering. Subgrid models of pitch angle
scattering by these instabilities at the Larmor radius scale have been included. Pres-
sure anisotropy gives rise to a stress in addition to the usual Maxwell and Reynolds
stress in MHD [177]. Pressure anisotropy driven instabilities are expected to arise in
any collisionless plasma, when the field strength changes in a 5 2 1 plasma, e.g., the
solar wind [123, 98], magnetosphere [192, 66], and galaxy clusters [170].

The next step is to include collisionless effects in global MHD simulations [188].
Anisotropic thermal conduction is expected to change the convective stability cri-
terion from an outward increasing entropy to an outward increasing temperature
[10, 11, 148]. Self-similar solutions using saturated (isotropic) conduction have shown

significant differences from standard non-conducting ADAF models [130, 190]. While
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implementing anisotropic thermal conduction in global MHD simulations we discov-
ered that the centered differencing of anisotropic thermal conduction can give rise to
heat flowing from lower to higher temperatures, causing the temperature to become
negative in regions with large temperature gradients, e.g., disk corona interface. We
have developed a new numerical method that uses slope limiters to ensure that the
temperature extrema are not amplified by anisotropic conduction [175]. Global nu-
merical simulations with anisotropic thermal conduction can tell us about the global
structure of RIAFs. These, combined with the insights on local energy dissipation in

disks from the local KMHD simulations, can shed light on their low luminosity.

1.6 Overview

The main body of the thesis (chapters 3, 4, and 5) is based on three papers, the
first on the transition of the MRI from collisionless to the collisional regime [176], the
second on the shearing box simulations of the collisionless MRI [177], and the third on
numerical implementation of anisotropic conduction in presence of large temperature
gradients [175].

Chapter 2 introduces the kinetic MHD formalism. We begin with the Vlasov
description of a collisionless plasma, and derive the drift kinetic equation (DKE) in
the limit of length scales much larger than the Larmor radius, and frequencies much
smaller than the gyrofrequency. Moments of the DKE with an anisotropic pressure
tensor are called the kinetic MHD (KMHD) equations. The KMHD equations are
closed by the ‘341" Landau fluid closure for heat flux along the field lines. Landau
closure is equivalent to a Padé approximation to the drift kinetic linear response
function. We discuss different ways to implement the nonlocal closure in a numerical
simulation. We show that the moment equations with a BGK collision operator

recover the Braginskii equations in the high collisionality regime.
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Chapter 3, which is based on [176], describes the transition of the MRI from
collisionless to the collisional regime. Linear modes of a magnetized, collisionless
plasma in a Keplerian rotation are derived using both the DKE and the KMHD
equations with Landau closure for the heat flux. The two methods agree very well
for the real and imaginary parts for the frequency response; this motivates kinetic
MHD simulations of the collisionless MRI. The presence of damped modes in the
collisionless regime can cause waves to be damped by Landau/Barnes damping at
large scales, instead of being damped only at small scales as in MHD with small
resistivity and viscosity. A BGK collision operator is used to study the transition of
the MRI from collisionless to the collisional (MHD) regime; the transition from kinetic
to the Braginskii regime occurs when the mean free path becomes small compared to
the wavelength, for the fastest growing mode this corresponds to v > Q4/5.

Chapter 4 presents results from the nonlinear shearing box simulations of the colli-
sionless MRI. Pressure anisotropy (p, > py) is created because of adiabatic invariance
(u = p1/B), as magnetic field is amplified by the MRI. The effect of p, > py is to
make the field lines stiffer. If the pressure anisotropy is allowed to become arbitrarily
large, the stiff field lines (because of p; > p) can result in the stabilization of all
the MRI modes into small amplitude anisotropic Alfvén waves. However, at large
pressure anisotropies (p, /pj — 1 > (a few)/3), mirror and ion-cyclotron instabilities
are expected to arise. Although the mirror instability is present in the kinetic MHD
approximation, the resolution (and hence the growth rate) is not enough to keep
the pressure anisotropy within the marginal anisotropy. The ion-cyclotron instabil-
ity is ordered out of the drift kinetic ordering. Therefore, subgrid models for pitch
angle scattering due to these instabilities are included. Pitch angle scattering due
to microinstabilities imposes an MHD-like dynamics on collisionless plasmas, this is
the reason MHD provides a good approximation for many collisionless plasmas in

astrophysics, e.g., the solar wind, the magnetosphere, and the interstellar medium.
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Modifications to the ZEUS MHD code, to include the kinetic MHD terms, are de-
scribed. The key result of the collisionless MRI simulations is that anisotropic stress,
a qualitatively new mechanism to transport angular momentum, is as important as
the dominant Maxwell stress in MHD. This can also affect the energetics; in partic-
ular the rate at which anisotropic pressure (collisionless damping is included in it)
heats ions and electrons can be comparable. If electron heating is comparable to ion
heating, it will be difficult to maintain T, < T; as required by some RIAF models.

Chapter 5 is the result of our attempts to carry out global non-radiative disk sim-
ulations. The aim was to include the effect of anisotropic conduction on global MHD
disk simulations [188]. The initial condition consists of a constant angular momentum
torus surrounded by a hot, low density corona. We were running into numerical diffi-
culties with this initial set up; the temperature was becoming negative at some grid
points near the disk corona interface. This motivated us to investigate the effect of
anisotropic conduction in regions of high temperature gradient. Chapter 5 describes
simple tests where centered differencing of anisotropic thermal conduction results in
heat flowing from lower to higher temperatures, resulting in negative temperature at
large temperature gradients. We introduce a new numerical method based on limit-
ing the transverse temperature gradient; this ensures that heat flows from higher to
lower temperatures and the temperature extrema are not amplified. Many tests and
convergence studies are described.

Chapter 6 concludes the thesis with an outline of possible future work. Future
work include global disk simulations with anisotropic thermal conduction, local simu-
lations with more sophisticated models for non-local anisotropic thermal conduction,
and more accurate drift kinetic simulations evolving the distribution function in a
5-D phase space.

Appendix A describes the efficiency of black hole accretion based on a simple

pseudo-Newtonian potential which captures key general relativistic effects [145]. Also
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presented is the derivation of spherically symmetric, steady accretion.

Appendix B shows the derivation of closures for p; and p,, using the DKE with
a BGK collision operator, in both high and low collisionality limit. These have been
used in Chapter 2 to show the equivalence of the drift kinetic formalism and the
kinetic MHD approximation with Landau closure for heat flux.

Appendix C describes the modifications to the ZEUS MHD code to include the
kinetic MHD terms, anisotropic pressure and anisotropic thermal conduction based on
Landau fluid closure. This also includes some tests of the collisionless aspects of the
code, e.g., damping of a linear fast mode, mirror instability in an initially anisotropic
plasma (p, > p.), shear generated pressure anisotropy and firehose instability driven
by the anisotropy (p| > p.).

Appendix D describes the error analysis of a time series where the sampling time
is smaller than the correlation time. For such a data, all entries are not independent
and the standard deviation is no a correct measure of uncertainty. This method based
on [144] is used to put error bars on the time and volume averaged quantities derived

from the shearing box simulations (in Chapter 4).
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Chapter 2

Description of collisionless plasmas

Macroscopically collisionless plasmas, with collision mean free path comparable to the
system size, are ubiquitous in astrophysics, e.g., the solar wind, earth’s magnetotail,
radiatively inefficient accretion flows (RIAFSs), and X-ray clusters. Fluid theories,
such as hydrodynamics and MHD, are applicable only when the mean free path is
much smaller than the system size, but are routinely used even when the plasma is
collisionless. While fluid theories are sometimes useful even outside of their rigorous
regime of validity, collisionless plasmas can be quite different from MHD plasmas. For
example, whereas, viscous and resistive dissipation at small scales are the only ways
to dissipate kinetic and magnetic energies into thermal motion in MHD, collisionless
damping at large scales is an important source of heating in collisionless plasmas.
Although kinetic instabilities may enforce an MHD-like behavior, collisionless effects
can be crucial, especially to understand energetics and particle acceleration.

In this chapter we discuss several descriptions of collisionless plasmas valid in dif-
ferent approximations. We start with the Vlasov equation, the most detailed descrip-
tion of a collisionless plasma, which describes the time evolution of the distribution
function in a 6-D phase space. The drift kinetic equation (DKE) is obtained from

the Vlasov equation, in the limit when length scales are much larger than the Larmor
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radius and time scales much longer than the gyroperiod. Moments of the DKE result
in kinetic MHD (KMHD) equations, where pressure is anisotropic with respect to the
magnetic field direction. Landau fluid closure for heat flux along the field lines, which

recovers the correct kinetic response in the linear regime, is described.

2.1 The Vlasov equation

A complete statistical description of the species ‘s’ in a collisionless plasma involves
a distribution function F; in a 6Ny dimensional phase space, where N, is the total
number of particles of species ‘s’. The distribution function, Fj, satisfies the Liouville

equation for an N-body system [74],

N

DF, _0F, OF, oF,
o= +Zvi-a—&+2ai-f_o, (2.1)

1= 1=

corresponding to the conservation of probability, where x, v, and a are position,
velocity, and acceleration respectively, and D /Dt is the Lagrangian derivative in the
6N dimensional phase space [104]. Reduced distributions are obtained by integrating
F; over all but one, two, three, etc., particles.

Evolution for the single particle distribution function fs(x,v,t) is obtained by

integrating Eq. 2.1 over all but one particle’s phase space,

afs qs Fg —
BT +v-Vf+ E(E+VXB)—|—E -Vifs =0, (2.2)

where all terms of order the plasma parameter, g = 1/n,\% < 1 [135], are neglected.
The plasma parameter is the inverse of the number of particles in a Debye sphere.
The Debye length is the length scale over which plasma establishes quasineutrality,
Ap = \/kT,/4mn.q%, where n,, T, are number density and temperature [104]. For an

ideal plasma, with effective shielding, n A% > 1 or ¢ < 1. The force of gravity is
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denoted by Fg, and the electromagnetic fields are governed by the Maxwell equations

V-E = 47qus/fsdv, (2.3)

V-B = 0, (2.4)
B
aa—t = —cV X E, (25)
qs 10E
B = 4 — - 2.
V x WZS:C/fsvdv+cat (2.6)

The higher order terms (in ¢) that we neglect in the derivation of Eq. 2.2-negligible
compared to the collective force due to plasma—arise because of scattering due to mi-
croscopic fields of nearby particles. Eq. 2.2 is the Vlasov equation (also known as the
collisionless Boltzmann equation) that describes the distribution function f(x,v,t),
the probability of finding a particle of species ‘s’ in an interval dxdv at (x,v) in
phase space at time ¢. The Vlasov-Maxwell equations are more complicated than the
fluid equations as they involve seven independent variables ¢, x, v rather than four in
MHD, t,x. A collision operator, that takes into account the microscopic fields due to
individual charges, can be added on the right side of Eq. 2.2 to obtain the Boltzmann
equation. Going from 6Ny to 6 variables in phase space simplifies the description
considerably for an ideal plasma with ¢ < 1. Further simplifications can be made as

we show in the following sections.

2.2 The drift kinetic equation

The Vlasov equation can be simplified further if the Larmor radius (ps) is much
smaller than the spatial scales (ps/L < 1), and the gyroperiod (27 /€2;) much smaller
than the time scales (€2, > w). An asymptotic expansion in p,/L = (m/qs)(cv/BL) <
1 can reduce the number of variables by two; the gyration phase is irrelevant, and the

perpendicular velocity is governed by the adiabatic invariant, u = v? /2B [48].
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To the lowest order, all particles drift with an E x B velocity perpendicular to
the field lines, and a parallel motion along the field lines. The parallel electric field
is small, Ey ~ O(1/qs) ~ O(e€), as charges streaming along the magnetic field lines
will short it out. Lowest order term in the expansion of f,, fos, is independent of
the gyrophase. We avoid the messy details of the derivation [109, 110, 165, 107], and
simply state the kinetic equation for the zeroth-order distribution function given by

(we follow Kulsrud’s derivation [109, 110])

afOs
ot

Ot
v

- ~ DV N 1
—|—(VE+U||b) -V fos + (-b- E —,ub-VB—FH(qu” —I—Fg”)) =0,

Dt

(2.7)
where b = B/B is the unit vector in magnetic field direction, Vg = ¢(E x B)/B? is
the drift velocity independent of species, and D/Dt = 0/0t + (Vg + va)) -V is the

comoving derivative in phase space. The Maxwell equations to the lowest order gives

the charge neutrality condition,

Z/QSfOSdV = 07 (28)
Z/quOSVdV = 0. (29)

Some remarks on the drift kinetic equation (DKE) are in order. Eq. 2.7 can
be interpreted as the conservation of probability in a 5-D phase space (x, u, v)) with

characteristics, dx/dt = Vg+uvb, and dvj/dt = —b- DV —,ulA)~VB+m%(qu” +Fy)).

Only the E x B drift shows up in the perpendicular drift, other drifts—curvature, VB,

etc.,  1/gs—are higher order in € in the drift-kinetic ordering. The force along the

DVg
Dt

field lines consists of the fluid inertial force (—b - ), the magnetic mirror force
(—uf) - VB), the parallel electric force (g,E)), and the parallel gravitational force
(Fy)- Although £y < E| and can be dropped in the Ohm’s law, it needs to be kept

in the parallel particle dynamics where it ensures quasineutrality. The condition that
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determines £ will be given in Eq. 2.27. The DKE evolves the distribution function
in a 5-D phase space (x,u,v)), with p a parameter. A term with 0/0u does not

appear in Eq. 2.7 as du/dt = 0 along the characteristics.

2.3 Kinetic MHD equations

In the drift-kinetic approximation, particles free stream along the field lines, but
move with the field lines in the perpendicular direction. This fluid-like behavior in
the perpendicular plane restores the possibility of a fluid description of a ps/L < 1
plasma.

Moments of the Vlasov equation combined with the Maxwell equations in the
non-relativistic limit (ignoring the displacement current, E/0t, in Eq. 2.6) yields
the kinetic MHD equations [109, 110],

% bV (pV) =0, (2.10)
ov _(VxB)xB
9B = Vx(VxB), (2.12)
ot

P = pI+ (p —p.)bb, (2.13)

2
v
P = zs:ms/fmédv, (2.14)

P = st/fos(v||—V-l5)2dv, (2.15)

where V = Vg + VHB is the fluid velocity. Kinetic MHD, like MHD, is a single fluid
description of plasma obtained by combining the moments of all species. Kinetic
MHD appears similar to MHD, except the pressure is an anisotropic tensor unlike
an isotropic pressure in MHD; the pressure tensor is determined by moments of the

solution of the DKE, unlike the equation of state in MHD. The asymptotic ordering
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in 1/¢; leads to the ideal Ohm’s law [104]. In principle, equations for py and p, can be

derived from the moments of the DKE. However, because of the inherent complexity

of a phase space description, fluid approximations for closure are usually employed.
The simplest and the oldest approximation is the double adiabatic (CGL) approx-

imation, where heat flux is assumed to vanish [48],

d (p1
| 2= — 2.1
a (pB) 0 (2.16)

d [ pB?
E( ”p3 ) = 0. (2.17)

The assumption that the heat flux vanishes is valid only if the phase speed, w/k,

is much larger than electron and ion thermal speeds, a cold plasma criterion almost
never satisfied for slow and fast magnetoacoustic waves at high 3.! Furthermore,
the CGL equations are non-dissipative, incapable of modeling collisionless damping.
The CGL closure is also known to give an incorrect marginal stability criterion for
the mirror instability, an instability that regulates pressure anisotropy in collisionless

plasmas [110, 180].

2.4 Landau fluid closure

In this section we describe a fluid closure that maintains the simplicity of the CGL
model, while including kinetic effects like Landau damping [180]. We also include
a simple BGK collision operator, which conserves number, momentum, and energy.
Fluid closures that incorporated kinetic effects like collisionless damping were first
derived in the electrostatic limit for nonlinear studies of drift-wave instabilities |79,
78, 54]. Snyder et al. [180] extended the closure to electromagnetic bi-Maxwellian

(anisotropic) plasmas; similar closures were obtained by [46]. Fluid closures that

I This cold plasma criterion is also not satisfied for Alfvén waves, though the heat flux is zero for
linear Alfvén waves in a uniform plasma.
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capture kinetic effects are somewhat analogous to the flux limited diffusion methods

used in radiation transport [117, 131].

2.4.1 The moment hierarchy

Multiplying Eq. 2.7 by B, and using Eq. 2.12 leads to the kinetic equation in a

conservative form,

8 ~ 0 ~ DVE » qs
— fsB+V-[fsB(vjb+V — | fsB|—-b- —ub-VB+ —F = BC(f,),
S BBVl |1 (<6 S5 — b B+ 2p )| - Bo(n)

(2.18)
where subscript ‘0’ has been suppressed. The term on the right is a BGK collision

operator [25]
C(f) = _Zij(fj — Fujin), (2.19)
k

where v, is the collision rate of species j with k. The collisions cause f; to relax to
a shifted Maxwellian with effective temperature of the species 5 and fluid velocity of
the species k,

n; exp _=my(v = ViR)? mypB
2T, T, |’

J J

Fyik = ——5 2.20
T, fm 220

where Tj = (T); + 27',)/3.2

2 A variant of this model is required to handle the large differences between energy and momentum
relaxation rates that can occur in some cases, but this simpler model is sufficient for the case at
hand, where V|, . = V| ; to lowest order.

20



We define the velocity moments as:

Mg

DPs

qs

NE

Tl ls

/fsdv, TLSVHS = /fsU”dV,

m/fs(vn = V))dv,
m/fs(vn = V))’dv,
m/fs(vn —Vp)dv,
m / fup? BAdv.

Pis = m/fsquv,
Qs = m/fs,UB(UH —V))dv,

TlLs =M / fsuiB(v) — Vj))*dv,

Specializing to the case of an electron-proton plasma, and using the charge neutrality

condition (Egs. 2.8 and 2.9), n = n. = n; and V| = V. = V},;. In this limit when

electrons and protons drift at equal velocity, the only role of collisions is to isotropize
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the distribution function. Taking appropriate moments of Eq. 2.18,

on

=+ V(@) =0, (2.21)
oV ~ [(OV V - (bpys Vb
I 4 v.vV +b E4rv.vvg )+ bis) _ P
ot ot nms nms
qs B
B _ 0 2.22
- : (2.22)
Opjs : : ;
% + V-(psV)+V-qps+2pb-VV-b-2¢,,V-b
2
- _gys(pﬂs - pJ_s)a (223)
Ops [ X
S5 Ve (V)4 Vit pV -V pl b VYLD
R 1
+ QJ_SV b= _gys(pls - p||s)7 (224>
dqs ~ " »
82 + V(Vg5) + V- (brys) + 3¢sb- VV - b
3p|s ¢ pispys Pl »
= BRI+ ( e =Tl | Vb= g, (2:25)
aQJ_s ™ r Pls
ot + V(VQJ_S> +V- (bTH,J_s) + QJ_SV(‘/Hb) o nmsb ’ Vp”S
2
. (pls T I 7“||,¢s) Vb= —vq.. (2.26)
N nmsg

where p = n(m;+m.), V = VE+V||B, Vi = Vji + Ve and Ve = Vee +Ve;, and qs = f)qns
and q ¢ = Bq 1s are thermal fluxes of p, and p,, along the field lines; perpendicular
heat flux vanishes as p;/L < 1. The perpendicular equation of motion is given by
the perpendicular component of Eq. 2.11, whose parallel component is equivalent to

Eq. 2.22. The condition Vj; = V|, and Eq. 2.22 gives [110],

B = 2o(as/ms)b -V - Py (2.27)

>2s(nsg?/ms)

Eqgs. 2.21-2.24, like Egs. 2.10-2.13, are not complete, and need a closure equation for

q|s and q . In the next subsection we introduce Landau fluid closure for heat fluxes.
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Conservation properties

The moment equations (Eqs. 2.10, 2.11, 2.23 and 2.24) conserve momentum and total
energy irrespective of the closure for higher moments. Combining Eqs. 2.10 and 2.11

gives the momentum conservation equation,

0 B? BB

5 (PV) ==V [pvv + (8—7TI - ?) + P] : (2.28)

where p| = pj; + pje and p1. = pi; + ple.
Total energy (the sum of kinetic, magnetic, and thermal energies), defined as

I =pV?/2+ B*/87 + pi + p|/2, is also conserved as

a_r:_v K%pv2+pl+lp”)v} ~ V. [m} ~-V-(V-P)-V-q,

ot 2 47
(2.29)

where q = (¢, + ¢/2)b, and ¢ = qj; + g and ¢ = qj; + gje-

2.4.2 The 3+1 Landau closure

A simple model which evolves p; and p,, and truncates the moment hierarchy with
Eqgs. 2.23 and 2.24, using closure approximations for ¢ and ¢, is called a “3+1
model,” as it evolves 3 parallel moments (n, u, pj) and 1 perpendicular moment (p, )
[180].

The 3 + 1 closure is derived by writing ¢ and ¢, in terms of the lower moments
and 6B, and solving for coefficients by matching with the linear kinetic response.

This gives [180]

8  ikyTjs
qs = —n\/iv s— (2.30)
: 1 Ty

2 ik Ty \F ( T, ikoB
qis = —n\/iv s+ nA —vysTs | 1 — = , (2.31)
7 k] T Tys ) |ky|B
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where vys = /1|s /m, and k) is the parallel wavenumber of small perturbation. The
second term in the closure for ¢, vanishes in the electrostatic limit or if pressure is
isotropic, and is needed to conserve y linearly [180].

Substituting the closures, Eqs. 2.30 and 2.31, into Eqgs. 2.21-2.24 yields the density

response
7; (SB TJ_s
5 S sE S =Y S ; 2 2
= e ER(G) +ng 1= TR (2.32)
and the perpendicular pressure response
ZpJ_s 5B TJ_s R3 (Cs Rl (Cs
= E 2 1-— 2.
Pls k||ﬂ|sqs ||R3(Cs)+ Pls— B |: 7—,”8 ( 2 + 9 ’ ( 33)

where ¢, = w/v/2|ky|vys, and R3((s) is the three-pole Padé approximation of the

electrostatic response function

2 =iV, (2.34)

Bal6) = 2 — 3iy/TCs — 4C2 + 2iy/7 (3

and R;((s) is a one-pole model of R((s), Ri((s) = 1/(1 —iy/7m(s). The electrostatic
response function, R((;) = 1+ (Z((,), where Z(¢) = (1/y/7) [ dtexp(—t?)/(t — ¢),
arises frequently in linearized moments of the Vlasov equation (or the DKE). The
3 + 1 model recovers the fully kinetic response function in both asymptotic limits,
(s < 1 and (, > 1, and provides a good approximation in the intermediate regime.
Figs. (1)-(4) in [180] show that Landau closure is a good approximation for the linear
response function from the DKE. While the linear response function in CGL (and
MHD) approximation shows no imaginary part in frequency, Landau closure gives
collisionless damping rates consistent with the DKE.

The complete 3 + 1 system of equations is given by Eqs. 2.10-2.13, and Eqgs. 2.23
and 2.24, closed by the inverse Fourier transform of Eqgs. 2.30 and 2.31. In Section

2.6 we discuss ways of computing the heat fluxes in coordinate space from the Fourier
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space expressions.

2.5 Collisional effects

Collisions serve two roles, first they isotropize the pressure tensor, and second they
reduce the heat fluxes. With the BGK collision operator, a pitch angle scattering
term that isotropizes pressure appears in equations for pj and p, (terms on the right
side of Egs. 2.23 and 2.24). Certain collisional effects, such as perpendicular diffusion,
resistive effects, etc., are not included because of the drift kinetic ordering (s > w,
v); also not included is the collisional heat transfer from one species to another.

To extend Landau closure to the collisional regime, it is useful to write Eqgs. 2.23
and 2.24 in a form similar to Braginskii’s equations [37]. This is done by defining an
average pressure, ps = (p|s + 2p1s)/3, a differential pressure, op; = p|s — p.is, and a
heat flux, ¢, = q|s/2 + q1s. The pressure tensor, P, can be divided into an isotropic
part, psI, and an anisotropic stress, Iy = —dp,I/3 + 6psbb, with dp, = (PIs — PLs)-
Combining Eqgs. 2.23 and 2.24, then gives [180]

dps 5 2 N 2

—p,V-V=—=-V-(bg,) — =1l : VV, 2.
o + 3pV 3V (bgs) 3 \V4 (2.35)
dops

D ~ o 1 ~ A ~
7 + §5p3V~V—|—5ps(bb:VV—§V~V)+3psb-VV-b—psV-V—3qLV-b

+ V. [B(q||8 — qu1s)] = —VsOps. (2.36)

2.5.1 The high collisionality limit

In the high collisionality limit, v > w, the above equations yield approximation
to the Braginskii transport equations in the v < () regime, as required by the

initial ordering. An expansion in 1/vg of Eqs. 2.25, 2.26, and 2.36 implies that
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qos = qLos = O0pos = 0. Combining this with Eq. 2.36 gives, to next order,

Sprs = —L2(3b-VV-b— V- V). (2.37)

s

The expression for Il is the same as Braginskii’s result, if v, is the inverse of Bra-
ginskii’s collision time (v; ' = 0.967; prag and V2! = 0.737. prag; see [91]).

Similarly, a heat flux matching Braginskii’s result can be obtained by taking the
high collisionality limit of the equations evolving ¢ and ¢, (Eqs. 2.25 and 2.26),

which to the lowest order in 1/v, gives

» r S 5 s 1 r S N
6 (4 )] - 36 T (4 ) 9B i 239
0llts

In the collisional limit ry’s will take their collisional values, 7 os = 3pﬁ0/m8n0,

T, L0s = pﬁo/msno, and 7 jos = Qpﬁo/msno. Substituting in the above equation gives

_§ Do
2vsmy,

qs = v||T05, (239)

which matches Braginskii’s parallel heat flux (within factors of order unity).

2.5.2 341 closure with collisions

In principle, it is possible to use a kinetic response with the collision terms and to
choose Landau closures that match the collisional linear response. Collisional heat
fluxes can also be derived by using a higher moment model (e.g., a 4+1 model)
and reducing the number of moments by taking a low frequency limit of the highest
moment equations, with the collision terms included (see [180]). Without giving the

details of derivation, we state the results for 3+1 closures that include the effects of
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collisions,

> ik Tjs
s = _Smt”s(\/%l’f||lwns + (3m — 8)vs)’ (240)
nvjlsik”Tls
e (/5 Rylvegs + vs)
; (1 - Tm) g kB (2.41)
Tys ) B (/5 1kylvus +vs)

These closures allow a smooth transition from collisionless regime where collisionless
damping is important, to the collisional regime with only viscous (collisional) damp-
ing. These closures give results similar to those derived from the DKE with a collision
operator (in the linear regime), as shown for the case of MRI in Chapter 3. Thus,
Landau models can be used to study collisionless and marginally collisional (w ~ v)
regimes. However, accurate modeling of all the collisional effects, particularly those
involving momentum exchange between species, requires a Braginskii formalism in
highly collisional regime (v > w) or extension of the BGK model to use a velocity

dependent collision frequency.

2.6 Nonlinear implementation of closure

Landau fluid closure for heat fluxes (Eqgs. 2.30 and 2.31) involve terms containing
iky/|ky]. Numerical implementation of these in k-space is straightforward for elec-
trostatic problems, as magnetic perturbations vanish and a simple Fourier transform
along the magnetic field direction is needed. However, in more general problems,
heat fluxes need to be calculated along the total (equilibrium+perturbation) mag-
netic field, and so k) involves Fourier transforms along the perturbed field lines.
Linear approximation of parallel heat flux, ¢ o bo - Vol + b - VT, has a contri-
bution due to perturbed field lines. In an incompressible, ideally conducting plasma,

temperature is constant along a field line (¢ = 0), but temperature gradient along
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the unperturbed field lines gives a nonzero result. Thus, the calculation of heat fluxes
along the perturbed field lines is non-trivial.

For fully nonlinear, electromagnetic calculations one can use a Lagrangian coor-
dinate system moving with the field lines, and coordinates aligned with the magnetic
field. Then the standard fast Fourier transform (FFT) algorithm along the coor-
dinate can be used to evaluate closures. While Lagrangian methods are useful for
fusion plasma simulations where magnetic field fluctuations are small, in most as-
trophysical cases fields are turbulent with B < §B, making a grid aligned with field
lines extremely difficult to implement. Alternatively, in an Eulerian grid, one needs
to map T from the simulation grid to a field line following coordinate system, carry
out the FFT, and then remap the result back to the simulation grid. FFTs can be
avoided by working with the real space form of closures. This involves convolutions
in one direction [O(N?) operations for N grid points in each direction], rather than
the FFT algorithm [O(N?In N) operations|. For example, the real-space form of the

collisionless 3+1 closure for g|;(2), Eq. 2.40, is the convolution

2\ %/ ©  T(z+72)=Ts(z—27 2
qs = —n (;) Utns/O gz el )~ i )9()\ ) (2.42)

!
z mfp

where g(2'/Amsp) = 1 for 2/ small compared to the mean free path, but g falls off
rapidly for 2’ large compared to the mean free path (see Eq. 51 of [180]). In a very
low collisionality plasma, exact evaluation of the heat flux requires integrating a very
long distance along a magnetic field line, but in practice the integral can be cut off
at a few correlation lengths. Truncating the integral at 2/ = L essentially means
that Landau damping is applied to modes with kj > 1/L, while Landau damping is
ignored for large scale kj < 1/L modes. Choice of an appropriate L could be made

by convergence studies.
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Figure 2.1: The dependence of the kinetic MHD growth rate, for a mirror mode and
an MRI mode, on the assumed k; Landau damping parameter in the heat fluxes. The
optimal 3-pole approximation to the plasma Z function is recovered if k7 /kj = 1. The
plot on the left shows that the growth rate of a mirror instability is fairly sensitive
to the assumed kz. On the other hand, the plot on the right shows that the growth
rate of an MRI mode is not very sensitive to the assumed value of ki (for these
parameters). Note that k;, = 0 corresponds to an isothermal limit and k;, — oo
corresponds to a CGL limit where parallel heat fluxes are ignored. The existence
of anomalous pitch-angle scattering by velocity-space microinstabilities may further
reduce the sensitivity of the nonlinear MRI results to the assumed k; parameter.

A crude closure for heat fluxes

A crude closure for parallel heat fluxes is obtained by using a local approximation
where |kj| in the denominator of Eqgs. 2.40 and 2.41 is replaced by a parameter kp,

ie.,

G = —8nu? ik T (2.43)
Ie e (V8mkLvys + (37 — 8)vy)’
. _ nvt2||sik||TJ-S < TJ_s) nvﬁlsTlik”éB (2 44)
ls — - . .
(\/gkﬂ’tlls + ’/8) Tys ) B (\/§km”s + Vs)

These are readily calculable local expressions for parallel heat fluxes that recovers the
correct growth/damping rate for a mode with wavenumber k7. Modes with |k > kp

(|ky] < ki) have a faster (slower) heat conduction rate than collisionless Landau
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damping, but the final impact on the growth or damping rate of a mode depends on
the type of mode (see Figure 2.1 for examples of mirror and MRI modes). Note that
heat fluxes in Eqgs. 2.43 and 2.44 with a constant k are diffusive, like Braginskii’s
heat fluxes. The shearing box simulations of the MRI in the collisionless regime use
these local expressions [177]; the nonlinear results are not very sensitive to the choice
of kr, but do show some dependence (as shown in Chapter 4). However, there may
be velocity-space microinstabilities that enhance the effective pitch-angle scattering
rate, which may make the nonlinear results less sensitive to assumptions about kj,
than one might at first think.

To improve on this in future work, there are several possible approaches that
could be taken, such as a direct evaluation of the non-local heat flux expressions like
Eq. 2.42, along field lines to some maximum length L. Another would be to use
better Padé approximations to the k-space operator corresponding to the Landau-
damping operator. For example, in Eqs. 2.30 and 2.31 the heat flux is proportional
to ik /|k|, which at present we approximate as ikj/kr and then Fourier transform
to real space to get the local operator (1/kz)V). A next order Padé approximation
to ik)/|k) would be of the form agik)/(1+ 6gkﬁ). Fourier transforming this gives the
operator (1 — ﬁgVﬁ)_la()V” [51]. If a fast iterative Krylov or Multigrid solver could
be developed to invert the (1 — 62Vﬁ) operator (which would be non-trivial because it
is an anisotropic operator corresponding to diffusion only along field lines), then this
could be a faster way to approximate the non-local heat flux operator that would be
relatively good over a range of k| instead of only near k| = k. This procedure could
be made more accurate by using higher order Padé approximations.

Another way to improve the calculation of the heat flux while retaining a local
approximation could be by keeping more fluid moments before introducing a closure
approximation, and modifying the closure approximations to correspond to hyper-

collisions that selectively damp fine scales in velocity space. This would reduce the
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number of fluid moments needed. Keeping higher order fluid moments before closing
is related to a kinetic calculation that uses higher order Hermite polynomial basis
functions in velocity space [77, 179]. While this is possible in principle, the rate of
convergence as more terms are added and its computational cost relative to other
options have not been evaluated.

Finally, another way to improve the calculation would be to do a direct 5-D
calculation of the drift-kinetic equation. This would be computationally challenging,
but would be feasible for a range of problems. It would be similar to 5-D gyrokinetic
simulations recently developed in fusion energy research that have made significant

contributions to understanding drift-wave turbulence in fusion devices [53, 97, 40].

2.6.1 The effects of small-scale anisotropy-driven instabilities

The MRI acts as a dynamo that amplifies the magnetic field. Conservation of the
magnetic moment p = v? /(2B) means that as the magnetic field fluctuates, the per-
pendicular pressure p, will change, creating pressure anisotropies. As we will discuss
in more detail in Chapter 4, if these pressure anisotropies exceed a certain threshold,
they can drive velocity space instabilities (the mirror, cyclotron, and firehose insta-
bilities) that have very fast growth rates at small scales. These instabilities can drive
gyro-radius scale fluctuations that break adiabatic invariance and cause scattering to
reduce the pressure anisotropy back to threshold.

To estimate the magnitude of this enhanced scattering rate, consider Eq. 2.36 in
an incompressible limit, V -V = 0 (as might be expected at high § for low Mach

number MRI-driven flows):
dops/dt + (3ps + 0ps)b-VV - b+ V - [b(qs — q1s)] = —vIps.

Expanding the magnetic field evolution equation in the incompressible limit, 0B /0t =
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V x(VxB)=B:-VV —V.B, and dotting it with B gives

9 1 2 1 2\ _ p2rx -
8t(23)+v (V2B)_Bb VV -b.

Substituting this in the pressure anisotropy equation, gives:

dlog B
ot

dops/dt = —(3ps + ps) [ + V- (Vlog B)} — V- [b(gys — qu.5)] — vOps.

The first term on the RHS represents the rate at which pressure anisotropies are
driven due to adiabatic invariance in a changing magnetic field, which we will esti-
mate as of order 3ps0log B/t ~ 3psynmrr, where gy is the growth rate for the
dominant MRI modes in the simulation (this might be modified in the nonlinear
state). In steady state, this will be balanced by the last term in this equation, which
represents isotropization due to scattering at rate v, due either to binary collisions
(which are negligible for the regimes we focus on) or due to gyro-scale velocity-space
instabilities. The growth rate of velocity-space instabilities is very rapid if the thresh-
old for instability is exceeded, so a simple model for the effect of these instabilities
is that they will cause just enough scattering v.;s to keep the pressure anisotropy
dps/ps = (P|s — PLs)/Ds close to the threshold value, which for the mirror instability
is of order 7/ (further details of this will be discussed in Chapter 4). Thus, balanc-
ing the first and last terms on the RHS, we estimate the effective scattering rate by

velocity-space instabilities to be of order

Vepf ~ 3psYnmr1/0ps ~ YamriD. (2.45)

The mean free path associated with this is
Amfpeff ~ Vi/Veps ~ LMRI/fa (2.46)
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assuming yarr ~ knmriVaifoen ~ Vaifven/Lyvrr, where Lygr is of order the wave-
length of a typical MRI mode in the system. There are factors of 2, 7, etc. uncertain-
ties in these estimates, but they suggest that, at very high 3, the effective mean free
path due to scattering by velocity-space instabilities might be short compared to the
dominant MRI wavelength. This would reduce the sensitivity of the results to the as-
sumed value of the k; Landau damping parameter. However, there are intermittency

issues that may complicate the picture, as we discuss next.

Intermittency of pitch angle scattering

Figure 2.2 shows that the fraction of the box where pitch angle scattering occurs is
small (~ 0.01 — 0.1) for both 3 = 400 and 8 = 10° simulations (runs ZIl4 and K Z4l
in Chapter 4). The density of scattering regions (and hence the effective mean free
path) is very similar for 8 = 400 and 3 = 10° simulations (see Figure 2.2). The
volume averaged effective collision frequency v, is also shown in Figure 2.2; at late
times both initial 8 = 400 and initial § = 10° simulations give similar values for v,
because 3 at late times for the two simulations are comparable (G ~ 500 — 1000),
roughly consistent with the [ scaling of Eq. 2.45, but an order of magnitude smaller
than the estimate of Eq. 2.45. Eqs. 2.45 and 2.46 assume that pitch angle scattering
occurs roughly uniformly everywhere in the box. However, nonlinear simulations
show that pitch angle scattering is not uniform but is concentrated in small volumes
in the box. Because of the sparsity of scattering regions the true mean free path
of most particles will be much longer than H/y/3. The true mean free path will
be some average measure of how far particles have to move along field lines before
they find one of the isolated regions where rapid scattering is occurring; this may be
comparable to the box size (or larger).

Further studies are required to understand the role of the distribution of inter-

mittent scattering regions on thermal conduction and momentum transport, and to
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Figure 2.2: Top two plots show the fraction of grid points undergoing pitch angle
scattering due to mirror (solid line) and ion-cyclotron (dot-dashed line) instabilities
for 3 = 400 (left; low resolution run ZI4) and 10° (right; high resolution run K Z4h).
Effective collision frequency due to pitch angle scattering (verr/€2) for 5 = 400 (left)
and 3 = 10°. Pitch angle scattering is not uniform in space, and occurs only in small
volume-fraction of the box (~ 0.01 — 0.1).
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what extent does pitch angle scattering lead to MHD-like dynamics.

As we will find in Chapter 4, the limits on anisotropy provided by these velocity-
space instabilities cause the nonlinear kinetic MHD simulations of the MRI to be
qualitatively closer to regular MHD simulations of the MRI. However, even with these
limits on anisotropy, the anisotropic pressure component of the angular momentum
transport is found to be competitive with the usual Maxwell and Reynolds stress
transport mechanisms. The enhanced scattering by these velocity-space instabilities
may alter the relative electron/ion heating in MRI turbulence, a topic we leave for
future research.

The enhanced scattering by velocity-space instabilities can also cause an increase
in the effective Reynolds number (and thus a reduction of the effective magnetic
Prandtl number, the ratio of viscosity and resistivity) of high 4 MHD turbulence in
general. The possible implications of this are beyond the focus of this thesis, but they
have been discussed in a recent paper [170], on which I was a co-author.

To summarize, in this chapter we began with the most detailed Vlasov descrip-
tion of collisionless plasmas, and motivated the drift kinetic equation (DKE) in the
kps > 1, w < €4 regime. Further simplification was introduced in the form of fluid
closures for parallel heat fluxes that reproduce correct kinetic behavior, and capture
collisionless damping. Fourier space representation of the heat fluxes, and the nonlo-
cal integral expression in coordinate space (and the ways to numerically compute it)
were indicated. A generalization to include the collisional effects, which reduces to
Braginskii’s result in v > w regime, was given. A crude, local approximation for the
heat fluxes was presented, in which the parameter kj, represents a typical wavenumber
of the mode. Only the local approximation has been used in the local shearing box
simulations of the collisionless MRI, leaving sophisticated treatments for the future.
Pitch-angle scattering by velocity space instabilities might provide a reduction of the

effective mean-free-path, which may contribute to reducing the sensitivity of the re-
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sults to the assumed kj, but the scattering is found to be very intermittent spatially,

so the reduction in the mean free path might be less than one might expect at first.
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Chapter 3

Transition from collisionless to

collisional MRI

This chapter is based on our paper on the transition of the MRI from the collisionless
to the collisional regime [176]. Calculations by Quataert and coworkers [158] found
that the growth rates of the magnetorotational instability (MRI) in a collisionless
plasma can differ significantly from those calculated using MHD, particularly at long
wavelengths. This can be important in hot accretion flows around compact objects
(see Section 1.4 for a review). In this chapter we study the transition from the colli-
sionless kinetic regime to the collisional MHD regime, mapping out the dependence
of the MRI growth rate on collisionality. The Landau fluid closure for parallel heat
flux, which recovers kinetic effects like Landau/Barnes damping, is used and the effect
of collisions is included via a BGK operator. The kinetic MHD equation of motion
has three forces: the isotropic pressure force, the magnetic force, and the anisotropic
pressure force. For § 2 1 the transition from collisionless to Braginskii regime oc-
curs as the anisotropic pressure becomes small compared to the isotropic pressure
(v 2 Qv/B); and the transition from Braginskii to MHD occurs when anisotropic

pressure force becomes negligible compared to the magnetic force (v 2 Q). In the
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weak magnetic field regime where the Alfvén and MRI frequencies w are small com-
pared to the sound wave frequency kjco, the dynamics are still effectively collisionless
even if w < v, so long as the collision frequency v < kjcq (i.e., so long as the mean free
path is long compared to a wavelength); for an accretion flow this requires v < Q4/0.
The low collisionality regime not only modifies the MRI growth rate, but also in-
troduces collisionless Landau or Barnes damping of long wavelength modes, which
may be important for heating of electrons and protons. The fastest growth rate in
the collisionless regime is &~ twice faster than in MHD; moreover, the fastest growing

mode occurs at large length scales compared to the fastest growing MHD mode.

3.1 Introduction

Balbus and Hawley [14] showed that the magnetorotational instability (MRI), a local
instability of differentially rotating magnetized plasmas, is the most efficient source
of angular momentum transport in many astrophysical accretion flows (see Section
1.3 for a review). The MRI may also be important for dynamo generation of galactic
and stellar magnetic fields. Most studies of the MRI have employed standard MHD
equations which are appropriate for collisional, short mean free path plasmas, but it is
not obvious that this instability is relevant for collisionless, low luminosity accretion
flows (see Section 1.4; Table 1.2 shows the collsion frequency is small compared to the
rotation frequency). Quataert and coworkers ([158]; hereafter QDH) studied the MRI
in the collisionless regime using the kinetic results of Snyder, Hammett & Dorland
[180]. They showed that the MRI persists as a robust instability in a collisionless
plasma, but that at high § > 1 (ratio of plasma pressure to magnetic pressure),
the physics of the instability is quite different and the kinetic growth rates can differ
significantly from the MHD growth rates.

One motivation for studying the MRI in the collisionless regime is to understand
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radiatively inefficient accretion flows onto compact objects. An example of non-
radiative accretion is the radio and x-ray source Sagittarius A*, which is powered by
gas accreting onto a supermassive black hole at the center of our galaxy (see Subsec-
tion 1.4.2 for a review). In radiatively inefficient accretion flow models, the accreting
gas is a hot, low density, plasma, with the proton temperature large compared to the
electron temperature (7, ~ 10'? K > T, ~ 10'° — 10'? K). In order to maintain such
a two-temperature configuration, the accretion flow must be collisionless in the sense
that the timescale for electrons and protons to exchange energy by Coulomb collisions
is longer than the inflow time of the gas (for models of Sagittarius A*, the collision
time close to the black hole is ~ 7 orders of magnitude longer than the inflow time,
see Table 1.2).

In this chapter we extend the kinetic results of QDH to include collisions; we
study the behavior of the MRI in the transition from the collisionless regime to the
collisional MHD regime. Instead of using a more accurate (but very complicated)
Landau or Balescu-Lenard collision operator, we use the simpler Bhatnagar-Gross-
Krook (BGK) collision operator [25] that conserves number, momentum and energy.

There are several reasons for studying the MRI with a varying collision frequency:
(1) to gain additional understanding of the qualitatively different physics in the MHD
and kinetic regimes, (2) the key difference between the kinetic and MHD regimes
is that the pressure is anisotropic (with respect to the local magnetic field) in a
collisionless plasma (see Section 2.3). Even if particle collisions are negligible, high
frequency waves with frequencies ~ the proton cyclotron frequency can isotropize the
proton distribution function (see Subsection 4.2.2). Our treatment of “collisions” can
qualitatively describe this process as well; and (3) the transition from the collisional to
the kinetic MRI could be dynamically interesting if accretion disks undergo transitions
from thin disks to hot radiatively inefficient flows (as has been proposed to explain,

e.g., state changes in X-ray binaries; [55]). There can be associated changes in the rate
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of angular momentum transport («), as disk transitions from collisional to collisionless
state, and vice versa.

We begin with the linearized drift kinetic equation with a BGK collision operator
and derive the exact closures for dp| and dp; these are used to close the linearized ki-
netic MHD equations. We use Landau fluid closure for parallel heat fluxes, and show
that they are equivalent to the kinetic closures in both low and high collisionality
regimes; Landau fluids are considered because they are easier to implement compu-
tationally and we use them for local, nonlinear MHD disk simulations described in
Chapter 4. The kinetic MHD linear analysis shows the presence of damped modes at

all scales (see Figure 3.4), a feature absent in MHD.

3.2 Linearized kinetic MHD equations

The analysis is restricted to fluctuations that have wavelengths much larger than
proton Larmor radius and frequencies well below the proton cyclotron frequency. In
this limit, a plasma can be described by the following kinetic MHD equations (see

Section 2.3):

0

a—f LV (pV) =0, (3.1)
\% ~_(VxB)xB

0B

E—VX(VXB), (3.3)

P =p I+ (p —p.)bb, (3.4)

where p is the mass density, V is the fluid velocity, B is the magnetic field, Fyg is the
gravitational force, b = B/|B| is a unit vector in the direction of the magnetic field,
and I is the unit tensor. In equation (3.3) an ideal Ohm’s law is used, neglecting effects

such as resistivity. P is the pressure tensor that has different perpendicular (p, )
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and parallel (p|) components with respect to the background magnetic field (unlike
in MHD, where there is only a scalar pressure). The pressures are determined by
solving the drift kinetic equation given below. P should in general be a sum over all
species but in the limit where ion dynamics dominate and electrons just provide a
neutralizing background, the pressure can be interpreted as the ion pressure. This is
the case for hot accretion flows where T, > T..

We assume that the background (unperturbed) plasma is described by a non-
relativistic Maxwellian distribution function with equal parallel and perpendicular
pressures (temperatures). Although the equilibrium pressure is assumed to be isotropic,
the perturbed pressure is not. We take the plasma to be differentially rotating,
but otherwise uniform (we neglect temperature and density gradients). Equilib-
rium state for equation (3.2) in presence of a subthermal magnetic field with ver-
tical (B, = Bysin#) and azimuthal (By = Bycosf) components gives a Keplerian
rotation (Q oc R~%/2) profile.

In a differentially rotating plasma, a finite Bg is sheared to produce a time-
dependent By, which complicates the kinetic analysis (unlike in MHD, where a time-
dependent By does not couple to axisymmetric disturbances; [14]); we therefore set
Br = 0. For linearization we consider fluctuations of the form exp[—iwt + ik - x|,
with k = kpR + k.z, i.e., axisymmetric modes; we also restrict our analysis to local
perturbations for which |k|R > 1. Writing p = pg+dp, B=Bo+ B, p. = po+p_,
and p| = po + dp, V = QR + 6V (with Keplerian rotation €(R)), and working in

cylindrical coordinates, the linearized versions of equations (3.1)-(3.3) become (see
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QDH)

wdp = pok - 0V, (3.5)
' k.B,0B
iwpedVi — o220V, = —T—: (B.OB. + BydBy) + w — ikpdpL,(3.6)
2 k.B,0B,
—iwpedVy + podVipt = HeBOBe sin 6 cos 0[5py — 6p. ], (3.7)
29 dm
k,By0B
—iwpedV, = _% — ik, [sin® 0dp) + cos® Oop ], (3.8)
w3Br = —k,B.6Vi, (3.9)
1k, B, dS)
0By = —k,B,0V, — ——~—— Vi + Byk -6V, 1
wobe ¢ w dlnR " + Dy (3.10)
w&BZ = k‘RBZ(SVR, (311)

where k? = 40% + dQ?/dIn R is the epicyclic frequency. To complete this system
of equations and derive the dispersion relation for linear perturbations, we need ex-
pressions for dp; and dp; in terms of lower moments. These can be obtained by
taking moments of the linearized and Fourier transformed drift-kinetic equation that
includes a linearized BGK collision operator (see Section 2.2).

The drift-kinetic equation for the distribution function f, including the effects of

gravity is (see Section 2.2 for details)

0 N . DV N 0
a—{:—'—(vub—FVE)'Vf"‘(—b' DtE—ub-VBﬂL%(EHJngu/e))8—1{;20(13)7

(3.12)
where Vi = ¢ (E x B) /B?, = (v, — Vg)?/2B is the magnetic moment (conserved
in our approximations in the absence of collisions), Fy = GM*mpf% . B/ R?, and
D/Dt = 9/ot + (v||15+VE> - V. The fluid velocity V = Vg + f)l/||, where the
E x B drift Vg is determined by the perpendicular component of equation (3.2).
The parallel component of the gravitational force, Fy, is included as it is of the
same order as the parallel electric force. Notice the addition of a collision operator

on the right hand side to allow for generalization to collisional regimes. In the next
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section we derive the linearly-exact kinetic expressions for dp and dp, using the BGK
collision operator in equation (3.12). We then compare these with Landau closure

approximations from Snyder et al. [180].

3.3 Kinetic closure including collisions

In this section we use a simple BGK collision operator [25] to calculate dp; and ép
from equation (3.12). Since we consider only ion-ion collisions (see Subsection 2.4.1 for
multiple species), the BGK operator is Ck (f) = —v (f — F)) where v is the ion-ion
collision frequency and F); is a shifted Maxwellian with the same density, momentum,
and energy as f (so that collisions conserve number, momentum, and energy). The
integro-algebraic BGK operator greatly simplifies the calculations while adequately
modeling many of the key properties of the full integro-differential collision operator.
In some situations, the effects of weak collisions can be enhanced in a more complete
collision operator due to sharp velocity gradients in the distribution function; we
ignore such effects in the present analysis.

In this section, we calculate the linearization of the drift-kinetic equation around
an accretion disk equilibrium, including equilibrium flows and gravity. A number of
complicated intermediate terms end up canceling, and the final forms of the closures
used (from equations (3.26-3.27) onwards) are identical to what one would get from
perturbing around a slab equilibrium with no flows. We carried out the more detailed
calculation to verify that there were no missing terms in the final closures.

The equilibrium distribution function f; is given by

o Un m 2
fo= WGXP (‘2—%“’ — V| ) , (3.13)

where Vo = Vg + VHOBO is the Keplerian rotation velocity in the QAS direction. Since
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v — V| = (v — Vjo)? + 2uBo, fo can be expressed in terms of (u,v)) as

fo= (%TRHW exp (_2—% ((UII - VIIO)2 + QNBO)) : (3.14)

We shall linearize the drift-kinetic equation and the BGK collision operator. The
distribution function is given as f = fy + 0 f where 0 f is the perturbation in the
distribution function. The shifted Maxwellian that appears in the BGK collision

operator is given by

Nu

Fy = Wexp {—% ((U” - V||M)2 +2,MB>}. (3.15)

F has three free parameters (Nyy, Vims T)r) which are to be chosen so as to conserve
number, parallel momentum, and energy. When taking moments of the BGK opera-
tor, it is important to note that [ d*v = [ 27 (By + 6 B) dudv. From equation (3.15)

and conservation of number, momentum, and energy it follows that

0B
Ny = ng+on=ng (1 + E) + 27 By / dudvd f, (3.16)
0B
NMVHM = NM(‘/”() + (5‘/) ~ no‘/uo <1 + 3) + 27 By / d/J,dU||5fU||, (317)
0
NyTy = po+dp=po+ (6p) + 20p1)/3, (3.18)
(5])” ~ p053/30 + 27TBO/d,U,dU||5fm(U” — W|0)2, (319)
opL. =~ 2pydB/By+ 2w By / dpduv 6 f pm By, (3.20)

where the approximate expressions retain only linear terms in perturbed quantities.

Linearizing the expression for the relaxed Maxwellian in equation (3.15) about fo,
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the drift-kinetic BGK collision operator is given by

on 30T

k(0f) = —vif+vfox {(n_0_2—T0)

m 2 0T muBy (0B 0T
T <(U|| = Vjio) du + (v = Vjo) 2—%) T (Fo - ?0) ](3-21)

The drift-kinetic equation including the BGK operator can be linearized to obtain

the following equation for ¢ f

. (6Bysinf — §B, cosf)m m (v) = Vjo) fo
of = Vyoloy—V, sin + , : X
f = Vol = Vi ToBo Ty (—iw + ik (v) = Vo) + )
Ey+ F,
—Z'/{Z”,uéB + (6 [ gH) + X ; s X
m (—zw + Z]{Z” (UH — V||0) + V)

(5n 30T N m(v| — Vijo)ou N m(vy — Vjo)? or N muBy 6T mudB

,(3.22)
Un 2 T(] TO 2T0 T(] T(] T(] TO

where Fy = GM,m,0Bg/ ByR? is the component of gravitational force in the di-
rection of magnetic field. Choosing a compact notation where —iw sin 0(0 By sin 6 —
0B, cos 0)mVy/eBy +Fy /e + Ej — Ej, the moments of the perturbed distribution

function ¢ f in drift coordinates (v, pt), [ (1, 2uBy, (v — Vio)? ) d f2m Bodpdv) give

n 5B eE) on 30T 5T OB
— = 1-— ————1Z — = — | Z
o B(] ( R) + ’L]fHTOR C { (no 2 T(]) + (TO B(])
k V. inf —
N \/—5VR <5T 9 sin g FIVe0 (0Bgsin® — 0B, COSH)) CR}7 (3.23)
0 4 By
5pJ_ o 6E|| on 30T oT 0B
Po n ( R) + Z]{Z”TOR C2 Un 2 T(] 4 +2 TO B(] 4
kyV, inf —
N \/iévR <5T 9 sin g FIVe0 (0Bgsinf — 0B, cos@)) CR}7 (3.24)
0 4 By
5p|| eEH 2 on 30T
— = 142 — 2\ ——=—
Po B C R_'_ Zl{?”TQ ( + C R) C2 Un 2 T() CR
0T OB oV
2 — - — 2— (1 +2¢?
+ (To BO)CRJFICO( +2¢°R)
T kyVso (0Bysinf — 0B
+ (5— 4 2isin pM1Ve0 (9Bpsind — 0 Zcose)) (1 +2<2R)}. (3.25)
TQ 14 B()
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The parallel electric field, Fj, can be eliminated by taking appropriate combinations

of these three equations, giving

op  opy 0B (5T 5B)
R —R)+GZ | ——— |, 3.26
Lo Po Bo ( ) 2 To By ( )

and

4]
(1+2<2R)5—p_Rﬂ:5_B(1+2<2R_R)_CQ(Z_QCR) (@_5_T_5_B)’
Po po By P

where 6T = (20T + 6T}) /3, 6B = bo-0B, ¢ = (w +iv) /V2|ky|co, ¢ = iv/V/2|Ky |co,
k= bo - k, Ty . = mp),./p, and cog = /Tp/m is the isothermal sound speed of the

ions. In equations (3.26) and (3.27), R = 1 4+ (Z is the plasma response function,

-~ / exp|=’] (3.28)

is the plasma dispersion function [91]. Equations (3.26) and (3.27) can be substituted

where

into the linearized fluid equations 3.5-3.11 to derive the dispersion relation for the
plasma. The full closures are, however, very complicated, so it is useful to consider
several simplifying limits that isolate much of the relevant physics. In addition,
the solution of linearized kinetic MHD equations fully kinetic closures will give an
implicit equation for the growth rate (involving the Z function) that has to be solved
numerically.

The closure equations can be simplified in two limits, |(| < 1, the collisionless
limit, and || > 1, the high collisionality limit. The derivation of the asymptotic
solution for the closure equations in these two limits is given in Appendix B. In the

high collisionality limit,

dpi. _ 5dp LG G ( ) op Cl 0B (3.29)
9¢t .

P 3p0 Co Po Cz By’
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and

— ==t st —+ = 3.30
po 3p0 G\ 3 9%/ p G Bo (3.30)

where (; = w/v/2|kj|co. Notice that in the limit that the collision frequency is very
high, (; — oo, one recovers the MHD result that the perturbations are adiabatic and
isotropic: dpy/po = dpL/po = 56p/3po.

For low collisionality, || < 1, to second order in (,

bp. _0p . o OB _7GiGdp ™\ 0B
E - % Z\/%Cl BO 3 00 + C1C2 (2 3> BO’ (331)
and
% - 5_p — T (5_p _ 5_3) + 5_p (4C1C2 _ WC12 . 77TC1C2) I
Po Po po  Bo Po 6
(;—B (\/7_TC1C2 - W%Q —2¢% - 4(2§) : (3.32)
0

To first order, there is no effect of collisions on the growth rate of the MRI; the
results above are then exactly same as equations (20) and (21) in QDH (who neglected
collisions entirely). Collisional effects modify the closure only at order (2, though one
has to go to this order to find the first order dependence of w on v in the dispersion

relation.

3.4 Comparison with Landau fluid closure

The results from last section provide expressions for dp, and dpj in both low and high
collisionality regimes, || < 1 and || > 1, but it would be convenient to have a single
set of equations that can provide a robust transition between these two regimes. The
Landau fluid closure [180], which we discuss in Section 2.4, can do this.

The second order moments of the drift kinetic equation (Eq. 3.12) yield evolution
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equations for 0p, and dpy (see, e.g., Egs. 2.23 and 2.24). The linearized versions of

these equations, including a BGK collision operator, are given by !

0B 2
—iwdp| + poik - 6V + ikyq) + 2poik)dv) — 3pofL cos Q?R = -3 (5p|| — 5pL) , (3.33)
0
and
. . . _ 3 0B 1
—1wop 1 + 2potk - 0V +1kyqL — poikydv + §p0§2 coS Q?R = _§V (5pL — 5p||) . (3.34)
0

As is usual with moment hierarchies, the above equations for dp) , depend on third
moments of the distribution function, ¢ and ¢, the parallel and perpendicular heat
fluxes.? Snyder et al. [180] introduced closure approximations for ¢ and ¢, that de-
termine op, and dp; without solving the full kinetic equation of the previous section
(see Section 2.4 for a review). These Landau-fluid approximations “close” equa-
tions (3.1)-(3.4) and allow one to solve for the linear response of the plasma.

The linearized heat fluxes of parallel and perpendicular pressures are given by

_ 20k (0p1/po —dp/po)

41 = —Po& (33
(\/T/2|k:|||cO + V)
and
o ik (Op)/po = dp/po) (3.36)

o o Ry o + (37 — 8) v)
As discussed in earlier work [180, 78, 77, 179], Landau-fluid closure approximations

provide n-pole Padé approximations to the exact plasma dispersion function Z(() that

appears in the kinetic plasma response (see Section 2.4). These Padé approximations

LA comparison of our equations (3.33) and (3.34) with equations (30) and (31) in Snyder et al.
(linearized version of Eqs. 2.23 and 2.24) shows that our equations have an extra term proportional
to the Keplerian rotation frequency; this is because [180] did not include gravitational effects and
Keplerian rotation in their linearized equations.

2Tt is important to note that q) and g are the fluxes of p| and p, along the field lines; thermal
conduction perpendicular to field lines vanishes as the Larmor radius is tiny.
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are thus able to provide robust results that capture kinetic effects such as Landau
damping, and that can also smoothly transition between the high and low ¢ regimes.?
We have found, not surprisingly, that the fluid approximations remain robust when
collisions are included. That is, in all of the numerical tests we have carried out, we
have found good agreement between the results from equations (3.33)-(3.36) and the
asymptotic kinetic results from the previous section for the low and high collision-
ality regimes. All plots in this chapter are calculated with the Landau-fluid closure
equations (3.33)-(3.36).

The Landau-Fluid closure approximations provide a useful way to extend existing
non-linear MHD codes to study key kinetic effects (see Chapter 4). The closure ap-
proximations are independent of the frequency (or the Z function), so are straightfor-
ward to implement in a nonlinear initial value code (though, as discussed in Chapter 2
they do require FF'T’s or non-local heat flux integrals to evaluate some terms[180, 78];
however, in nonlinear simulations discussed in Chapter 4 we use a simple local form
for heat flux). But one should remember that they are approximations and so do not
accurately model all kinetic effects in all regimes, particularly near marginal stabil-
ity ([126, 179, 52]), though it is generally found that they work fairly well in strong
turbulence regimes ([77, 147, 179, 52]).

As an aside, we note that the double adiabatic (CGL) closure [48], which is a
simpler closure approximation that sets ¢y = ¢, = 0 in equations (3.33) and (3.34),
generally does a poor job of reproducing the full kinetic calculations. This is because
the perturbations of interest have w < |kjj|cy and are thus far from adiabatic (see
also QDH); moreover, the CGL approximation excludes kinetic effects like Landau

damping.

3The approximations are fairly good near or above the real ¢ axis, though they will have only a
finite number of damped roots, corresponding to the finite number of poles in the lower half of the
complex plane, while the full transcendental Z(¢) function has an infinite number of damped roots.
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Figure 3.1: Growth rates of the MRI as a function of kgr/k, for different collision
frequencies; 3, = 10%, B, = 0 for the plot on the left, and B, = B, for the plot
on right. For v/Q > 10* (=4; this is the transition to MHD) the growth rates are
very close to the MHD values, while for v/Q < 10? (= /f; this is the transition to
Braginskii regime) they are quite similar to the collisionless limit. The enhancement
of the growth rate in the collisionless regime for small kg is the result of pressure
anisotropy.

3.5 Collisionality dependence of the MRI growth

rate

Figures 3.1 and 3.2 show the growth rate of the MRI for intermediate values of colli-
sionality, in addition to the limits of zero and infinite collision frequency (the MHD
limit; the latter two cases were shown in QDH). To produce these plots, we have

used equations (3.5)-(3.11) and (3.33)-(3.36). These equations were solved both with

a linear initial value code to find the fastest growing eigenmode, and with MATHE-
MATICA to find the complete set of eigenvalues w.

Figures 3.1 and 3.2 show that the transition from the MHD to the collisionless
regime is fairly smooth and occurs, for these particular parameters, in the vicinity of
v/ ~ 103, which corresponds to v ~ 3Y4kcy, or kAp s ~ 374, where A\pp = co/v

is the mean free path. Figure 3.3 shows the growth rate versus collisionality for
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Figure 3.2: Growth rates of the MRI as a function of k,V,,/Q for different collision
frequencies; (8, = 10*, B, = 0 for the plot on left, and By = B, for the plot on right.
For v/Q > (3 the growth rates are very close to the MHD values, while for v/Q < /3
they are quite similar to the collisionless limit. Notice that the fastest growing mode
in the collisionless regime is &~ twice faster than the fastest growing mode in MHD,

and also occurs at a much larger length scale.

B, =100 and 3, = 10*, and for B, = B,, kg = 0 and B, = 0, kg/k, = 0.5.

It is clear from these figures that the transition from the collisionless to the colli-
sional MRI takes place at far higher collision rates than v ~ 2 ~ w. That is, v > w is
not a sufficient criterion to be in the collisional regime. The transition from collision-
less to collisional regime can be understood in terms of the forces in equation of mo-
tion: the isotropic pressure force (~ pc2), the anisotropic pressure force (~ E’&# pcl),
and the magnetic force (~ pV3). For v = 0 and 3 > 1, the anisotropic pressure force
is comparable to the isotropic pressure and is much larger than the magnetic force. As
v is increased, the anisotropic pressure is reduced in comparison to the isotropic pres-
sure and the transition to the Braginskii regime occurs when v 2 kjco. Transition to
MHD occurs on further increasing the collisionality, as anisotropic pressure becomes
negligible compared to the magnetic force v 2 Bk Va = kjv/Bco. Using kyVa ~ Q for
the MRI, these transitions are given in terms of the rotation frequency and f3; colli-

sionless to Braginskii when v > Q+/f, and Braginskii to MHD when v > Q3. Figure
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Figure 3.3: Variation of the MRI growth rate with collisionality for kg = 0, B, = B,
(top curves) and kgr/k, = 0.5, By, = 0 (bottom curves). Collisions isotropize the
distribution function and can increase the growth rate in some regimes and decrease
it in others. Solid lines correspond to 3 = 10* and dotted lines to 3 = 102.

3.3 clearly shows that the transition from collisionless to MHD regime occurs roughly
when v > Q334 the geometric mean of the two transition collision frequencies.

At high G(> 1), the Alfvén and MRI frequencies are small compared to the
sound wave frequency, and there exists a regime w < v < kjcp where the collisionless
results still hold, despite the collision time being shorter than the growth rate of the
mode. Physically, this is because in order to wipe out the pressure anisotropy, that is
crucial to the MRI in a collisionless plasma (see QDH), the collision frequency must
be greater than the sound wave frequency, rather than the (much slower) growth
rate of the mode. This can also be seen by comparing Figures 3.1 and 3.2 with the
corresponding figures in QDH: the effect of increasing collisions (decreasing pressure
anisotropy) is similar to that of decreasing (3, (decreasing pressure force relative to
magnetic forces). From the point of view of Snyder et al.’s fluid approach, the weak
dependence of growth rate on collisionality, even if v is as large as w, is because the

terms proportional to w and v in Egs. (3.33) and (3.34) are both much smaller than
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the dominant terms involving convection, heat conduction, and magnetic forces. So
the relative magnitudes of w and v are not that important, and it is not until v is large
enough to be relevant in Egs. 3.33-3.36, that collisional effects become noticeable.

Figure 3.4 shows the complete spectrum of eigenmode frequencies as k, is var-
ied, including the propagating and damped modes, in addition to the unstable MRI
branch. We show all the waves present in collisionless Landau fluid and MHD cal-
culations for a general choice of wavenumbers and a moderate ,(= 10). The MRI
is operational at lower k., while at high k, the eigenfrequencies eventually approach
the uniform plasma limit.

Focusing first on the MHD solutions at high k., we see the standard set of 3 MHD
waves: in order of descending frequency these are the fast magnetosonic wave, the
shear Alfvén wave, and the slow wave. Eqs. 3.5-3.11 with an MHD adiabatic pressure
equation wdp = pok - v is a set of 8 equations with 8 eigenvalues for w. The standard
3 MHD waves provide 6 of the eigenvalues (+w for oppositely propagating waves).
The remaining roots are zero frequency modes (not shown in the plot). One is an
entropy mode, corresponding to dp/pyg = —0T'/ Ty so that dp = 0. The other solution
corresponds to an unphysical fluctuation that violates V - B = 0, which is eliminated
by imposing the proper initial condition V - B = 0. At lower k, in the MHD plots in
Figure 3.4, the slow mode is destabilized to become the MRI, as discussed in [16].

Turning next to the collisionless limit in Figure 3.4, there are two roots plotted in
addition to the three “MHD-like” modes; this is because the single pressure equation
of MHD is replaced by separate equations for the parallel and perpendicular pressure,
so that there are now two entropy-like modes, both of which have non-zero frequen-
cies but which are also strongly damped by collisionless heat conduction (which is

neglected in MHD).*

4We should point out that while our equations using the 34+1 Landau-fluid closure approximations
have 8 eigenfrequencies, the equations using the more accurate 442 Landau-fluid closure approx-
imations have 10 eigenfrequencies, with 2 additional strongly damped roots. If the exact kinetic
response were used, one would find an infinite number of strongly damped eigenmodes because the
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Figure 3.4: The real and imaginary parts of the mode frequency as a function of
k., using collisionless Landau fluid closures (a,b) and MHD (c,d), are shown (v = 0,
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The fast, Alfvén, and slow waves in the collisionless calculation can again be
identified in order of decreasing (real) frequency at high k,. At lower k., one of
the slow modes becomes destabilized to become the MRI, as in MHD. Unlike in
MHD, however, the fast magnetosonic waves are strongly Landau damped since the
resonance condition w ~ k¢ is easily satisfied. In addition, it is interesting to note
that both the shear Alfvén and slow waves have some collisionless damping at the
highest k., used in this plot, though the damping will approach zero for very high
k.. In a uniform plasma the shear Alfvén wave is undamped unless its wavelength
is comparable to the proton Larmor radius or its frequency is comparable to the
proton cyclotron frequency (neither of which is true for the modes considered here).
By contrast, the slow mode is strongly damped unless k, < kj (because dvj o<
(k1/ky) < co in this regime; e.g., [18, 60]). The damping of small k. shear Alfvén
waves in Figure 3.4 is because our background plasma is rotating so the uniform-
plasma modes are mixed together. Thus the well-known dissipation of the slow mode
by transit-time damping also leads to damping of what we identify as the shear Alfvén

wave (based on its high k, properties).

3.6 Summary and Discussion

In this chapter we have extended the linear, axisymmetric, kinetic magnetorotational
instability (MRI) calculation of QDH to include the effect of collisions. As the collision
frequency is increased, the MRI transitions from collisionless to Braginskii regime (v 2
Q/B), and eventually to the MHD regime (v 2 Q). Interestingly, the collisionless
MRI results hold not only if ¥ < w, but even when w < v < kjjcp. This intermediate
regime can exist in § 2 1 plasmas because the MRI growth rate is slow compared

to the sound wave frequency, w ~ kVa = kjco\/2/8 < kjco. The fastest growing

Z(¢) function is transcendental. These strongly damped modes are related to “ballistic modes” and
transients in the standard analysis of Landau damping.
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collisionless MRI mode is &~ twice faster than the fastest growing MHD mode, and
occurs at a much larger length scale; thus, MRI in the collisionless regime can result
in fast MHD dynamo at large scales (not much smaller than the disk height scale).

If we consider the application of our results to accretion flows, the collisionless limit
will be applicable so long as v/ < /3. This condition is amply satisfied for proton-
proton and proton-electron collisions in all hot radiatively inefficient accretion flow
models (see Table 1.2), suggesting that the collisionless limit is always appropriate.
However, high frequency waves such as ion-cyclotron waves can isotropize the proton
distribution function and thus provide an effective “collision” term crudely analogous
to the one considered here (see Subsection 4.2.2). In the drift kinetic limit, when
the Larmor radius is small compared to the dynamical length scales, the adiabatic
invariant p = p, /B is conserved. Nonlinear simulations described in Chapter 4 show
that the MRI results in fast growth of magnetic fields resulting in an anisotropic
plasma (p; > p, ). Fairly large pressure anisotropies (Ap/p ~ (a few)/3) are created
at the dynamical timescales and small scale instabilities—mirror and ion-cyclotron—
are excited. Pressure isotropization due to these instabilities imposes an MHD like
dynamics on a formally collisionless plasma. However, selective heating of resonant
electrons and ions may result in different electron and ion temperatures, and spectral
signatures different from MHD.

One might anticipate that the linear differences between the collisionless and col-
lisional MRI highlighted here and in QDH will imply differences in the nonlinear
turbulent state in hot accretion flows (see, e.g., [83, 95] for global MHD simula-
tions of such flows). Not only are there differences in the linear growth rates of the
instability that drives turbulence, but the spectrum of damped modes is also very
different. In particular, in the kinetic regime there exist modes at all scales in |k|
that are subject to Landau/Barnes collisionless damping, while in the MHD regime

the only sink for turbulent energy is due to viscosity/resistivity at very small scales
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(very high |k|). Indeed, as we have shown, even long wavelength Alfvén waves can
be damped by collisionless effects because of the mixture of uniform-plasma modes
in the differentially rotating accretion flow (Figure 3.4). Whether these differences
are important or not may depend on how efficiently nonlinearities couple energy into
the damped modes. These could modify the nonlinear saturated turbulent spectrum
(e.g., the efficiency of angular momentum transport) or the fraction of electron vs.
ion heating (the heating may also be anisotropic), which in turn determines the basic
observational signatures of hot accretion flows (the accretion rate and the radiative
efficiency). One approach for investigating nonlinear collisionless effects would be to
extend existing MHD codes to include anisotropic pressure, the fluid closure approxi-
mations for kinetic effects [180], and the BGK collision operator considered here. By
varying the collision frequency, one can then scan from the collisionless kinetic to the
collisional MHD regime, and assess any differences in the nonlinear turbulent state.
The nonlinear simulations of the collisionless MRI, based on Landau fluid closure for

heat fluxes, are described in the next chapter.
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Chapter 4

Nonlinear Simulations of kinetic

MRI

In this chapter we describe local shearing box simulations of turbulence driven by
the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects
may be important in radiatively inefficient accretion flows, such as near the black
hole in the Galactic center (see Section 1.4). The ZEUS MHD code is modified to
evolve an anisotropic pressure tensor. A Landau-fluid closure approximation is used
to calculate heat conduction along magnetic field lines. The anisotropic pressure
tensor provides a qualitatively new mechanism for transporting angular momentum
in accretion flows (in addition to the Maxwell and Reynolds stresses). We estimate
limits on the pressure anisotropy due to pitch angle scattering by kinetic instabilities.
Such instabilities provide an effective “collision” rate in a collisionless plasma and
lead to more MHD-like dynamics. We find that the MRI leads to efficient growth of
the magnetic field in a collisionless plasma, with saturation amplitudes comparable
to those in MHD. In the saturated state, the anisotropic stress is comparable to
the Maxwell stress, implying that the rate of angular momentum transport may be

moderately enhanced in a collisionless plasma. More importantly, heating due to
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anisotropic stress is comparable to the numerical energy loss in updating magnetic

fields; this can have important consequences for electron and ion heating.

4.1 Introduction

Following the seminal work of Balbus and Hawley [14], numerical simulations have
demonstrated that magnetohydrodynamic (MHD) turbulence initiated by the mag-
netorotational instability (MRI) is an efficient mechanism for transporting angular
momentum in accretion disks (see Section 1.3 for a review). For a broad class of as-
trophysical accretion flows, however, the MHD assumption is not directly applicable.
In particular, in radiatively inefficient accretion flow (RIAF) models for accretion onto
compact objects, the accretion proceeds via a hot, low density, collisionless plasma
with the proton temperature larger than the electron temperature [140, 156] (see Sec-
tion 1.4 for a review). In order to maintain such a two-temperature flow the plasma
must be collisionless, with the Coulomb mean-free path many orders of magnitude
larger than the system size (see Table 1.2 for plasma parameters in Sgr A*). Moti-
vated by the application to RIAFs, this chapter studies the nonlinear evolution of the
collisionless MRI in the local shearing box limit.

Quataert, Dorland, & Hammett (2001; hereafter QDH) and Sharma, Hammett,
& Quataert (2003; hereafter SHQ) showed that the linear dynamics of the MRI in a
collisionless plasma can be quite different from that in MHD (see Chapter 3). The
maximum growth rate is a factor of ~ 2 larger and, perhaps more importantly, the
fastest growing modes can shift to much longer wavelengths, giving direct amplifica-
tion of long wavelength modes. Dynamical instability exists even when the magnetic
tension forces are negligible because of the anisotropic pressure response in a collision-
less plasma. In related work using Braginskii’s anisotropic viscosity, the collisionless

MRI is studied as the “magnetoviscous” instability [12, 96].
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We are interested in simulating the dynamics of a collisionless plasma on length-
scales (~ disk height) and time-scales (~ orbital period) that are very large compared
to the microscopic plasma scales (such as the Larmor radius and the cyclotron pe-
riod). Since the ratio of the size of the accretion flow to the proton Larmor radius is
~ 108 for typical RIAF models (see Table 1.2), direct particle methods such as PIC
(particle in a cell), which need to resolve both of these scales, are computationally
challenging and require simulating a reduced range of scales. Instead, we use a fluid-
based method to describe the large-scale dynamics of a collisionless plasma (“kinetic
MHD,” described in Section 2.3). The key differences with respect to MHD are that
the pressure is a tensor rather than a scalar, anisotropic with respect to the direction
of the local magnetic field, and that there are heat fluxes along magnetic field lines
(related to Landau damping and wave-particle interactions). The drawback of our
fluid-based method is, of course, that there is no exact expression for the heat fluxes
if only a few fluid moments are retained in a weakly collisional plasma (the “closure
problem”). We use results from Snyder, Hammett, & Dorland (1997; hereafter SHD)
who have derived approximations for the heat fluxes in terms of nonlocal parallel
temperature and magnetic field gradients. These heat flux expressions can be shown
to be equivalent to multi-pole Padé approximations to the Z-function involved in
Landau damping (see Section 2.4). This approach can be shown to converge as more
fluid moments of the distribution function are kept [77], just as an Eulerian kinetic
algorithm converges as more grid points in velocity space are kept. These fluid-based
methods have been applied with reasonable success to modeling collisionless turbu-
lence in fusion plasmas, generally coming within a factor of 2 of more complicated
kinetic calculations in strong turbulence regimes [52, 147, 77, 173], though there can
be larger differences in weak turbulence regimes [77, 52]. The simulations we report
here use an even simpler local approximation to the heat flux closures than those

derived in [180] (see “the crude closure” in Section 2.4). While not exact, these clo-
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sure approximations allow one to begin to investigate kinetic effects with relatively
fast modifications of fluid codes; whereas, solving the full drift kinetic equation (see
Section 2.2) is considerably slower and requires code development and testing from
scratch.

In a collisionless plasma the magnetic moment, = v? /2B, is an adiabatic invari-
ant. Averaged over velocity space, this leads to conservation of (u) = p,/(pB). As
a result, pressure anisotropy with p; > p| is created as the MRI amplifies the mag-
netic field in the accretion flow. This pressure anisotropy creates an anisotropic stress
(like a viscosity!) which can be as important for angular momentum transport as the
magnetic stress. It is interesting to note that for cold disks, the mean free path is neg-
ligible compared to the disk height resulting in a viscosity insufficient to account for
efficient transport; but hot, thick accretion flows are collisionless with large viscosity,
and viscous stress is quite efficient in transporting angular momentum. However, it
is important to emphasize that an anisotropic viscosity in a collisionless, magnetized
plasma is very different from an isotropic viscosity (since viscosity perpendicular to
the field lines is vanishingly small). Although, the Reynolds number (Re = V L/ny)
based on parallel viscosity is small, O(1), the plasma is turbulent; this would not be
true if the Reynolds number based on an isotropic viscosity is so small.

The pressure anisotropy cannot, however, grow without bound because high fre-
quency waves and kinetic microinstabilities feed on the free energy in the pressure
anisotropy, effectively providing an enhanced rate of collisions that limit the pressure
tensor anisotropy (leading to more MHD-like dynamics in a collisionless plasma). We
capture this physics by using a subgrid model to restrict the allowed amplitude of
the pressure anisotropy. This subgrid model (described in §2.3) is based on existing
linear and nonlinear studies of instabilities driven by pressure anisotropy [80, 69].

The remainder of this paper is organized as follows. We begin with Kulsrud’s

formulation of kinetic MHD (KMHD) and our closure model for the heat fluxes in
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a collisionless plasma. We also include a linear analysis of the MRI in the presence
of a background pressure anisotropy and describe limits on the pressure anisotropy
set by kinetic instabilities. Next, we describe our modifications to the ZEUS code to
model kinetic effects. We present our primary results on the nonlinear evolution of
the MRI in a collisionless plasma. At the end we discuss these results, their astro-
physical implications, and future work required to understand the global dynamics of

collisionless accretion disks.

4.2 Governing equations

In the limit that all fluctuations of interest are at scales larger than the proton Larmor
radius and have frequencies much smaller than the proton cyclotron frequency, a
collisionless plasma can be described by the following magnetofluid equations [110,

180] (see Section 2.3 for details):

0
a_i + V- (pV) =0, (4.1)
oV _(VxB)xB
P+ p(V-V)V = I EE VP LE, (4.2)
0B
5 = V x (V x B), (4.3)
P = p I+ (p—p)bb=p I+1I, (4.4)

where p is the mass density, V is the fluid velocity, B is the magnetic field, Fg is
the gravitational force, b = B/|B| is a unit vector in the direction of the magnetic
field, and I is the unit tensor. In equation (4.3) an ideal Ohm’s law is used, neglecting
resistivity. In equation (4.4), P is the pressure tensor with different perpendicular (p, )
and parallel (p|) components with respect to the background magnetic field, and
I1 = bb(p| — p.) is the anisotropic stress tensor. (Note that IT is not traceless in the

convention used here.) P should in general be a sum over all species but in the limit
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where ion dynamics dominate and electrons just provide a neutralizing background,
the pressure can be interpreted as the ion pressure. This is the case for hot accretion
flows in which T}, > T..

The exact pressures p; and p; can be rigorously determined by taking moments

of the drift kinetic equation (see Section 2.2),

Ofs
ot

+ (’U”B + VE) -Vfs+ —f)

DVg o0 €5 Fy Ofs B
b~ HbVB+ - (E” e Joy C(fs),
(4.5)

which is the asymptotic expansion of the Vlasov equation for the distribution function
fs(x, p, vy, t) for species ‘s’ with mass m, and charge e, in the limit p,/L < 1, w/Q, <
1, where p, and €); are the gyroradius and gyrofrequency, respectively. In equation
(4.5), Vg = ¢(E x B)/B? is the perpendicular drift velocity, u = (v, — Vg)?/2B
is the magnetic moment (a conserved quantity in the absence of collisions), Fy is
the component of the gravitational force parallel to the direction of the magnetic
field, and D/Dt = 0/0t + (UHB + Vg) - V is the particle Lagrangian derivative in the
phase space. The fluid velocity V = Vg + lA)VH, so the E x B drift is determined
by the perpendicular component of equation (4.2). Other drifts such as grad B,
curvature, and gravity xB drifts are higher order in the drift kinetic ordering and
do not appear in this equation. In equation (4.5), C(f) is the collision operator to
allow for generalization to collisional regimes. Collisions can also be used to mimic
rapid pitch angle scattering due to high frequency waves that break p invariance.
The parallel electric field is determined by Ej = Zs(es/ms)la -V -Py/ > (nse?/my),
which insures quasineutrality (see Subsection 2.4.1).

Separate equations of state for the parallel and perpendicular pressures can be

obtained from the moments of the drift kinetic equation [48]. Neglecting the collision
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term these are:

D pJ_ ~
pB— - _Vv. _ .b 4.

»D pnB2 _ _v. 3
2D ( = \V4 (1||—|—2qJ_V b, (4.7)

where D/Dt = 0/0t +V - V is the fluid Lagrangian derivative and qy , = g1 b are
the heat fluxes (flux of p| and p, ) parallel to the magnetic field. The equation for

the magnetic moment density p(u) = p, /B can be written in a conservative form:

7 (5) v (5v) =7 (59) (45)

If the heat fluxes are neglected (called the CGL or double adiabatic limit), as the
magnetic field strength (B) increases, p, increases (p, o pB), and p| decreases
(py x p*/B?). Integrating equation (4.8) over a finite periodic (even a shearing
periodic) box shows that (p,/B) is conserved, where () denotes a volume average.
This implies that even when ¢ ; # 0, p, increases in a volume averaged sense as the
magnetic energy in the box increases. This means that that for a collisionless plasma,
pressure anisotropy p; > (<) p| is created as a natural consequence of processes that
amplify (reduce) B. This pressure anisotropy is crucial for understanding magnetic
field amplification in collisionless dynamos.

To solve the set of equations (4.1-4.4), (4.6-4.7) in a simple fluid based formalism,
we require expressions for ¢ and ¢, in terms of lower order moments. No simple,
exact expressions for ¢ and ¢, exist for nonlinear collisionless plasmas. Although
simple, the double adiabatic or CGL approximation (where ¢y = ¢, = 0) does not
capture key kinetic effects such as Landau damping. In the moderately collisional
limit (p; < mean free path < system size), where the distribution function is not very

different from a local Maxwellian, one can use the Braginskii equations to describe
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anisotropic transport ([37]; see [10, 12] for astrophysical applications). However, in
the hot RIAF regime, the mean free path is often much larger than the system size and
the Braginskii equations are not formally applicable, though they are still useful as a
qualitative indication of the importance of kinetic effects. The collisional limit of the
kinetic MHD equations can be shown to recover the dominant anisotropic heat flux
and viscosity tensor of Braginskii (see Subsection 2.5.1). The local approximation to
kinetic MHD that we use here leads to equations that are similar in form to Braginskii
MHD, but with separate dynamical equations for parallel and perpendicular pressures.
We also add models for enhanced pitch angle scattering by microinstabilities, which
occur at very small scales and high frequencies beyond the range of validity of standard
kinetic MHD. !

Hammett and collaborators have developed approximate fluid closures (called Lan-
dau fluid closure) for collisionless plasmas [79, 78, 180] that capture kinetic effects
such Landau damping. SHD [180] give the resulting expressions for parallel heat
fluxes (g, q.) to be used in equations (4.6) and (4.7). Landau closures are based
on Padé approximations to the full kinetic plasma dispersion function that reproduce
the correct asymptotic behavior in both the adiabatic (w/kjc; > 1) and isother-
mal (w/kjc; < 1) regimes (and provide a good approximation in between), where
w is the angular frequency, k) is the wavenumber parallel to the magnetic field, and
c = \/M is the parallel thermal velocity of the particles. In Fourier space, the

linearized heat fluxes can be written as equations (39) & (40) in SHD,

ik
q = _\/EPOCHOW> (4.9)

2 iky (p1/p) \/5 Pio pio\ kB
= —\/— —_— —Clo— |1 —— 4.10
q.1 \/;p()c”o |k:||| + 7Tc||0 B i, |k||| ; ( )

IThis would also be needed when using Braginskii equations, because they are not necessar-
ily well posed in situations where the anisotropic stress tensor can drive arbitrarily small scale
instabilities[170].
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where ‘0’ subscripts indicate equilibrium quantities. Real space expressions are some-

what more cumbersome and are given by convolution integrals (see Section 2.4)

2 3/2 %S /T 4 AN T )
qQ = — (%) n06||0/ 0z ||(Z Z) ||(Z Z)’ (4‘11)
0

Z/
2\"? © Ti(z472)=Ti(z—7
q = - (—3) noCuo/ 67 i ) - L )
T 0 z
2\ /2 Do\ Plo <, B(z+7)—=B(z—7)
— 1—— ] —= 67 4.12
" (7?3) CHO< p||o) By X/o : 2 - (412)
where ng is the number density, T} = p/n, and T\ = p,/n are the parallel and

perpendicular temperatures, and 2’ is the spatial variable along the magnetic field line.
In the previous chapter (based on [176]) we have shown that these fluid closures for the
heat fluxes accurately reproduce the kinetic linear Landau damping rate for all MHD
modes (slow, Alfven, fast and entropy modes). The growth rate of the MRI using the
Landau closure model is also very similar to that obtained from full kinetic theory.
As noted in the introduction, in addition to reproducing linear modes/instabilities,
Landau fluid closures have also been used to model turbulence in fusion plasmas with
reasonable success.

These closure approximations were originally developed for turbulence problems
in fusion energy devices with a strong guide magnetic field, where the parallel dynam-
ics is essentially linear and FFTs could be easily used to quickly evaluate the Fourier
expressions above. In astrophysical problems with larger amplitude fluctuations and
tangled magnetic fields, evaluation of the heat fluxes become somewhat more compli-
cated. One could evaluate the convolution expressions, equations (4.11) and (4.12)
(with some modest complexity involved in writing a subroutine to integrate along
magnetic field lines), leading to a code with a computational time 7, o Ng’NH,
where N2 is the number of spatial grid points and N is the number of points kept

in the integrals along field lines. (In some cases, it may be feasible to map the fluid
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quantities to and from a field-line following coordinate system so that FFTs can re-
duce this to i, o< N2 log N|.) While this is more expensive than simple MHD where
T.p. < N2, it could still represent a savings over a direct solution of the drift kinetic

equation, which would require 7., o< N3N, N

v, » Where Nv” », 1s the number of grid

points for velocity space.?

As a first step for studying kinetic effects, in this paper we pick out a characteristic
wavenumber k; that represents the scale of collisionless damping and use a local
approximation for the heat fluxes in Fourier space (see the “crude closure for thermal
conduction” in Section 2.4), with a straightforward assumption about the nonlinear

generalization:

q = —\/ngn%L”/p), (4.13)

B 2 Vy(pi/p) \/5 pL\ VB
q. = \/;pC” " + 7TC||]9J_ P B (4.14)

Note that this formulation of the heat flux is analogous to a Braginskii heat conduction
along magnetic field lines. For linear modes with |k| ~ kr, these approximations will
of course agree with kinetic theory as well as the Padé approximations shown in SHD.
One can think of k; as approximately controlling the heat conduction rate, though
this does not necessarily affect the resulting Landau damping rate of a mode in a
monotonic way, since this sometimes exhibits impedance matching behavior,i.e., some
modes are weakly damped in both the small and large (isothermal) heat conduction

limits. We vary kj, to investigate the sensitivity of our results to this parameter.

20n the other hand, an effective hyperdiffusion operator in velocity space may reduce the velocity
resolution requirements, and recent direct kinetic simulations of turbulence in fusion devices have
found that often one does not need very high velocity resolution. This may make a direct solution
of the drift kinetic equation tractable for some astrophysical kinetic MHD problems. Furthermore,
a direct solution of the drift kinetic equation involves only local operations, and thus is somewhat
easier to parallelize than the convolution integrals.
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4.2.1 Linear modes

Since pressure anisotropy arises as a consequence of magnetic field amplification in a
collisionless plasma, it is of interest to repeat the linear analysis of the collisionless
MRI done in Chapter 3, but with a background pressure anisotropy (pjo # pio). We
consider the simple case of a vertical magnetic field. This analysis provides a useful
guide to understanding some of our numerical results.

We linearize equations (4.1)-(4.4) for a differentially rotating disk (Vo = RQ(R)®)
with an anisotropic pressure about a uniform subthermal vertical magnetic field (Bg =
B.z). We assume that the background (unperturbed) plasma is described by a bi-
Maxwellian distribution (pjo # pio). We also assume that the perturbations are
axisymmetric, of the form exp[—iwt+ik - x] with k = kgR+k.2. Writing p = po—+0p,
B =By +6B, pi = pio+0pi, pj = pjo + dpj, working in cylindrical coordinates
and making a |k|R > 1 assumption, the linearized versions of equations (4.1)-(4.3)

become:

wip = pok-dv, (4.15)

—1wpedvr — o200V, = —T—RBzéBZ
7

o (B: (po—p ,
+ Zl{iz (E — (HOTZJ_O)) 5BR — ZkR(SpJ_, (416)
2 B _
—iwpedvy + poévR;—Q =ik, (4—; — w) 0By, (4.17)
. . 0B .
—iwpedv, = —ikpg (p||0 — pm) ?R — ik.op, (4.18)
W(SBR = —]{ZZBZ(S’UR, (419)
1k, B, dS)
QJ(SBZ = k’RBZ(S’UR, (421)

where r? = 40% + dQ?/dIn R is the epicyclic frequency. Equations (4.15)-(4.21)

describe the linear modes of a collisionless disk with an initial pressure anisotropy
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about a vertical magnetic field. This corresponds to the § = /2 case of Chapter
3, but with an anisotropic initial pressure. Equations (4.16) & (4.17) show that an
initial anisotropic pressure modifies the Alfvén wave characteristics, so we expect a
background pressure anisotropy to have an important effect on the MRI. One way of
interpreting equations (4.16) & (4.17) is that p, > py (p| > p.) makes the magnetic
fields more (less) stiff; as a result, this will shift the fastest growing MRI mode to
larger (smaller) scales.

The linearized equations for the parallel and perpendicular pressure response are
given by Eqgs. 3.33 and 3.34 from Chapter 3. We present them here for the sake of

completeness.

—twop| + pjotk - ov +ik.q + 2pjoik.ov, = 0, (4.22)

—iwop, + 2piotk-ov +ik,q. — piotk.ov, =0, (4.23)

where the heat fluxes can be expressed in terms of lower moments using

2 Z]{ZZ 2 Plo Zkz 0B
= —/Zep—2(0p, — 0 \/j 1—— 4.24
qL \/;C”()U{;Z ( PL— o P) + ﬂ_CIIOPJ_O ( p||0) \kz\ B, ( )

8 ik,
q = _\/;C”O|k—z(5p”_cﬁ°5p)’ (4.25)

where cjo = /pjjo/po and 6B = |6B).

Figure 4.1 shows the MRI growth rate as a function of pressure anisotropy for
two values of kg for = 100. This figure shows that the fastest growing MHD mode
(kr = 0) is stabilized for (p.io — pjo)/pjo ~ 4/6; modes with kr # 0 modes require
larger anisotropy for stabilization. For 3 > 1, these results highlight that only a very
small pressure anisotropy is required to stabilize the fastest growing MRI modes.
Growth at large pressure anisotropies in Figure 4.1 for kg # 0 mode is because of

the mirror instability that is discussed below. The physical interpretation of the
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Figure 4.1: Normalized growth rate (7/€2) of the MRI versus normalized pressure

anisotropy, (p. — p1)/p for = 100, k.Va./Q2 = 1/15/16, and two different kg’s.
Note that even a small anisotropy can stabilize the fastest growing MRI mode. The
growth at large pressure anisotropy for kr # 0 is due to the mirror mode.

stabilization of the MRI in Figure 4.1 is that as the pressure anisotropy increases
(P10 > pjo), the field lines effectively become stiffer and modes of a given k can be
stabilized (though longer wavelength modes will still be unstable). In a numerical
simulation in which the pressure anisotropy is allowed (unphysically, as we see in
Subsection 4.2.2) to grow without bound as the magnetic field grows, this effect is
capable of stabilizing all of the MRI modes in the computational domain at very small

amplitudes (see Figure 4.6).

4.2.2 Isotropization of the pressure tensor in collisionless

plasmas

Pressure anisotropy (p. # p|) is a source of free energy that can drive instabilities
which act to isotropize the pressure, effectively providing an enhanced “collision”

rate in a collisionless plasma [69]. In order to do so, the instabilities must break
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magnetic moment conservation, and thus must have frequencies comparable to the
cyclotron frequency and/or parallel wavelengths comparable to the Larmor radius.
Because of the large disparity in timescales between pu-breaking microinstabilities
and the MRI (Wpiero/2 ~ 10%), one can envision the microinstabilities as providing
a “hard wall” limit on the pressure anisotropy; once the pressure anisotropy exceeds
the threshold value where microinstabilities are driven and cause rapid pitch angle
scattering, the pressure anisotropy nearly instantaneously reduces the anisotropy to
its threshold value (from the point of view of the global disk dynamics). In this
section we review the relevant instabilities that limit the pressure anisotropy in high
[ collisionless plasmas—these are the firehose, mirror, and ion cyclotron instabilities.
We then discuss how we have implemented these estimated upper bounds on the

pressure anisotropy in our numerical simulations.

Maximum anisotropy for p; > p,

Plasmas with p; > p, can be unstable to the firehose instability, whose dispersion

relation for parallel propagation is given by equation (2.12) of [100]:

2
w? — Wik} p? + ki o7 (1 — % — ﬁ_”) =0, (4.26)

where 3 = 8mp;/B?, p; is the ion Larmor radius, €; is the ion cyclotron frequency,
and kj is the wavenumber parallel to the local magnetic field direction. Solving for w

gives

(4.27)

1/2
p 2 kil
P B 4

W = k‘ﬁp?; + Zk‘”C”O <1 —————

For long wavelengths, the firehose instability requires p| > py + B? /47, and is essen-
tially an Alfvén wave destabilized by the pressure anisotropy. The maximum growth
rate occurs when k‘ﬁpf =2(1 —pi/py —2/0)) and is given by (1 —p./p| —2/5)).

We use an upper limit on pj > p, corresponding to 1 — p, /p| — 2/6 < 1/2, which
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is an approximate condition for the growth of modes that will violate p conservation

and produce rapid pitch angle scattering (when w ~ €; and kjp; ~ 1).

Maximum anisotropy for p; > p

For p, > p) there are two instabilities that act to isotropize the pressure, the mirror
instability and the ion cyclotron instability [69]. A plasma is unstable to the mirror
instability when p, /py —1 > 1/8,, although as discussed below only for somewhat
larger anisotropies is magnetic moment conservation violated. Formally, a plasma
with any nonzero pressure anisotropy can be unstable to the ion cyclotron instability
[182]. However, there is an effective threshold given by the requirement that the
unstable modes grow on a timescale comparable to the disk rotation period.

The growth rate of the mirror instability is given by (Eq. (36) of [80])

(2 (TN T F ey
=(3) (7)) mes|zo-g (”ki)fow—w)’ 42%)

where cio = \/p1/p, A = (kjcio/)?, and Iy and I, are modified Bessel functions of

order 0 and 1. Minimizing the growth rate with respect to kj and £k, gives equations

(43") & (44') of [80], which give the wavenumber for the fastest growing mirror mode,

by J(D-1)
VT (4.29)
kipi= (D6_ 1)7 (4.30)

where D = B, (p./p) — 1), B = 87p. /B> To estimate the pressure anisotropy at
which p conservation is broken and thus pitch angle scattering is efficient, we calculate

D for which kjp; ~ kip; ~ 1. This implies D ~ 7, or that p conservation fails (and
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pitch angle scattering occurs) if the pressure anisotropy satisfies

pbL 7
2 4.31
| B (4:31)

The ion cyclotron instability can be also be excited when p; > p;. Gary and col-
laborators have analyzed the ion cyclotron instability in detail through linear analysis
and numerical simulations [69, 67]. They calculate the pressure anisotropy required

for a given growth rate v relative to the ion cyclotron frequency €2;

Py 5 (4.32)

7Y
pj I

where S" = 0.35 and p = 0.42 are fitting parameters quoted in equation (2) of [67]
for v/Q; = 10~ Moreover, for v < €; the threshold anisotropy depends only very
weakly on the growth rate 4. As a result, equation (4.32) provides a reasonable
estimate of the pressure anisotropy required for pitch angle scattering by the ion
cyclotron instability to be important on a timescale comparable to the disk rotation

period.

4.2.3 Pressure anisotropy limits

Motivated by the above considerations, we require that the pressure anisotropy satisfy

the following inequalities in our simulations (at each grid point and at all times):

D1 2 1

o 1+ 5 > 5 (4.33)

% 1< ;—f (4.34)
1/2

pL 2

— 1< S R , 4.35

| (ﬁn) (4.35)
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where S and ¢ are constants described below. It is important to note that the fluid-
based kinetic theory utilized in this paper can correctly reproduce the existence and
growth rates of the firehose and mirror instabilities (though not the ion cyclotron
instability).® However, it can only do so for long wavelength perturbations that con-
serve . The relevant modes for pitch angle scattering occur at the Larmor radius
scale, which is very small in typical accretion flows and is unresolved in our simula-
tions. For this reason we must impose limits on the pressure anisotropy and cannot
simultaneously simulate the MRI and the relevant instabilities that limit the pressure
anisotropy. The algorithm to impose the pressure anisotropy limits is explained in
Appendix C.2.

In Eq. 4.34, the parameter £ determines the threshold anisotropy above which the
mirror instability leads to pitch angle scattering. A value of £ = 3.5 was estimated
in Section 4.2.2. We take this as our fiducial value, but for comparison also describe
calculations with ¢ = 0.5, which corresponds to the marginal state for the mirror
instability. We compare both models because the saturation of the mirror instability
is not well understood, particularly under the conditions appropriate to a turbulent
accretion disk. Eq. 4.35 is based on the pitch angle scattering model used by [26]
for simulations of magnetic reconnection in collisionless plasmas; following them we
choose S = 0.3. Eq. 4.35 with S = 0.3 gives results which are nearly identical (for
the typical range of 3 studied here) to the pressure anisotropy threshold for the ion
cyclotron instability discussed in Section 4.2.2 (Eq. 4.32).

In our simulations we find that for typical calculations, if £ = 0.5 then Eq. 4.34
(the “mirror instability”) dominates the isotropization of the pressure tensor, while
if £ = 3.5 then Eq. 4.35 (the “ion cyclotron instability”) dominates. We also find

that our results are insensitive to the form of the pj > p, threshold (Eq. 4.33); e.g.,

3The double adiabatic limit (¢, = q = 0) predicts an incorrect threshold and incorrect growth
rates for the mirror instability [180]. Thus it is important to use the heat flux models described in
82 to capture the physics of the mirror instability.
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simulations with 1—p, /p| < 2/8) (the marginal state of the firehose mode) instead of
equation (4.33) give nearly identical results. Fully kinetic simulations of the mirror,
firehose, and ion cyclotron instabilities will be useful for calibrating the pitch angle

scattering models used here.

4.3 Kinetic MHD simulations in shearing box

In this section we discuss the shearing box equations that we solve numerically, and

the modifications made to ZEUS to include kinetic effects.

4.3.1 Shearing box

The shearing box is based on a local expansion of the tidal forces in a reference frame
rotating with the disk (see HGB for details). A fiducial radius Ry in the disk is picked
out and the analysis is restricted to a local Cartesian patch such that L,, L,, L. < Ry
(where z = r — Ry, y = ¢ and z = z). In this paper only the radial component of
gravity is considered, and vertical gravity and buoyancy effects are ignored. We also
assume a Keplerian rotation profile. With these approximations, the equations of

Landau MHD (kinetic MHD combined with Landau closure for parallel heat fluxes)
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in the shearing box are:

dp
ot
v
ot

oB

ap)
ot

Ip.
ot

q

q1

V- (pV) =0, (4.36)
1 B? B-VB 1
V.-VV=—-V(p.+— )+ v - -V -1I
p 8T d7tp P
2Q x V + 30%7%, (4.37)
V x (V x B), (4.38)

~ ~ ~ 2
V-(pV)+V-q+2pb-VV-b—-2¢,V-b= —gyeff(p” —p1(4.39)

V-p.V)+V-q+p.V-V—p,b-VV-b+¢q,V-b

1
—gVess (L =Py (4.40)
p
PRV (;”) : (4.41)
—pL V| (%) + kB - VB, (4.42)

where q = q||B and q; = ¢, b are the heat fluxes parallel to the magnetic field, very

is the effective pitch-angle scattering rate (includes microinstabilities, see Subsection

4.2.2 and Appendix C.2), k) and s, are the coefficients of heat conduction, and &, is

the coefficient in ¢, due to parallel gradients in the strength of magnetic field [180].

The k,, component of ¢, that arises because of parallel magnetic field gradients is

important for correctly recovering the saturated state for the mirror instability in the

fluid limit, where (in steady state) ¢ . ~ 0 implies that 7} is constant along the field

line, and 7', and magnetic pressure are anticorrelated.
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Given our closure models, the coefficients for the heat fluxes are given by

R = e : : (4.43)
P 87‘(‘%]{@4—(37{'—8)1/6/[]0
1
ke = M , (4.44)
P[5k + ey
pL\ pPL
o= (1= 445
" ( pn) B2 @4

where kj, is the parameter that corresponds to a typical wavenumber characterizing
Landau damping (see “crude model of Landau damping” in Section 2.4). We consider
several values of k; to study the effect of Landau damping on different scales. In
particular, we consider k;, = 0.5/0z, 0.25/6z, and 0.125/dz which correspond to
correctly capturing Landau damping on scales of 120z, 240z, 480z, respectively, where
0z = L,/N,, L, = 1 for all our runs, and N, is the number of grid points in the z-
direction (taken be 27 and 54 for low and high resolution calculations, respectively).
Thus, k;, = 0.25/0z corresponds to correctly capturing Landau damping for modes
with wavelengths comparable to the size of the box in the low resolution runs.

The term v.sr in Eqgs. 4.43 and 4.44 is an effective collision frequency which is
equal to the real collision frequency v, as long as p conservation is satisfied. However,
when the pressure anisotropy is large enough to drive microinstabilities that break u
invariance , and enhance pitch angle scattering, then there is an increase in the effec-
tive collision frequency that decreases the associated conductivities. The expressions
for ves¢ are given in Egs. C.12, C.15, and C.18 in Appendix C.2.

Shearing periodic boundary conditions appropriate to the shearing box are de-
scribed in [86]. Excluding V,, all variables at the inner z- boundary are mapped to
sheared ghost zones at the outer boundary; a similar procedure applies for the inner
ghost zones. V,, has a jump of (3/2)QL, across the box while applying the z- shearing

boundary conditions, to account for the background shear in V.
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4.3.2 Numerical methods

We have used the shearing box version of the ZEUS MHD code [185, 186], and
modified it to include kinetic effects. The ZEUS code is a time explicit, operator
split, finite difference algorithm on a staggered mesh, i.e., scalars and the diagonal
components of second rank tensors are zone centered, while vectors are located at
zone faces, and pseudovectors and offdiagonal components of second rank tensors are
located at the edges. The location of different variables on the grid is described in
detail in Appendix C.1. Appendix C.1.1 describes how we choose the time step 0t
to satisfy the Courant condition (which is modified by pressure anisotropy and heat
conduction). We also require that the choice of ¢ maintain positivity of p; and p, .

Implementation of the shearing box boundary conditions is described in [86]. One
can either apply boundary conditions on the components of B or the EMFs (whose
derivatives give B). We apply shearing periodic boundary conditions on the EMFs
to preserve the net vertical flux in the box, although applying boundary conditions
directly on B gives similar results.

Eqgs. 4.39 and 4.40 are split into transport and source steps, analogous to the
energy equation in the original ZEUS MHD. The transport step is advanced conser-
vatively, and the source step uses centered differences in space. It should be noted
that in Eq. 4.40 the V-q, term is not purely diffusive, and it is necessary to carefully
treat the magnetic gradient part of ¢, in the transport step for robustness of the code
(Appendix C.2.1).

We have tested the newly added subroutines for evolving anisotropic pressure and
parallel heat conduction. We tested the anisotropic conduction routine by initializing
a “hot” patch in circular magnetic field lines and assessing the extent to which heat
remains confined along the field. This is the same test described in [148], and we
find good agreement with their results. The method we use for the simulations in

this chapter is the “asymmetric method,” described in Chapter 5 which contains
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different tests we carried out. Additional tests include linear (damped and undamped)
waves and instabilities in non-rotating anisotropic plasmas, the Alfvén wave, and the
firehose and mirror instabilities (see Appendix C). For mirror simulations we observe
the formation of stationary anticorrelated density and magnetic structures as seen
in the hybrid simulations of [127]. For firehose we see the instability with magnetic
perturbations developing at small scales but during saturation the perturbations are
at larger scales (as seen in [162]); a 2-D test for firehose instability, where pressure
anisotropy is caused by the shearing of plasma, is presented in Appendix C.

Finally, the numerical growth rates of the kinetic MRI were compared to the
analytic results for different pressure anisotropies, (k,, k), collision frequencies, and
angles between the magnetic field and Z; we find good agreement with the results
of [158] and [176] (described in Chapter 3). When k; = k|, the growth rate of the
fastest growing mode is within ~ 3% of the theoretical prediction. The simulations
with By = B, show ~ twice faster growth as compared to B, = 0, as predicted by

linear theory.

4.3.3 Shearing box and kinetic MHD

Certain analytic constraints on the properties and energetics of shearing box sim-
ulations have been described in [86]. These constraints serve as a useful check on
the numerical simulations. Here we mention the modifications to these constraints in

KMHD. Conservation of total energy in the shearing box gives

0. 3 Ar(p) —p1)\ B.B
r=20r, [ dA|pvev, — (1 - vl 4.46
ot 2 / {p v ( B2 in (4.46)
where 0V, =V, + (3/2)Q2z, and I is the total energy given by,
V2 B2
F:/d?’x pl—=+0¢ +‘ﬂ+pl+— (4.47)
2 2 8
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where ¢ = —(3/2)Q%2? is the tidal effective potential about Ry. Eq. (4.46) states
that the change in the total energy of the shearing box is due to work done on the
box by the boundaries. Notice that there is an anisotropic pressure contribution to
the work done on the box. Eq. (29) in [16] for conservation of angular momentum
in cylindrical geometry (same as Eq. 1.4) is also modified because of the anisotropic

pressure and is given by

)
~(pRV,) + V - =0,

B, 47T(p|| —pl1) BI% N
T pVuoVR . <1 B, R+ |pL + S oR

(4.48)
where B, = BRR + B.z is the poloidal field. We can calculate the level of angular
momentum transport (and corresponding heating) in our simulations by measuring

the stress tensor given by

B.B,
47 B2

Way = pVabV, — B,B, (4.49)

Note that the stress tensor has an additional contribution due to pressure anisotropy.

One can define a dimensionless stress via Shakura and Sunyaev’s o parameter by

Way
Fy

« =ap+ay+as (4.50)

where ag, au, ay are the Reynolds, Maxwell and anisotropic stress parameters,
respectively. As in [86], we normalize the stress using the initial pressure to define an

« parameter.

4.3.4 Shearing box parameters and initial conditions

The parameters for our baseline case have been chosen to match the fiducial run Z4
of [86]. The simulation box has a radial size L, = 1, azimuthal size L, = 27, and

vertical size L, = 1. The sound speed Vs = \/p/p = L., so that the vertical size is
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about a disk scale height (though it is an unstratified box). The pressure is assumed
to be isotropic initially, with py = poV2 = 107% and py = 1. All of our simulations
start with a vertical field with 3 = 8mpo/B2 = 400. The fastest growing MRI mode
for this choice of parameters is well resolved. We consider two different numerical
resolutions: 27 x 59 x 27 and 54 x 118 x 54. Perturbations are introduced as initially
uncorrelated velocity fluctuations. These fluctuations are randomly and uniformly

distributed throughout the box. They have a mean amplitude of [§V| = 1073V.

4.4 Results

The important parameters for our simulations are listed in Table 4.1. Each simulation
is labeled by Z (for the initial B, field), and [ and h represent low (27 x 59 x 27)
and high (54 x 118 x 54) resolution runs, respectively. We also include low and
high resolution MHD runs for comparison with kinetic calculations (labeled by ZM).
Our models for heat conduction and pressure isotropization have several parameters:
kr, the typical wavenumber for Landau damping used in the heat flux (Eqs. 4.13
and 4.14), and &, the parameter that forces the pressure anisotropy to be limited
by pi/pj —1 < 2£/B. (representing pitch angle scattering due to small scale mirror
modes; Eq. 4.34). All calculations except ZI8, ZI1, and Zhl also use the ion cy-
clotron scattering “hard wall” from Eq. 4.35. In addition to these model parameters,
Table 4.1 also lists the results of the simulations, including the volume and time aver-
aged magnetic and kinetic energies, and Maxwell, Reynolds, and anisotropic stresses.
As Table 4.1 indicates, the results of our simulations depend quantitatively—though
generally not qualitatively—on the microphysics associated with heat conduction and
pressure isotropization. Throughout this section we use single brackets (f) to denote
a volume average of quantity f; we use double brackets ((f)) to denote a volume and

time average in the saturated turbulent state, from orbit 5 onwards.
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Figure 4.2: Time evolution of volume-averaged magnetic energy for the fiducial run
Zl4. Time is given in number of orbits. There is a small decrease in the magnetic
energy at &~ 2 orbits when the pressure anisotropy is sufficient to stabilize the fastest
growing mode. However, small-scale kinetic instabilities limit the magnitude of the
pressure anisotropy, allowing the magnetic field to continue to amplify. As in MHD,
there is a channel phase which breaks down into turbulence at ~ 4 orbits.

4.4.1 Fiducial run

We have selected run Zl4 as our fiducial model to describe in detail. This model
includes isotropization by ion cyclotron instabilities and mirror modes, with the for-
mer dominating (for & = 3.5; see Section 4.2.2) except at early times. The con-
ductivity is determined by k; = 0.5/dz which implies that modes with wavelengths
~ 120z ~ L,/2 are damped at a rate consistent with linear theory.

Figures 4.2-4.4 show the time evolution of various physical quantities for run Z[4.
The early linear development of the instability is similar to that in MHD, with the field
growing exponentially in time. The key new feature is the simultaneous exponential
growth of pressure anisotropy (p1 > p|) as a result of ;1 conservation (up to 2 orbits in
Fig. 4.4). As described in Section 4.2.1, this pressure anisotropy tends to stabilize the

MRI modes and shut off the growth of the magnetic field. Indeed, in simulations that
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Figure 4.3: Time evolution of volume-averaged magnetic and kinetic energies,
Maxwell, Reynolds, and anisotropic stress, and pressure (pj: solid line, p,: dashed
line) for the fiducial model ZI4. Time is given in orbits and all quantities are nor-
malized to the initial pressure py. 6V, =V, + (3/2)Qz and Ap = (p — p1)-
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Figure 4.4: Time evolution of volume-averaged pressure anisotropy (4w (p; — p.)/B*
solid line) for model Zi4. Also plotted are the “hard wall” limits on the pressure
anisotropy due to the ion cyclotron (dot dashed line) and mirror instabilities (dashed
line). Ion cyclotron scattering is generally more efficient in the steady state. The

limits on pressure anisotropy are applied at each grid point while this figure is based
on volume averaged quantities.
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do not include any isotropization of the pressure tensor, we find that all MRI modes
in the box are stabilized by the pressure anisotropy and the simulation saturates with
the box filled with small amplitude anisotropic Alfvén waves (see Figure 4.6). This
highlights the fact that, unlike in MHD, the MRI is not an exact nonlinear solution in
kinetic theory. However, the pressure anisotropy required to stabilize all MRI modes
exceeds the pressure anisotropy at which pitch angle scattering due to mirror and ion
cyclotron instabilities become important. This takes place at about orbit 2 in run
Z14 (see the small ‘dip’ in the growth of magnetic energies in Figure 4.2), at which
point the pressure anisotropy is significantly reduced and the magnetic field is able
to grow to nonlinear amplitudes.

The nonlinear saturation at orbit ~ 5 appears qualitatively similar to that in
MHD, and may occur via analogues of the parasitic instabilities described by [75].
The channel solution is, however, much more extreme in KMHD than MHD (the
maximum B? in Figure 4.2 is approximately an order of magnitude larger than in
analogous MHD runs). After saturation, the magnetic and kinetic energies in the
saturated state are comparable in KMHD and MHD (see Table 4.1). This is essentially
because the pitch angle scattering induced by the kinetic microinstabilities acts to
isotropize the pressure, enforcing a degree of MHD-like dynamics on the collisionless
plasma.

Figure 4.3 and Table 4.1 show the various contributions to the total stress. As
in MHD, the Reynolds stress is significantly smaller than the Maxwell stress. In
kinetic theory, however, there is an additional component to the stress due to the
anisotropic pressure (Eq. 4.48). In the saturated state, we find that the Maxwell stress
is similar in KMHD and MHD, but that the anisotropic stress itself is comparable
to the Maxwell stress. Expressed in terms of an « normalized to the initial pressure,
our fiducial run Z14 has ay; = 0.23, ag = 0.097, and a4, = 0.2, indicating that stress

due to pressure anisotropy is dynamically important.
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Nearly all physical quantities in Figures 4.2-4.4 reach an approximate statistical
steady state. The exceptions are p| and p,, which increase steadily in time because
the momentum flux on the boundaries does work on the system (Eq. 4.46), which is
eventually converted to heat in the plasma by artificial viscosity; there is no cooling
for internal energy to reach a steady state (the same is true in HGB’s MHD simula-
tions). Because of the steadily increasing internal energy and approximately fixed B>
(although with large fluctuations), the plasma [ shows a small secular increase from
orbits 5-20 (a factor of &~ 3 increase, though with very large fluctuations due to the
large fluctuations in magnetic energy).

Figure 4.4 shows the pressure anisotropy thresholds due to the ion cyclotron and
mirror instabilities, in addition to the volume averaged pressure anisotropy in run Zl4.
From Eq. 4.35, the ion cyclotron threshold (4wAp/B?) is expected to scale as /3,
which is fairly consistent with the trend in Figure 4.4. The actual pressure anisotropy
in the simulation shows a small increase in time as well, although less than that of the
ion cyclotron threshold. These secular changes in § and Ap are a consequence of the
increasing internal energy in the shearing box, and are probably not realistic. In a
global disk, we expect that—except perhaps near the inner and outer boundaries—(
will not undergo significant secular changes in time. In a small region of a real disk
in statistical equilibrium, the heating would be balanced by radiation (for thin disks)
or by cooler plasma entering at large R and hotter plasma leaving at small R (in low
luminosity, thick disks).

It is interesting to note that in Figure 4.4, the pressure anisotropy (4wAp/B?)
is closely tied to the ion cyclotron threshold at times when B? is rising (which
corresponds to the channel solution reemerging). Increasing B leads to a pressure
anisotropy with p; > p; by p conservation. At the same time, the ion cyclotron
threshold (~ /() decreases, eventually the pressure limiting threshold is encoun-

tered. When B is decreasing, however, we do not find the same tight relationship
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Figure 4.5: Time evolution of volume-averaged pressure anisotropy (47 (p; — p.)/B*
solid line) for model ZI8. Also plotted are the “hard wall” limits on the pressure
anisotropy due to the ion cyclotron (dot dashed line) and mirror instabilities (dashed
line), although the ion cyclotron scattering limit is not applied in this simulation.

The volume averaged pressure anisotropy saturates at smaller anisotropy than the
mirror threshold at £ = 3.5, which is the only limit on pressure anisotropy used.
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between the pressure anisotropy and the imposed threshold. Figure 4.4 clearly indi-
cates that in our fiducial simulation pitch angle scattering is dominated by the ion
cyclotron threshold. For comparison, Figure 4.5 shows the pressure anisotropy and
thresholds for run ZI8 which is identical to the fiducial run, except that the ion cy-
clotron threshold is not used and the only scattering is due to the mirror threshold.
In this case, the saturated pressure anisotropy is somewhat larger than in the fiducial
run, but the pressure anisotropy is not tied to the mirror threshold.

Table 4.2 gives the mean, standard deviation, and standard error in the mean, for
various quantities in the saturated portion of the fiducial simulation. The standard
errors are estimated by taking into account the finite correlation time for the physical
quantities in the simulation, as described in Appendix D. In many cases, the devia-
tions are significantly larger than the mean. As in MHD, we find that the magnetic
energy is dominated by the y- component, which is about a factor of 3 larger than
the z- component; the vertical component is smaller yet. The radial and azimuthal
kinetic energy fluctuations are comparable, while the vertical component is smaller.
We also find that, as in MHD, the perturbed kinetic and magnetic energies are not
in exact equipartition: the magnetic energy is consistently larger. Table 4.2 also
shows the mean and deviations for (p,/B) and (pyB?/p?). Because of pitch angle
scattering 1 = (p1 /B) is no longer conserved. (pB?/p?) varies because of both, heat
conduction and pitch angle scattering.

The pressure anisotropy in our fiducial run saturates at 4w (p, — py)/B? ~ 1.5.
By contrast, the threshold for the mirror instability is 4w (p, — p;)/B?* = 0.5. This
implies that the model is unstable to generating mirror modes. However, the mirror
modes that can be excited at this level of anisotropy do not violate p conservation
and thus do not contribute to pitch angle scattering (see Section 4.2.2). They can in
principle isotropize the plasma in a volume averaged sense by spatially redistributing

plasma into magnetic wells [101]. This saturation mechanism is simulated using our
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kinetic MHD code for a uniform, anisotropic plasma (see Appendix C.3.3). It does
not appear to be fully efficient in the saturated state of our turbulent disk simulations,
even at the highest resolution; strong MRI turbulence dominates over everything else
for these parameters.

In the next few sections we compare the fiducial simulation described above with
variations in the pitch angle scattering model and the parallel conductivity. A com-

parison of the total stress in all of our simulations is shown in Figure 4.7.

4.4.2 The double adiabatic limit

Simulations ZI1 and Zhl are simulations in the double adiabatic limit (no heat
conduction), with no limit on the pressure anisotropy imposed. In this limit both
p = (pi/B) and (p B?/p®) are conserved. Figure 4.6 shows volume averages of
various quantities as a function of time for the run ZIl1. These calculations are
very different from the rest of our results and show saturation at very low ampli-
tudes (6B?*/B? ~ 0.04). In the saturated state, the box is filled with shear modified
anisotropic Alfvén waves and all physical quantities are oscillating in time. The total
stress is also oscillatory with a vanishing mean, resulting in negligible transport. In
these calculations, the pressure anisotropy grows to such a large value that it shuts
off the growth of all of the resolved MRI modes in the box. Table 4.1 shows that
((4m(py—p.)/B?)) saturates at —11.96 and —10.2 for the low and high resolution runs,
respectively (although the normalized pressure anisotropy ({(pj—p.)/py)) = —0.07 is
quite small). This is much larger than the anisotropy thresholds for pitch angle scat-
tering described in Subsection 4.2.2. As a result, we do not expect these cases to be
representative of the actual physics of collisionless disks. These cases are of interest,
however, in supporting the predictions of the linear theory with anisotropic initial
conditions considered in Section 4.2.1, and in providing a simple test for the simula-

tions. They also highlight the central role of pressure isotropization in collisionless
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Figure 4.6: Time evolution of volume-averaged magnetic energy (dashed line:
B2 /8mpo, solid line: BZ/8mpy, dot dashed line: B /8mpy), total stress (Way/po) in
units of 1073, and pressure anisotropy for model ZI1. Time is given in orbits and
all quantities are normalized to the initial pressure py. 0V, = V, + (3/2)Qz and
Ap = (py — p1). In this calculation there is no heat conduction and no isotropiza-
tion of the pressure tensor. All resolved MRI modes are thus stabilized by pressure
anisotropy and the ‘saturated’ state is linear anisotropic Alfvén waves with no net
angular momentum transport.
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Figure 4.7: Space and time average of the total stress ((W,,/po)) versus 1/(k.dz) for
different runs. Error bars shown are based on estimates of the correlation time of the
fluctuations described in [144].

dynamos [170].

4.4.3 Varying conductivity

We have carried out a series of simulations with different conductivities defined by
the parameter kp. Simulations ZI[2 and Zh2 are in the CGL limit with vanishing
parallel heat conduction, but with the same limits on pressure anisotropy as the
fiducial model. Simulations Z6 use kydz = 0.25 while run ZI7 uses k;, = 0.125/0z.
Both of these are smaller than the value of krdz = 0.5 in the fiducial run, which
implies a larger conductivity. Figure 4.7 shows that the total stress varies by about
a factor of 2 depending on the conductivity and resolution. Simulations with larger
conductivity tend to have smaller saturation amplitudes and stresses. This could
be because larger conductivity implies more rapid Landau damping of slow and fast
magnetosonic waves. In all cases, however, the anisotropic stress is comparable to the

Maxwell stress, as in the fiducial run. Until a more accurate evaluation is available of

121



the heat fluxes for modes of all wavelengths in the simulation simultaneously (either
by a more complete evaluation of the nonlocal heat fluxes, Eqs. 4.11-4.12, or even
by a fully kinetic MHD code that directly solves the DKE, Eq. 4.5), it is difficult to
ascertain which value of the conductivity best reflects the true physics of collisionless

disks.

4.4.4 Different pitch angle scattering models

In this section we consider variations in our model for pitch angle scattering by high
frequency waves. All of these calculations use k;, = 0.5/5z. We note again that
the appropriate pitch angle scattering model remains somewhat uncertain, primarily
because of uncertainties in the nonlinear saturation of long-wavelength, p-conserving
mirror modes. The calculations reported here cover what, we believe, is a plausible
range of models.

Models Z15 and Zhb place a more stringent limit on the allowed pressure anisotropy,
taking £ = 0.5 in Eq. 4.34. This corresponds to the threshold of the mirror instabil-
ity. Not surprisingly, this simulation is the most “MHD-like” of our calculations, with
magnetic and kinetic energies, and Maxwell stresses that are quite similar to those in
MHD. Even with this stringent limit, however, the anisotropic stress is &~ 1/3 of the
Maxwell stress. It is also interesting to note that although the dimensionless pressure
anisotropy is quite small ((47(p; — p1)/B?)) =~ —0.02, the dimensionless anisotropic
stress ((4m(p —p1)/B? x ByBy/po)) ~ —0.07 is significantly larger (and larger than
Reynolds stress) because of correlations between the pressure anisotropy and field
strength.

As a test of how large a collisionality is needed for the results of our kinetic
simulations to rigorously approach the MHD limit, we have carried out a series of
simulations including an explicit collisionality v and varying its magnitude relative to

the disk frequency €2. Our results are summarized in Table 4.3 and Figure 4.8. In these
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Figure 4.8: Maxwell (ay: squares) and anisotropic stress (ay4: triangles) plotted
against the collision frequency normalized to rotation frequency (v/2). Transition to
MHD occurs for v/ 2 30 (see Table 4.3).

simulations we start with initial conditions determined by the saturated turbulent
state of our fiducial run ZI4, but with an explicit collision frequency (in addition to
the scattering models described in Section 4.2.3). Figure 4.8 shows that for v/Q < 20,
the results are very similar to the collisionless limit. For larger collision frequencies
the anisotropic stress is reduced and the simulations quantitatively approach the
MHD limit. These results are similar to those obtained in Chapter 3 (see Figure 3.3),
where linear calculations indicate that the MHD limit for modes with k ~ Q/V} is
approached when v > 5%/4(Q).

To consider the opposite limit of low collisionality (because of pitch angle scatter-
ing), run ZI8 places a less stringent limit on the allowed pressure anisotropy, taking
¢ =3.51in Eq. 4.34, and ignoring the limit set by the ion cyclotron instability in Eq.
4.35. The results of this calculation are not physical but are useful for further clari-
fying the relative importance of the Maxwell and anisotropic stresses as a function of

the pitch angle scattering rate. In ZI8, the saturated magnetic energy and Maxwell
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stress are lower than in all of our other calculations (excluding the double adiabatic
models described in Section 4.4.2). Interestingly, however, the total stress is compa-
rable to that in the other calculations (Figure 4.7) because the anisotropic stress is
~ 2.4 times larger than the Maxwell stress (Table 4.1). As discussed briefly in Sec-
tion 4.4.1, the pressure anisotropy in this simulation is not simply set by the applied
mirror pitch angle scattering threshold (its quite smaller than the mirror “hard wall;”
see Figure 4.5). It is possible that resolved mirror modes contribute to decreasing the
volume averaged pressure anisotropy (but see below).

Finally, in models Z3 we include parallel heat conduction but do not limit the
pressure anisotropy. In these calculations, we expect to be able to resolve the long-
wavelength p-conserving mirror modes that reduce the pressure anisotropy by forming
magnetic wells [101].* In our test problems with uniform anisotropic plasmas, this
is precisely what we find (see Appendix C.3.3). In the shearing box calculations,
however, even at the highest resolutions, we find that the pressure anisotropy becomes
so large that Eqs. 4.34) and 4.35 are violated, so that pitch angle scattering due
to high frequency microinstabilities would become important. The resolved mirror
modes are thus not able to isotropize the pressure sufficiently fast at all places in
the box.> However, it is hard to draw any firm conclusions from these simulations
because they stop at around 4 orbits (for both resolutions Z(3 and Zh3) during the
initial nonlinear transient stage. At this time the pressure becomes highly anisotropic
and becomes very small at some grid points, and the time step limit causes 6t — 0.

Pitch angle scattering centers are not uniformly distributed in space and show
intermittency. Subsection 2.6.1 gives simple estimates for effective collision frequency

and mean free path assuming a uniform distribution of scattering centers. Also dis-

4At the resolution of ZI3, the fastest growing mirror mode in the computational domain has a
linear growth comparable to that of the MRI.

5In higher resolution simulations, one can resolve smaller-scale and faster growing mirror modes,
and thus the effects of isotropization by resolved mirror modes could become increasingly important.
We see no such indications, however, for the range of resolutions we have been able to simulate.
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cussed are simulation results which show that only a very small fraction of the box un-
dergoes pitch angle scattering (see Figure 2.2). Figure 2.2 also shows that pitch angle
scattering due to mirror instability dominates ion-cyclotron instability for 5 2 100.
Intermittency of pitch angle scattering can be crucial for thermal conduction and

viscous transport in collisionless high-( plasmas.

4.5 Additional simulations

Our paper, [177], describes simulations with an initial § = 400 and an initial vertical
field (By = 0). The linear theory predicts that the fastest growing mode for By, = B,
in the kinetic regime is & twice faster than MHD, and at a much larger scale. The scale
separation between the fastest growing kinetic MHD and MHD modes for B, = B, is
greatest for large 3 (see [158]). In this section we describe simulations not described
in [177]—initial conditions with By = B, and only By, and the high 3 regime. One
of the motivations is to see whether a faster growth rate for By = B, in the kinetic
regime results in a nonlinear saturation different from MHD. The fastest growing
MRI mode in MHD occurs at a scale H/+/3, much smaller than the disk height scale
H = ¢,/ for large initial 8. Thus, we vary the box size and resolution to study the

effect of these parameters on nonlinear saturation.

4.5.1 High ( simulations

Figure 4.9 shows the growth rate of the MRI in the kinetic and MHD regimes for
3 = 105—the fastest growing kinetic MRI is at a much larger length scale. Because
of a large separation of scales between the fastest growing modes in the kinetic and
MHD regimes, it is difficult to resolve both the scales in a numerical simulation. The
figure also marks, by arrows, the minimum and maximum wavenumber corresponding

to the chosen box size for the low resolution runs (K'Y Zl and MY Zl); for these
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Figure 4.9: The MRI growth rate in kinetic (using k;, = 0.5/6z) and MHD regimes
for 3 = 10°. Arrows k,min = 27/L, and k, 40, = /62 mark the minimum and
maximum wavenumbers in the low resolution (27 x 59 x 27) runs. For a higher
resolution (54 x 118 x 54) simulation both kj, and k, 4, double as 6z is reduced by
half.

runs both these scales are not resolved. We carry out low (27 x 59 x 27) and high
(54 x 118 x 58) resolution kinetic and MHD simulations, with different box sizes. The
arrows in Figure 4.9 correspond to the low resolution runs with the smallest boxes
that we have considered—increasing the box size resolves the fastest growing kinetic
modes at large scales, while increasing the number of grid points resolves the fastest
MHD modes at small scales.

Figure 4.10 shows the magnetic energy in the z- component of the magnetic field,
({B2?/87)), for runs initialized with an MRI eigenmode (runs KY Zlin and MY Zlin
in Table 4.4); the kinetic growth rate is indeed faster than in MHD, as predicted by
linear theory. The MHD growth rate for MY Zlin calculated from the slope of B2 /8w
is v/Q = 0.29, consistent with linear theory for this particular mode (Figure 4.9 shows
a similar growth rate for k, = 4k, ,in, the mode initialized in MY Zlin). For the same

run, Table 4.4 shows that the magnetic energy and stresses in the saturated state are
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Figure 4.10: Figure on left shows magnetic energy in the z- component, (B2/87py),
plotted as a function of number of orbits for runs MY Zlin and KY Zlin. The initial
disturbance is a linear eigenmode with an amplitude of 10~ and vertical wavenumber
k, = 8n/L, = 4k, ;in. Resolution for both cases is 27 x 59 x 27. As expected, the
MRI growth rate is much faster in kinetic regime than in MHD. The growth rates
deduced from the slope are for MHD: /2 = 0.29, and for KMHD: v/Q = 1.78.
Figure on right shows the total magnetic energy for 100 orbits. Saturated magnetic
energy in MHD is much smaller than KMHD at late times.

much smaller than all other runs unlike the kinetic run K'Y Zlin, the presence of
a single mode somehow affects the saturation in MHD! In comparison, similar case
initialized with random noise (MY Z1) saturates at large amplitude as shown in Table
4.4. Tt seems that nonlinear saturation in MHD shows a bifurcation depending on
the initial conditions; somehow the memory of initial conditions is retained even at
late times.

Apart from verifying the linear growth, we also study the differences between the
nonlinear saturation of the kinetic and MHD simulations; all the runs described in
this section use pitch angle scattering models and conduction parameter (k;) similar
to the fiducial run Zl4. We use a range of box sizes, starting from the smallest
boxes (KY Zl, KY Zh and MY ZIl, MY Zh) to the boxes with vertical height equal
to the disk height scale (K'Y Z8l, KY Z8h and MY Z8l, MY Z8h). The nonlinear

simulations are done at low (27 x 59 x 27) and high (54 x 118 x 54) resolutions.
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Both MHD and kinetic simulations show that the magnetic and kinetic energies, and
stresses scale with the box size, provided that the resolution is good enough (see
Figure 4.13); this is similar to what was observed by [86] for MHD simulations. The
magnetic energy is ~ 5 times smaller for the kinetic simulations, however, the total
stress (dominated by the anisotropic stress for kinetic simulations) is comparable for
kinetic and MHD simulations. Although the MRI growth in the kinetic regime is
double that in MHD, the kinetic simulations saturate at a smaller magnetic energy
compared to MHD.

Figure 4.11 shows the spectra of magnetic and kinetic energies for runs K'Y Zh and
Zh4; a k~11/3 Kolmogorov spectrum is a good fit for the kinetic and magnetic energies.
The spectra as a function of k, look slightly steeper for high 3 simulations. This may
be because fluctuation energy is small compared to the energy in the radial shear
of V,,, which elongates the eddies in the azimuthal direction. The spectra for MHD
By = B, runs are similar (see Figure 4.12) to the kinetic runs. Although the spectra
are similar to the Kolmogorov spectrum for isotropic, homogeneous turbulence, MRI
turbulence is anisotropic with non-zero correlations between radial and azimuthal
fields, resulting in sustained Maxwell and Reynolds stresses.

We have carried out vertical field simulation with 3 = 10° to compare with high 3
B, = B, simulations. For an initial vertical field, the growth rate for the fastest grow-
ing mode is the same in MHD and kinetic regimes (see Figure 3.1). The parameters
for these simulations are similar to the By = B, simulations; the volume and time
averaged quantities are listed in Table 4.5. Although the growth rates for By = B,
cases are larger than for a vertical field, Figure 4.13 shows that the saturation energies
and stresses are ~ 1-2 times larger for the vertical field cases. Similarly, MHD sim-
ulations show slightly larger stresses and energies for pure vertical field cases. Also,
as in By, = B, simulations, pure vertical field simulations show that the saturated

magnetic energy is ~ 3 — 5 times smaller for the kinetic regime compared to MHD,

128



10 w w w 10

-3
) 107 N
107} S
o a4
g g1’
@ -5 o
o 10} =
x X
it 210 Ny
- \
10 ) ‘
10°F |
\\
7 -7
10 10 : : '
10° 10* 10° 10" 10° 10° 10*
kv jQ
10° 10°
100 10~
_ o _
g 107} g 107
® o
N —~
— X
g 107 2 107
Q o1
107} 107}
5 5
10 L L 10 L L
10° 10" 10” 10° 10° 10" 10” 10°
kv jQ kv jQ

Figure 4.11: Turbulent magnetic (|B(k)|*/87po) and kinetic energy (po|V (k)|*/2po)
spectra for kinetic MHD: the 8 = 10° run K'Y Zh (top), and the 3 = 400 initial
vertical field case (bottom, run Zh4 in [177]; see Table 4.1). Spectra with respect
to k, (solid line), k, (dashed line) and k, (dotted line) are shown. Also shown is
the k13 Kolmogorov spectrum. The magnetic and kinetic energies for KY Zh are
much smaller than for Zh4. For top figures, spectra with respect to k, are steeper,
because for 3 = 10° cases shear in velocity V,, dominates the fluctuations, causing the
eddies to be elongated in the y- direction, with a steeper spectrum. The spectra are
averaged in the other two directions in k- space; e.g., for a spectrum with respect to

ko, BI2(ky) = [ dkydk.B(ky, ky, k) B*(ky, by, k).
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Figure 4.12: Turbulent magnetic (|B(k)|*/87po) and kinetic energy (po|V (k)|*/2po)
spectra for MHD: the 8 = 10° run MY Zh (top), and the 3 = 400 initial vertical
field case (bottom, run ZMh in [177]; see Table 4.1). Spectra with respect to k,
(solid line), k, (dashed line) and k, (dotted line) are shown. Also shown is the
k113 Kolmogorov spectrum. The magnetic and kinetic energies for MY Zh are
much smaller than for M Zh. For top figures, spectra with respect to k, are steeper,
because for 3 = 10° cases shear in velocity V,, dominates the fluctuations, causing the
eddies to be elongated in the y- direction, with a steeper spectrum. The spectra are
averaged in the other two directions in k- space; e.g., for a spectrum with respect to,

B2(k,) = [ dhkydk.B(ky, ky, k) B*(ky, ky k).
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whereas, the total stress (dominated by the anisotropic stress in the kinetic regime)
is comparable. This demonstrates that B, = B, simulations are not very different
from the pure vertical field simulations in the kinetic regime. Although the magnetic
energy in MHD regime is larger, anisotropic stress results in a comparable total stress

in the kinetic and MHD regimes.

4.5.2 Runs with § = 400

We also carried runs with § = 400 to compare different field geometries. Figure 4.14
shows that kinetic and magnetic energies, and stresses are largest for the pure vertical
field cases (similar to 8 = 10° simulations), followed by By = B,, and azimuthal field
cases, for both MHD and kinetic regime. Another point to be taken from Figure
4.14 is that in the kinetic regime, unlike MHD), the total stress is larger than the
magnetic energy. For azimuthal field simulations in both kinetic and MHD regimes,
the fluctuation energy is smaller than the energy in the shear flow; smaller fluctuations
correspond to lower level of turbulence and transport. For By = B, simulations, the
magnetic energy is (= twice) larger in the MHD than in kinetic regime; reminiscent of
3 = 106 results where magnetic energy in MHD is even larger. Comparing simulations
where the initial 3 = 10° with simulations where the initial 5 = 400 suggest that
magnetic and kinetic energies and stresses increase as we reduce the initial . This
behavior is not fully understood but is similar to that observed in MHD simulations
with a net flux (see Figure 8 in [87]). MHD simulations with no net flux result in a
saturated 3 independent of the initial § [87, 167], we expect the same to be true in

the kinetic regime.
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Figure 4.13: The top plots shows the Maxwell, Reynolds, and anisotropic stresses,
and magnetic energy for 3 = 10° runs in the kinetic regime; the left one with By = B,
and the right one with only B,. The bottom plots show the Maxwell and Reynolds
stresses, and magnetic energy for MHD runs; the left one with B, = B, and the right
one with only B,. Open circles represent low resolution runs (27 x 59 x 27), while
filled squares represent high resolution runs (54 x 118 x 54). The magnetic energy in
the saturated state is ~ 3 — 5 times larger in the MHD regime, while the total stress
is comparable in the two regimes. The stresses and magnetic energy increases with
the box size, except for the low resolution kinetic and By = B, MHD runs with the
vertical box size equal to the box height scale (runs labeled by ‘81).
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Figure 4.14: The magnetic and kinetic energies, and the total stress for kinetic (left)
and MHD (right) simulations for 3 = 10°. For both cases, energies and stresses are
the largest for vertical field simulations, followed by the By = B, runs, and the pure
azimuthal field runs. The total stress is & twice larger for the kinetic runs, whereas
the magnetic energy is comparable with MHD (smaller for the case of B, = B,).
The kinetic and MHD simulations with an azimuthal field give similar results. The
fluctuating kinetic energy is small compared to the energy in the velocity shear for
azimuthal field simulations; this is the reason kinetic energy is larger than other
quantities for azimuthal simulations.
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4.6 Summary and Discussion

In this chapter we have described our local shearing box simulations of the mag-
netorotational instability in a collisionless plasma [177]. We are motivated by the
application to hot radiatively inefficient flows which are believed to be present in
many low-luminosity accreting systems (see Section 1.4). Our method for simulating
the dynamics of a collisionless plasma is fluid-based, and relies on evolving a pressure
tensor with closure models for the heat flux along magnetic field lines. These heat
flux models can be thought of as approximating the collisionless (Landau) damping
of linear modes in the simulation.

By adiabatic invariance, a slow increase (decrease) in the magnetic field strength
tends to give rise to a pressure anisotropy with p, > py (p > p.), where the sign of
anisotropy is defined by the local magnetic field. Such a pressure anisotropy can, how-
ever, give rise to small scale kinetic instabilities (firehose, mirror, and ion cyclotron)
which act to isotropize the pressure tensor, effectively providing an enhanced rate of
pitch angle scattering (“collisions”). We have included the effects of this isotropization
via a subgrid model which restricts the allowed magnitude of the pressure anisotropy
(see Section 4.2.3).

We find that the nonlinear evolution of the MRI in a collisionless plasma is quali-
tatively similar to that in MHD, with comparable saturation magnetic field strengths
and magnetic stresses. The primary new effect in kinetic theory is the existence of
angular momentum transport due to the anisotropic pressure stress (Eq. 4.48). For
the allowed pressure anisotropies estimated in Section 4.2.3, the anisotropic stress is
dynamically important and is as large as the Maxwell stress (Table 4.1). The high
B By = B, simulations, although showing the expected faster growth rate than in
MHD, show a smaller magnetic energy (factor of ~ 5) in the kinetic regime, but the
total stress is comparable to MHD. Although the MRI in kinetic and MHD regimes

is different linearly (with the fastest growing mode in the kinetic regime twice faster
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than in MHD), they are qualitatively similar in the nonlinear regime.

The precise rate of transport in the present simulations is difficult to quantify
accurately and depends—at the factor of ~ 2 level—on some of the uncertain micro-
physics in our kinetic analysis (e.g., the rate of heat conduction along magnetic field
lines and the exact threshold for pitch angle scattering by small-scale instabilities; see
Figure 4.7). For better results, it would be interesting to extend these calculations
with a more accurate evaluation of the actual nonlocal heat fluxes, Eqs. 4.11-4.12, or
even to directly solve the drift kinetic equation, Eq. 4.5, for the particle distribution
function. Further kinetic studies in the local shearing box, including studies of the
small-scale instabilities that limit pressure anisotropy, would be helpful in developing
appropriate fluid closures for global simulations.

It is interesting to note that two-temperature RIAFs can only be maintained below
a critical luminosity ~ a?Lgpp [163]. Thus enhanced transport in kinetic theory due
to the anisotropic pressure stress would extend upward in luminosity the range of
systems to which RIAFs could be applicable. This is important for understanding,
e.g., state transitions in X-ray binaries [55].

In addition to angular momentum transport by anisotropic pressure stresses, Lan-
dau damping of long-wavelength modes can be important in heating collisionless ac-
cretion flows. Because the version of ZEUS MHD code we use is non-conservative,
we cannot carry out a rigorous calculation of heating by different mechanisms such
as Landau damping and reconnection. Following the total energy-conserving scheme
of [194], however, we estimate that the energy dissipated by collisionless damping
(present in the form of work done by anisotropic stress) is comparable to or larger
than that due to numerical magnetic energy loss (which is the major source of heating
in MHD simulations), which represents both energy lost due to reconnection and the
energy cascading beyond the scales at the resolution limit. One caveat to studying

energetics in a local shearing box is that in local simulations, the pressure increases
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in time due to heating, while B? ~ constant. Thus 3 increases in time and the tur-
bulence becomes more and more incompressible. This will artificially decrease the
importance of compressible channels of heating. Clearly it is of significant interest
to better understand heating and energy dissipation in RIAFs, particularly for the
electrons. The one fluid simulations provide some indications of electron heating in
RIAFs; electrons will also be anisotropic because of magnetic energy fluctuations.
The pressure anisotropy in electrons is also limited due to microinstabilities, e.g., the
electron whistler instability considered by [68]. The heating rate of electrons due to
anisotropic stress (dInp/dt) is comparable to that of ions because pressure anisotropy
is comparable for electrons and ions. For RIAFs, it may mean that electrons cannot
be kept too cool compared to the ion; but systematic 2-fluid simulations that account
for all sources of heating are needed to draw firm conclusions.

In all of our calculations, we have assumed that the dominant source of pitch
angle scattering is high frequency microinstabilities generated during the growth and
nonlinear evolution of the MRI. We cannot, however, rule out that there are other
sources of high frequency waves that pitch angle scatter and effectively decrease the
mean free path of particles relative to that calculated here (e.g., shocks and recon-
nection). As shown in Table 4.3 and Figure 4.8, this would decrease the magnitude of
the anisotropic stress; we find that for v 2 30 €2, the results of our kinetic simulations
quantitatively approach the MHD limit. In this context it is important to note that
the incompressible part of the MHD cascade launched by the MRI is expected to be
highly anisotropic with &k, > kj [73]. As a result, there is very little power in high
frequency waves that could break p conservation. It is also interesting to note that
satellites have observed that the pressure anisotropy in the solar wind near 1 AU is
approximately marginally stable to the firchose instability [98], consistent with our
assumption that microinstabilities dominate the isotropization of the plasma. There

is evidence for pressure anisotropy in other collisionless plasmas, e.g., the solar wind
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[123, 98] and magnetosphere [192, 66].

In this chapter we have focused on kinetic modifications to angular momentum
transport via anisotropic pressure stresses and parallel heat conduction. In addition,
kinetic effects substantially modify the stability of thermally stratified low collisional-
ity plasmas such as those expected in RIAFs. Balbus [10] showed that in the presence
of anisotropic heat conduction, thermally stratified plasmas are unstable when the
temperature decreases outwards, rather than when the entropy decreases outwards
(the usual Schwarzschild criterion). This has been called the magnetothermal instabil-
ity (MTI). Parrish and Stone [148] show that in non-rotating atmospheres the MTI
leads to magnetic field amplification and efficient heat transport. In future global
simulations of RIAFs, it will be interesting to explore the combined dynamics of the
MTI, the MRI, and angular momentum transport via anisotropic pressure stresses.
Apart from affecting the local dynamics and energetics, collisionless effects can affect

the global structure of hot, collisionless disks.
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Table 4.1: Vertical field simulations with 3 = 400

Label k¢ & () (L)) ((Bzlv)) ((Z2yy (55 ZBuyy  ((2n))

8mpg 2po 4mpg Po Po

Zl1 00 oo  0.0026 0.094 0.0 0.0 0.0 —11.96
Z12 00 3.9 0.25 0.28 0.15 0.067 0.14 —0.96
Z13" 05/6z oo — - - - - -

Zl4 0.5/6z 3.5 0.38 0.36 0.23 0.097 0.20 —1.37
Z15 0.5/0z 0.5 0.35 0.27 0.197 0.054 0.069 —0.02
Z16 0.25/6z 3.5 0.27 0.30 0.16 0.070 0.15 —1.39
ZlT  0.125/6z 3.5 0.21 0.26 0.124 0.051 0.117 —1.44
Z18 0.5/6z 3.5 0.157 0.315 0.094 0.069 0.225 —2.11
Z Ml — — 0.39 0.29 0.22 0.066 - -

Zhl 00 oo 0.0026 0.095 0.0 0.0 0.0 —10.2
Zh2 00 3.9 0.41 0.32 0.24 0.083 0.18 —1.09
Zh3"  05/6z oo — - — — - —

Zh4 0.5/6z 3.5 0.40 0.33 0.22 0.078 0.18 —1.20
Zhb 0.5/6z 0.5 0.349 0.253 0.186 0.042 0.055 —0.02
Zh6  0.25/0z 3.5 0.24 0.26 0.13 0.044 0.13 —1.42
ZMh — — 0.375 0.27 0.204 0.0531 — —

Vertical field simulation with initial § = 400. Z indicates that all simulations start
with a vertical field, ‘I, ‘A’ indicate low (27 x 59 x 27) and high (54 x 118 x 54)
resolution runs respectively. ZI4 is the fiducial run. ZIl1, Zh1l are the runs in CGL
limit. ZMI andZMh are the MHD runs.

¢ Wavenumber parameter used in Landau closure for parallel heat conduction (Egs.
4.13 and 4.14).

b Imposed limit on pressure anisotropy for pitch angle scattering due to mirror insta-
bility (Eq. 4.34). Excluding ZI1, Zhl, and ZI8 all of these calculations also use a
pressure anisotropy limit due to the ion cyclotron instability (Eq. 4.35).

¢ (()) denotes a time and space average taken from 5 to 20 orbits.

* Ap = (p| —p1)

T These cases run for only ~ 4 orbits at which point the time step becomes very small
because regions of large pressure anisotropy are created (see Section 4.4.4).
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Table 4.2: Statistics for Model Z[4

Quantity f (N (o202 () 22N min(f)  max(f)

ez 0.083 0.092 0.016 0.021 0.662
ngo 0.276 0.318 0.048 0.036 1.987
ngo 0.021 0.017 0.0025 0.0032 0.144
% 0.102 0.094 0.014 0.0184 0.63
”jpvf 0.125 0.079 0.0127 0.715 0.0264
% 0.037 0.034 0.0032 0.008 0.348
% 0.229 0.277 0.0434 0.037 1.856
%)@ 0.097 0.113 0.0147 —0.072  0.6211
@1-2.) BBy 0.198 0.129 0.0178 0.017 0.654
Amlp) —ps) —1.366 0.51 0.098 —2.632  —0.083
&% 0.5895 0.1043 0.0067 0.3744 0.8611
aeie 0.3323 0.2725 0.017 —0.5307  1.2704
ey “pL) F% 07356 0.3718 0.0714 0.032 1.807
e 1.6574 0.6598 0.084 0.4364 3.7159
ar 0.5357 0.3975 0.024 —0.9105  2.084
s 1.2287 0.5504 0.119 0.0854 2.7243
£ 0.09935 2.3 x 107° 1.1 x 1075 0.9993 0.9994
% 3.557 1.665 —o 1.1178 7.929
L 3.144 x 10°  3.49 x 103 - 5854 1.993 x 10°
p2Bipo

® We calculate the error using the autocorrelation time only for quantities that sat-
urate to a steady state after 5 orbits. Estimate for correlation time 7;,, is based on
the discussion in [144]. p, and pj show a secular growth with time, so this way of
expressing them as an average and an error is not applicable.
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Table 4.3: Simulations with an explicit collision term

v/Q ((dndp/B%) ((—5=m)) (o) (o)) aa/aar aajaa(v =0)

4mpo Po Po

0 —1.41 0.18 0.082 0.196 1.09 1
1 —1.47 0.152 0.072 0.173 1.14 0.88
3 —1.43 0.178 0.08 0.181 1.02 0.92
10 —1.35 0.165 0.071 0.159 0.96 0.81
20 —1.24 0.174 0.070 0.136 0.78 0.69
30 —1.01 0.213 0.070 0.113 0.53 0.58
40 —0.87 0.239 0.070 0.095 0.4 0.48
100 —0.43 0.223 0.06 0.032 0.14 0.16

*Ap=(p —pL)
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Table 4.4: By = B,, f = 10° simulations

Label L, L, L. (25 (30 () (2=)) (B 2) {(a))
KYZl 0133 0.837 0.133 251 x107* 0.0021 1.12x107* 1.04x 107* 4.59 x 10~* 7.75 x 10~*
KYZlin 0.133 0.837 0.133 2.84x10~* 0.0021 124 x10™* 1.11x10™* 5.00 x 10™* 7.34 x 10~*
KYZh 0133 0.837 0.133 3.68x10~* 0.0021 1.63x10™* 1.26 x 107* 5.53 x 10~* 8.42 x 10~*
KYZ2l 0.267 1.675 0267 4.36x 107" 0.0073 1.84x 10™* 1.84x 10~* 8.00 x 10~* 0.0012
KYZ2h 0.267 1.675 0.267 5.17x107* 0.0074 225 x107* 2.05x 107* 8.54 x 1074 0.0013
KYZ4l 0.533 3.350 0.533 4.14 x 107* 0.0273 1.52x 10* 2.85x 10~* 8.91 x 10~* 0.0013
KYZ4h 0.533 3.350 0.533 0.001 0.0277 45x107* 5.16x10™*  0.0016 0.0026
KYZ8 10 6.283 1.0 863x107> 0.1024 263 x 10>  0.0012 0.0010 0.0022
KYZ8h 1.0 6.283 1.0 0.0023  0.0948 9.62x10~*  0.0013 0.0030 0.0053
MYZl 0133 0.837 0.133 821 x10~* 0.0019 3.56 x 10~* 7.05 x 10~* — 0.0011
MY Zlin  0.133 0.837 0.133 1.40 x 107> 0.0015 2.66 x 1076 1.69 x 10~ - 4.35 x 1076
MYZh 0.133 0.837 0.133 7.57 x 10™* 0.0019 3.43 x 10~* 6.96 x 10> - 0.0010
MY Z2l 0267 1.675 0.267  0.0020  0.0071 8.35x10~* 1.96 x 10~* - 0.0010
MY Z2h 0.267 1.675 0.267 0.0019 0.0072 8.68 x 107* 2.10 x 1074 - 0.0011
MY Z4l 0533 3.350 0.533  0.0088  0.0297  0.0036 0.0012 - 0.0048
MY Z4h 0.533 3.350 0.533  0.0052  0.0282  0.0023  7.88 x 10~* - 0.0031
MYZ8l 1.0 6283 1.0 0.0012  0.0959 1.56 x 107* 2.32 x 1074 - 3.88 x 10~*
MYZ8h 1.0 6.283 1.0 0.0111  0.0967  0.0047 0.0023 - 0.007

‘Y'Z’ represents both Y an Z fields. ‘I’ and ‘A’ stand for low (27 x 59 x 27) and high resolution (54 x 118 x 54) runs. ‘lin’

stands for an initial linear eigenmode with k, = 87/L,. ‘K’ and ‘M’ stand for kinetic and MHD respectively.

*Ap = (p| —p1)
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Table 4.5: Only B,, 3 = 10° simulations

Label L, L, L. (&) (L) ((Zy) 22y (4gy) (o)
KZl 0.133 0.837 0.133 4.66 x 10™* 0.0023 2.09 x 107* 1.74 x 107* 7.68 x 10~ 0.0012
KZ21 0.267 1.675 0.267 7.99 x 10~* 0.0077 3.45x10™* 3.07 x 10~* 0.0013 0.0019
KZ4l 0533 3.350 0.533 9.14 x 107* 0.0278 3.63 x 107* 4.84 x 10~ 0.0016 0.0024
KZ4h 0.533 3.350 0.533 0.0015 0.0282 6.66 x 10™* 6.71 x 10~* 0.0022 0.0035
KZ8Il 1.0 6.283 1.0 1.77 x 107* 0.0992 5.35 x 107° 3.72x 107* 9.57 x 1074 0.0014
KZ8h 1.0 6.283 1.0 0.0033 0.0946 0.0014 0.0017 0.0041 0.0072
MZl 0.133 0.837 0.133 0.0011 0.0020 4.79 x 107* 9.41 x 107° — 573 x 1074
MZ2l 0.267 1.675 0.267 0.0019 0.0072 7.93x107* 1.96 x 10~* = 9.89 x 1074
MZ4l 0.533 3.350 0.533 0.0058 0.0283 0.0023 8.44 x 10~* — 0.0031
MZ4h 0.533 3.350 0.533 0.0042 0.0276 0.0018 6.59 x 1074 — 0.0025
MZ8I 1.0 6.283 1.0 0.0165 0.0978 0.0063 0.0029 — 0.0092
MZ8h 1.0 6.283 1.0 0.0137 0.0986 0.006 0.0028 — 0.0089

‘Z’ represents a vertical field. ‘I’ and ‘A’ stand for low (27 x 59 x 27) and high resolution (54 x 118 x 54) runs. ‘K’ and ‘M’

stand for kinetic and MHD respectively.

*Ap = (p| —p1)
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Table 4.6: 3 = 400 simulations with different field orientations

Label L, L, L. ((£Z))

8mpo

({e))

(L)) ((Beleyy (2=l ((Gg Beluy)

Z141 1.0 6.283 1.0 0.38
KYZ1400 1.0 6.283 1.0 0.147
KYl1400 1.0 6.283 1.0 0.008
Zh4t 1.0 6.283 1.0 0.40
KYZh400 1.0 6.283 1.0 0.2294
KYh400 1.0 6.283 1.0 0.0253
MZIt 1.0 6.283 1.0 0.39
MY Z1400 1.0 6.283 1.0 0.302
MY1400 1.0 6.283 1.0 0.0372
MZht 1.0 6.283 1.0 0.375
MY Zh400 1.0 6.283 1.0 0.351
MYh400 1.0 6.283 1.0 0.0385

0.36 0.23 0.097 0.20 0.527
0.262  0.0838 0.0537 0.1757 0.3132
0.1063  0.032 0.0032 0.0106 0.0169

0.33 0.22 0.078 0.18 0.478
0.2904 0.1211 0.0571 0.2046 0.3828
0.1148  0.0108 0.0067 0.0183 0.0358

0.29 0.22 0.066 — 0.286
0.209  0.1595 0.0350 — 0.1945
0.1073  0.015 0.0051 — 0.0201

0.27 0.204 0.0531 — 0.257
0.225  0.1793 0.0342 — 0.2135
0.1107  0.017 0.0057 — 0.0227

'Z’ and Y represent vertical and azimuthal initial field.

for kinetic and MHD respectively.

T These runs are from [177]; see Table 4.1

*Ap = (p| —p1)

‘I’ and ‘h’ stand for low and high resolution runs. ‘K’ and ‘M’ stand



Chapter 5

Anisotropic conduction with large

temperature gradients

A natural step, after local studies of the MRI in the collisionless regime, is to in-
vestigate the effects of collisionless plasma processes on the global structure of colli-
sionless disks in radiatively inefficient accretion flows (RIAFs). Instead of including
both anisotropic pressure and anisotropic conduction, as in the local studies described
in Chapters 3 and 4, we began by looking at just the effects of anisotropic thermal
conduction. Anisotropic conduction is important for global disk structure because an
anisotropically conducting plasma is convectively stable if the temperature increases
outwards (dT'/dr > 0; see [16, 10]). Whereas, convective stability in collisional fluids
require the entropy (s = p/p?) to increase outwards. Local, 2-D, vertically stratified
MHD simulations of Parrish and Stone [148] have confirmed that the convective insta-
bility in plasma with anisotropic thermal conduction, christened the magnetothermal
instability (MTI), is driven by temperature gradients. If convection is important,
as in hydrodynamic disks [189, 160], anisotropic conduction can modify the global
structure (and hence the luminosity) of RIAFs.

Our aim was to include anisotropic thermal conduction in global, 2-D MHD sim-
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0.5 1 1.5 g 2.9 3 3.5
B

Figure 5.1: The initial density for a typical global MHD disk simulation (e.g., [188,
83]). A high density, constant angular momentum torus is surrounded by a non-
rotating, low density corona. Temperature (and density) jumps by ~ 100 at the
torus-corona interface. Magnetic field vanishes in the corona, while it is along the
density contours in the torus (5 ~ 100).

ulations of RIAFs, and to see if the structure of turbulent, quasi-steady disk changes.
We began by adding an anisotropic conduction routine, based on centered differenc-
ing, to the global ZEUS MHD code used by Stone and Pringle [188]. The initial
condition for most global MHD disk simulations [83, 188] is a constant angular mo-
mentum, high density torus surrounded by a low density, non-rotating corona (see
Figure 5.1 for a typical example). Pressure balance at the torus-corona interface re-
quires a big jump in temperature across it (ratio of temperatures = inverse ratio of
densities ~ 100).

The implementation of anisotropic thermal conduction in presence of large tem-
perature gradients was far from trivial. The simulations with anisotropic conduc-
tion and MHD-disk initial conditions (with a large temperature gradient; see Figure
5.1) did not run for long, eventually becoming numerically unstable, even though

we were using a Courant stable time step. We found that, unlike isotropic conduc-
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tion, the centered differencing of anisotropic conduction allowed for heat to flow from
higher to lower temperatures. The heat flow in the “wrong” direction can lead to
negative temperatures in regions with large temperature gradients. An implementa-
tion of anisotropic thermal conduction that does not give rise to negative tempera-
tures required considerable time and effort. Thus, global MHD disk simulations with
anisotropic thermal conduction have been left for the future.

Anisotropic diffusion, in which the rate of diffusion of some quantity is faster
in some directions than others, occurs in many different physical systems and ap-
plications. Examples include diffusion in geological formations, thermal properties
of structural materials and crystals, image processing [41, 136], biological systems,
and plasma physics. Diffusion Tensor Magnetic Resonance Imaging makes use of
anisotropic diffusion to distinguish different types of tissue as a medical diagnos-
tic [19]. In plasma physics, the collision operator gives rise to anisotropic diffusion in
velocity space, as does the quasilinear operator describing the interaction of particles
with waves [182]. In magnetized plasmas, thermal conduction can be much more
rapid along a field line than across it; this will be the main application in mind for
this chapter.

In this chapter we show that anisotropic thermal conduction based on centered
differences is not always consistent with the second law of thermodynamics. Test
problems that result in negative temperature with centered “asymmetric” and “sym-
metric” differencing are presented. This happens because heat can flow from lower to
higher temperature in regions with large temperature gradient. Temperature gradi-
ents in anisotropic heat fluxes need to be limited to ensure that temperature extrema
are not accentuated. We tried several different approaches, and eventually developed
slope-limited methods that successfully avoid the negative temperature problem, by
using limiters analogous to those used in numerical solution of hyperbolic equations

[116]. Perpendicular numerical diffusion (x| num) scales as ~ xjAz? in case of the
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least diffusive slope limited schemes. The limited methods are more diffusive than
the “symmetric” method, but comparable to the “asymmetric” method. Also, like
the “asymmetric” method, the limited methods lack the desirable property of “sym-
metric” method that the perpendicular numerical diffusion (X1 num) is independent
of the parallel conduction ;. The main advantage of slope limited methods is that
they do not give rise to negative temperatures in presence of large temperature gra-
dients. Thus, limited methods will be useful to simulate hot, dilute astrophysical
plasmas where conduction is anisotropic and temperature gradients are enormous,

e.g., disk-corona boundary, energetic reconnection events, and collisionless shocks.

5.1 Introduction

When the plasma collision frequency, v (oc nT~3/2, n is the number density and T
is the temperature), is small compared to the cyclotron frequency Q. = ¢B/mc, key
transport quantities like stress and thermal conduction become anisotropic with re-
spect to the magnetic field direction (the ratio of parallel to perpendicular transport
coefficients is ~ (./v)?); heat and momentum transport parallel to the field is much
larger than in the cross-field direction [37]. In a plasma with comparable electron and
proton temperatures, heat transport is dominated by electrons, which are faster than
ions by the ratio \/W, and momentum transport is dominated by the protons.
Anisotropic plasmas are abundant in nature (e.g., solar corona, solar wind, mag-
netosphere, and radiatively inefficient accretion flows) as well as high temperature
laboratory devices like tokamaks. In order to simulate dilute, anisotropic plasmas,
accurate and robust numerical methods are needed.

Numerical methods based on finite differences [76] and higher order finite ele-
ments [181] have been useful in simulating highly anisotropic conduction (x| /x1 ~

107, where x| and x are parallel and perpendicular conduction coefficients) in lab-
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oratory plasmas. “Symmetric” differencing introduced in [76] is particularly simple
and has some desirable properties—perpendicular numerical diffusion independent of
X|, and self adjointness of the numerical heat flux operator. The scheme based on
asymmetric centered differences, with components of the heat flux vector located at
the cell faces, have been used to study convection in anisotropically conducting plas-
mas [148] and for local simulations of collisionless accretion disks [177]. Anisotropic
thermal conduction plays a crucial role in the convective stability of dilute plasmas;
Parrish and Stone [148] have confirmed the prediction that convection in stratified
anisotropic plasmas is governed, not by the entropy gradient (the classic Schwarzchild
criterion, ds/dr > 0 for convective stability of fluids), but by the temperature gradi-
ent (dT'/dr > 0 for convective stability of plasmas with anisotropic conduction; see
10, 11]).

An important fact that has not been discussed before (to our knowledge) is that
the methods based on centered differences can give rise to heat fluxes inconsistent
with the second law of thermodynamics, i.e., heat can flow from lower to higher
temperatures! Temperature extrema can be accentuated unphysically, and negative
temperatures can arise if centered differencing is used. We show, using simple numer-
ical test problems, that both symmetric and asymmetric centered methods can give
rise to negative temperatures at some grid points. Negative temperature results in
numerical instability because the sound speed becomes imaginary.

We show that the symmetric and asymmetric methods can be modified so that
the temperature extrema are not accentuated. The components of anisotropic heat
flux, e.g., ¢, consist of two contributions: the normal term, ¢,, = —nxb29T/dz,
and the transverse term, g,, = —nxb,b,01'/0y. The normal term for the asymmet-
ric method, like isotropic conduction, is from higher to lower temperatures, but the
transverse term can be of any sign. The transverse term needs to be “limited” to en-

sure that temperature extrema are not accentuated. We use slope limiters, analogous
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to those used in second order methods for hyperbolic problems [196, 116], to limit the
transverse heat fluxes. However, for the symmetric method where primary heat fluxes
are located at cell corners, ¢y, i11/2,; need not be the same sign as 9T /02|41 /2,5~ Thus,
both the normal and transverse terms have to be limited for the symmetric method.
Methods based on the entropy-like function ($* = —q- VT > 0; see Appendix E
to see how this is different from the entropy function), which limit the transverse
component of the heat flux, are also discussed.

Limiting introduces numerical diffusion in the perpendicular direction, and the
desirable property of the symmetric method that perpendicular pollution is indepen-
dent of ) no longer holds. The ratio of perpendicular numerical diffusion and the
physical parallel conductivity with a Monotonized Central (MC; see [116] for discus-
sion of slope limiters) limiter is X | num/X| ~ 1072 for a modest number of grid points
(~ 100 in each direction). This clearly is not adequate for simulating laboratory
plasmas which require x| /x. ~ 10°, as perpendicular numerical diffusion will swamp
the true perpendicular diffusion. For laboratory plasmas, the temperature profile is
relatively smooth and the negative temperature problem does not arise, so symmetric
differencing [76] or higher order finite elements [181] will be adequate.

However, astrophysical plasmas can have sharp gradients in temperature (e.g., the
transition region of the sun separating the hot corona and the much cooler chromo-
sphere, the disk-corona interface in accretion flows), and centered differencing can
give rise to negative temperatures. Thus, symmetric and asymmetric centered meth-
ods cannot be used (the sound speed becomes imaginary with negative temperature
and can give rise to spurious instabilities). The slope limited methods will intro-
duce somewhat larger perpendicular numerical diffusion (X 1 ypum /x| ~ 1073) but will
always ensure the correct direction of heat fluxes, and hence the positivity of the
temperature. Even a modest anisotropy in conduction (xj/x. ~ 103) should be

useful to study the qualitatively new effects of anisotropic conduction on dilute as-
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trophysical plasmas, but the positivity condition on temperature is a must for robust
numerical simulations (ruling out the use of centered differencing for plasmas with
large temperature gradients). Figure 3 in [148] shows that the linear growth rate
of the magnetothermal instability (the convective instability of stratified anisotropic
plasmas discussed in [16, 10]) is not much different for x, /x — 0 and x, /x < 0.1,
and a numerical method that gives rise to slightly larger (compared to the symmet-
ric method, but still x| num/x| < 0.1) pollution of perpendicular conduction looks
acceptable. We have tested our slope-limited methods on the magnetothermal insta-
bility and get results similar to [148], both linearly and nonlinearly.

The chapter is organized as follows. We begin with the equation for anisotropic
conduction and its numerical implementation using asymmetric and symmetric cen-
tered differencing. We present simple 2-D test problems for which asymmetric and
symmetric centered differencing give rise to negative temperatures. The slope limited
methods for anisotropic heat conduction are introduced, followed by the limiting of
the symmetric method based on the entropy-like condition. We discuss some math-
ematical properties of the slope limited methods. We present further test problems
comparing different methods and study their convergence properties. In the end we

conclude and discuss the applications of the methods that we have developed.

5.2 Anisotropic thermal conduction

Anisotropic thermal conduction can be important in a magnetized plasmas if the
mean free path (much larger than the gyroradius) is comparable to the dynamical
length scales. In such cases, a divergence of anisotropic heat flux has to be added to
the energy equation. Such a term can modify the characteristic structure of the MHD
equations and can be evolved separately by using operator splitting, as done in [148].

In operator splitting, MHD evolution operator and anisotropic thermal conduction
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Figure 5.2: A staggered grid with scalars S;; (such as n, e, and T') located at cell
centers. The components of vectors, e.g., b and q are located at cell faces. However,
for the symmetric centered scheme the primary heat fluxes are located at cell corners
[76], and the face centered flux is obtained by interpolation.

are applied alternately, and their numerical implementations are independent. The

equation for the evolution of internal energy due to anisotropic conduction is

de
ot
a = —bn(x —x0)V|T —nx VT (5.2)

= —V-q, (5.1)

where e is the internal energy per unit volume, q is the heat flux, x| and x are the
coefficients of parallel and perpendicular conduction with respect to the local field
direction (with dimensions L?T~1!), n is the number density, T = (v — 1)e/n is the
temperature, v = 5/3 is the ratio of the specific heats for an ideal gas, b is the unit
vector along the field line, and V|| = b-V represents the derivative along the direction
of the magnetic field. In the test problems that we present, v = 2 is chosen to avoid
factors of 2/3 and 5/3; qualitative features are independent of ~.

On a staggered grid, scalars like n, e, and T" are located at the cell centers whereas
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the components of vectors like b and q are located at cell faces, as shown in Figure
5.2. The face centered components of vectors naturally represent the flux of scalars
out of a cell. Notice however, as we describe later, that in Giinter et al.’s symmetric
method [76], primary heat fluxes are located at cell corners which are averaged to get
the face centered heat fluxes.

All the schemes presented here are conservative and fully explicit. It should be
possible to take longer time steps with an implicit generalization of these schemes,
but the construction of a fast implicit scheme for anisotropic conduction is non-trivial.

In two dimensions the internal energy density is updated as follows,

Qs T Gic1j2g . Qg ~ -
e+l er Ay | Zmitl/2 i=1/2, L J1+1/2 Yyinj—1/2 (5.3)

b Az Ay ’
where the time step, At, satisfies the stability condition (ignoring density variations)

min[Az?, Ay?]

At <
4(x) + x1)

(5.4)

Ax and Ay are grid sizes in the two directions. The generalization to three dimensions
is straightforward.

The methods we discuss differ in the way heat fluxes are calculated at the faces.
In rest of the section we discuss the methods based on asymmetric and symmetric
centered differencing, as discussed in [76]. The asymmetric method was used by
[148] and [177] for simulations of hot, dilute, anisotropic astrophysical plasmas. We
show in Section 5.3 that both symmetric and asymmetric methods can give rise to
negative temperatures in regions with large temperature gradients. From here on y
will represent parallel conduction coefficient in cases where an explicit perpendicular
diffusion is not considered (i.e., the only perpendicular diffusion is due to numerical

effects).
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(nX)—l/Q (nX)l/Q

Figure 5.3: This figure provides a motivation for using a harmonic average for ny.
Consider a 1-D case with the temperatures and ny’s as shown in the figure. Given
T 1 and T} and the nx’s at the faces, we want to calculate an average my between
cells —1 and 1. Assumption of a constant heat flux gives, ¢_12 = q2 = T, i.e.,
—(nx)-12(To — T-1)/ Az = —(nx)12(Th — To)/Ax = —nx(Ty — T-1)/2Az. This
immediately gives a harmonic mean, which is weighted towards the smaller of the
two arguments, for the interpolation 7.

5.2.1 Centered asymmetric scheme

The heat flux in the x- direction (in 2-D), using the asymmetric method is given by

T —0—T} | 55

q 7'f‘l/2,j nX |: 81: _I_ Y ay
where overline represents the variables interpolated to the face at (i +1/2,j). The

variables without an overline are naturally located at the face. The interpolated

quantities at the face are given by simple arithmetic averaging,

o
<
|

(by,i,j—1/2 + by it1,j—1/2 + byijri/2 + by,i+1,j+1/2)/4> (5.6)

or/oy = (Tijy1+ Tivrje1 — Tijo1 — Tigr-1)/40y. (5.7)
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We use a harmonic mean to interpolate the product of number density and con-

ductivity,
2 1 1
nx (nX)z',j (nX)z'ﬂ,j

this is second order accurate for smooth regions, but my becomes proportional to the
minimum of the two nx’s on either side of the face when the two differ significantly.
Figure 5.3 gives the motivation for the use of a harmonic average. Harmonic averaging
is also necessary for the method to be stable with the present time step given in Eq.
5.4. Instead, if we use a simple mean, the stable time step condition becomes severe by
a factor ~ max([n;;1 ;,n;;]/2min[n; 1 ;,n; ;], which can result in unacceptably small
time steps for initial conditions with large density contrast. Physically, this is because
the heat capacity is very small in a low density region, so a small amount of heat flow
into that region causes very fast changes in the temperature.

Analogous expressions can be written for the heat fluxes in other directions. This
method is used in astrophysical MHD simulations of [148] and [177], who include

anisotropic conduction in a cartesian geometry.

5.2.2 Centered symmetric scheme

The notion of symmetric differencing was introduced in [76], where primary heat

fluxes are located at the cell corners, with

__—[—orT —oT
Gu,i+1/2,54+1/2 = —TXba bm% + bya—y ,
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where overline represents the interpolation of variables at the corner given by a simple

arithmetic average

by = (buit1/2) + beit1/2,j+1)/2, (5.10)
by = (byijirsz + byirijri2)/2, (5.11)
IT[0x = (Ti1;+ Tivrjer — Tij — Tija) 200, (5.12)
OT)0y = (Tijer+ Tivr o1 — Tij — Tivry) /20y. (5.13)

As before (and for the same reasons), a harmonic average is used for the number

density

4 1 1 1 1
— = - - +

. 5h.14
X  (x)i; ()i (MX)ije (MX)is1in (5.14)

This is different from [76] who use an arithmetic average for n and x. Analogous
expression can be written for gy ;11/2,j+1/2-
The heat fluxes located at the cell faces, g, i41/2; and gy +1/2, to be used in

Eq. (5.3) are given by an arithmetic average,

Qzi4+1/2,5 — (qgc,i+l/2,j+1/2+qgc,i+l/2,j—1/2)/27 (5-15)

Qij+i2 = (Quiti/2541/2 + Qyi-1/2,j+1/2)/2. (5.16)

As demonstrated in [76], the symmetric heat flux satisfies the self adjointness property
(equivalent to $* = —q - VT > 0 at cell corners) and has the desirable property that
the perpendicular numerical diffusion (X1 num) is independent of x| /x .. But, as we
show later, both symmetric and asymmetric schemes do not satisfy the very important
local property that heat must flow from higher to lower temperatures; the violation of
this at temperature minima can result in negative temperature in regions with large
temperature gradients.

As mentioned earlier, the heat flux in the z- direction, ¢, consists of two terms,
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Figure 5.4: The symmetric method is unable to diffuse a temperature distributed
in a chess-board pattern. The plus (+) and minus (—) symbols denote two un-
equal temperatures. Temperature gradients at the cell corners vanish, result-
ing in a vanishing heat flux independent of the magnetic orientation, e.g., av-
erage of 0T/0x|11/2; = (T4 — T-)/Ax and 0T/0x|it12541 = (I- — T4)/Ax
to calculate 8T/0x|i+1/27j+1/2 = (9T/0x|i+1/27j + 0T/8:17|2-+1/2,j+1 Vanishes, similarly
0T /0y|it1)2,54+1/2 = 0.

the normal term q,, = —nxb297T/0x and the transverse term ¢, = —nxb,b,0T/dy.
The asymmetric scheme uses a 2 point stencil to calculate the normal gradient and
a 6 point stencil to calculate the transverse gradient, as compared to the symmetric
method that uses a 6 point stencil for both (hence the name symmetric). This makes
the symmetric method less sensitive to the orientation of coordinate system with

respect to the field lines.

A problem with the symmetric method which is immediately apparent is its inabil-

ity to diffuse away a chess-board temperature pattern, as 9T /0x and 9T /0y, located
at the cell corners, vanish for this initial condition (see Figure 5.4). All heat fluxes
evaluated with the symmetric method vanish and the temperature pattern is station-
ary in time. This problem is alleviated if the perpendicular diffusion coefficient, x|,

is large enough to diffuse the temperature gradients at small scales.
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5.3 Negative temperature with centered differenc-
ing

In this section we present two simple test problems that demonstrate that negative
temperatures can arise because of centered differencing, for both asymmetric and

symmetric methods.

5.3.1 Asymmetric method

Consider a 2 x 2 grid with a hot zone (I' = 10) in the first quadrant and cold
temperature (7" = 0.1) in the rest, as shown in Figure 5.5. Magnetic field is uniform
over the box with b, = —b, = 1/4/2. Number density is a constant equal to unity.
Reflecting boundary conditions are used. Using the asymmetric scheme for heat fluxes
out of the grid point (¢, j) (the third quadrant) gives, ¢z i—1/2; = ¢y, j-1/2 = 0, and
Qoit1/2 = Qyij+12 = (9-9/8)nx/Az (where Az = Ay is assumed). Thus, heat
flows out of the grid point (i,7), already a temperature minimum. This gives rise
to temperature becoming negative. Figure 5.5 shows the temperature in the third
quadrant with time for different methods. The asymmetric method gives negative
temperature (7} ; < 0) for first few time steps, which eventually becomes positive. All
other methods (except the one based on entropy limiting) give positive temperatures
at all times for this problem. Methods based on limiting temperature gradients will
be discussed later. This test demonstrates that the asymmetric method may not be
suitable for cases with large temperature gradients because negative temperatures

result in numerical instabilities.

5.3.2 Symmetric method

The symmetric method does not give negative temperature with the test problem

of the previous section. In fact, the symmetric method gives the correct result for
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Figure 5.5: Test problem that shows the asymmetric method can give rise to negative
temperature. Magnetic field lines are along the diagonal with b, = —b, = 1/ V2.
With the asymmetric method, heat flows out of the grid located at southwest corner,
resulting in a negative temperature 7; ;. However, at late times the temperature
becomes positive again. The temperature at (i,7) is shown for different methods:
asymmetric (solid line), symmetric (dotted line), asymmetric and symmetric with
slope limiters (dashed line; both give the same result), and symmetric with entropy
limiting (dot dashed line).
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Figure 5.6: The result of the test problem for which the symmetric method gives
negative temperature at (i, 7). Magnetic field is along the z- direction, b, = 1 and
b, = 0. With this initial condition, all heat fluxes into (¢,j) should vanish and
the temperature 7; ; should not evolve. All methods except the symmetric method
(asymmetric, and slope and entropy limited methods) give a constant temperature
T;; = 0.1 at all times. But with the symmetric method, the temperature at (i, j)
becomes negative due to the heat flux out of the corner at (i —1/2,5 + 1/2). The
temperature T; ; eventually becomes equal to the initial value of 0.1.
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temperature with no numerical diffusion in the perpendicular direction (zero heat flux
out of the grid point (7, j), see Figure 5.5). Other methods resulted in a temperature
increase at (i,7) because of perpendicular numerical diffusion. Here we consider a
case where the symmetric method gives negative temperature.

As before, consider a 2 x 2 grid with a hot zone (7" = 10) in the first quadrant
and cold temperature (T = 0.1) in the rest; the only difference from the previous
test problem is that the magnetic field lines are along the - axis, b, = 1 and b, =0
(see Figure 5.6). Reflective boundary conditions are used, as before. Since there
is no temperature gradient along the field lines for the grid point (7,j), we do not
expect the temperature there to change. While all other methods give a stationary
temperature in time, the symmetric method results in a heat flux out of the grid
(1,7) through the corner at (i — 1/2,j+ 1/2). With the initial condition as shown in
Figure 5.6, the only non-vanishing symmetric heat flux out of (¢, j) is, ¢z i—1/2,j4+1/2 =
—(9.9/2)nyAxz. The only non-vanishing face-centered heat flux entering the box
through a face is ¢, ;-1/2; = —(9.9/4)nxAz < 0; i.e., heat flows out of (i, j) which is
already a temperature minimum. This results in the temperature becoming negative
at (i,7), although at late times it becomes equal to the initial temperature at (i, j).
This simple test shows that the symmetric method can give negative temperatures

(and associated numerical problems) in presence of large temperature gradients.

5.4 Slope limited fluxes

The heat flux ¢, is composed of two terms, the normal q,, = —nxb29T/dx term, and
the transverse g, = —nxb;b,07/0y term. For the asymmetric method, the discrete
form of the term ¢, = —nxb20T/0x is of the same sign as the z- component of
isotropic heat flux (—nx07'/0x), and hence it guarantees that heat flows from higher

to lower temperatures. However, ¢,, = —nxb,b,01/0y can have an arbitrary sign,
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and can give rise to heat flowing in the “wrong” direction. We use slope limiters,
analogous to those used for linear reconstruction of variables in numerical simulation
of hyperbolic systems [196, 116], to “limit” the transverse terms. Both asymmet-
ric and symmetric methods can be modified with slope limiters. The slope limited
heat fluxes ensure that temperature extrema are not accentuated. Thus, unlike the
symmetric and asymmetric methods, slope limited methods can never give negative

temperatures.

5.4.1 Limiting the asymmetric method

Since the normal heat flux term, ¢.,, is naturally located at the face, no interpolation
for 0T'/Ox is required for its evaluation. However, an interpolation at the z- face

is required to evaluate 07'/0y used in g, (the term with overlines in Eq. 5.5).

The arithmetic average used in Eq. 5.7 for 97'/0y to calculate ¢, was found to
result in heat flowing from lower to higher temperatures (see Figure 5.5). To remedy
this problem we have used slope limiters to interpolate temperature gradients in the
transverse heat fluxes.

Slope limiters are widely used in numerical simulations of hyperbolic equations
(e.g., computational gas dynamics; see [196, 116]). Given the initial values for vari-
ables at grid centers, slope limiters (e.g., minmod, van Leer, and Monotonized Central
(MCQ)) are used to calculate the slopes of conservative piecewise linear reconstructions
in each grid cell. Limiters use the variable values in the nearest grid cells to come up
with slopes which ensure that no new extrema are created for conserved variables, a
property of hyperbolic equations. We use slope limiters to interpolate temperature
gradients in transverse heat flux terms. Analogous to hyperbolic problems where lim-
iters prevent new unphysical extrema, limiters prevent amplification of temperature
extrema; this may result in negative temperatures.

The slope limited asymmetric heat flux in the z- direction is still given by Eq. 5.5,
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with the same 07'/0x as in the asymmetric method, but a slope limited interpolation
for the transverse temperature gradient, 07'/0y is needed,

i,j+1/2] z+1,]+1/2] }
(5.

where L is a slope limiter like minmod, van Leer, or Monotonized Central (MC)

or
Oy

oT
ij—1/2 'y

or
Ay

or

7 —LlL
Ay i+1/2,5 {

it1,5—1/2 89
17)

limiter [116]; e.g., the van Leer limiter is

2ab
L(a,b) = aib if ab > 0,

= 0 otherwise. (5.18)

Slope limiters weights the interpolation towards the argument smallest in magnitude,
and returns a zero if the two arguments are of opposite signs. An analogous expression
for the transverse temperature gradient at the y- face, m, is used to evaluate
the heat flux ¢,. Averaging similar to the asymmetric method is used for all other

interpolations (Egs. 5.6 and 5.8).

5.4.2 Limiting the symmetric method

In the symmetric method, primary heat fluxes in both directions are located at the
cell corners (see Eq. 5.9). Temperature gradients in both directions have to be inter-

polated at the corners. Thus, to ensure that temperature extrema are not amplified

with the symmetric method, both 07'/0z and 9T /0y need to be limited.

The face-centered ¢y 11/2,; is calculated by averaging g, from the adjacent cor-
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ners, which are given by the following slope-limited expressions:

— Jor T
N __
- e | 9T or 5.19
Qow,i+1/2,j+1/2 R O |iy1ya; 0T |1y o | o1
_ Jor oT _
5 __
| | _ e | 9L el 5.20
Qxeit1/25-1/2 AT 0t |iy1yag 0% lisapagoa] o

where S and N superscripts indicate the south-biased corner heat flux or the north-
biased heat flux. The face centered heat flux used in Eq. 5.318 quqiy1/2,; = (qﬁ7i+1/27j+1/2+
qu +1/2,j—1/2)/2; the interpolated quantities (indicated with an overline) are the same
as in Eq. 5.9. The limiter L2, which is somewhat different from standard slope lim-

iters, is defined as

L2(a,b) = (a+0b)/2, if min(aa,a/a) < (a+b)/2 < max(aa,a/a),
= min(aa,a/a), if (a +b)/2 < min(aa, a/a),

= max(aa,a/a), if (a +b)/2 > max(aa,a/a), (5.21)

where 0 < a < 1 is a parameter; this reduces to a simple averaging if the temperature
is smooth while restricting the interpolated temperature (07/0z) to not differ too
much from 97/0x|;11/2; (and be of the same sign). We choose o = 3/4; results are
not very sensitive to the exact value of . The L2 limiter is not symmetric with

respect to its arguments (and thus the definition of ¢

vri+1/2,j+1/2 18 slightly different

than the definition of qg;’iﬂ/z’jﬂp). It ensures that gusi41/2,j+1/2 is of the same sign
as —0T/0x|i41)2,5; i.e., the interpolated normal heat flux flows from higher to lower
temperatures. If we use a standard slope limiter (e.g., minmod, van Leer, or MC) in
Egs. 5.19 and 5.20, for the chessboard pattern shown in Figure 5.4, all heat fluxes

vanish as with the symmetric method. However, the L2 limiter gives,

o OT
Qoa,i+1/2,j+1/2 = Qua,it1/2,j—1/2 = —NX0z « % ;
T lit1/2,5
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a heat flux from higher to lower temperatures which can diffuse the chessboard pat-
tern.

The transverse temperature gradient is limited in a way similar to the asymmetric
method. The temperature gradient 8T7/8y to be used in Eq. 5.9 is given by

ar
y

or
y

or
7ay

i+1/2,j+1/2 i+1,j+1/2

: (5.22)
i,j+1/2

With Guyit1/2, = L(Quy,it1/2,54+1/25 Qoy,it1/2,j—1/2), Where L is a standard slope limiter.

5.5 Limiting using the entropy-like source func-
tion

If the entropy-like source function, which we define as §* = —q - VT (see Appendix
E to see how this is different from the entropy function), is positive at all spatial
locations, heat is guaranteed to flow from higher to lower temperatures. For the
symmetric method, $* evaluated at the cell corners is positive definite, but need not
be positive definite if evaluated at the cell faces, and thus allows the heat to flow across
faces from lower to higher temperatures. This can cause temperature to decrease at
a minimum; temperature can also become negative if temperature gradients are large
(see Figure 5.6). Thus, $* > 0 satisfied at all corners on the grid is not sufficient for
the heat to flow from higher to lower temperatures. We use the following entropy-like

condition, applied at all face-pairs, to limit the transverse heat flux terms (g, and

Qyz)

o oT oT
S = —Qzit+1/2,5 a_ — Qy,i,5+1/2 a— > 0. (523)
T liv1/2,5 i5+1/2
The limiter L2 is used to calculate the normal gradients ¢,, and g,, at the faces, as
in the slope limited symmetric method. The use of L2 ensures that —qy,yi41/2,;,07/0%|i41/2,; >

0, and only the transverse terms ¢,, and g,, need to be reduced to satisfy Eq. 5.23.
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That is, if on evaluating $§* the entropy-like condition (Eq. 5.23) is violated, the
transverse terms are reduced to make $* vanish. The attractive feature of the entropy
limited symmetric method is that it reduces to the symmetric method (least diffusive
of all the methods; see Figure 5.9) when Eq. 5.23 is satisfied, and the limiting of
transverse terms may help with the amplification of temperatures at extrema.

The problem with entropy limiting is that the temperature extrema can still be am-
plified (see Figures 5.5 and 5.8). For example, when 07 /0x|i11/2; = 0T /0y|i j+1/2 =
0, Eq. 5.23 is satisfied for arbitrary heat fluxes g, ;+1/2; and ¢, ; j+1/2. In such a case,
transverse heat fluxes ¢,, and ¢, can cause heat to flow across the zero temperature
gradient and result in a new temperature extremum, which may even be a nega-
tive. However, this unphysical behavior can only occur for one time step, after which
VT # 0 and Eq. 5.23 becomes a useful limit again. The result is that the overshoots
are not as pronounced as in the asymmetric and symmetric methods, as shown in
Figures 5.7 and 5.8. With entropy limiting, unlike the symmetric and asymmetric
methods, the spurious temperature oscillations (reminiscent of unphysical oscillations
near discontinuities in hyperbolic systems) are damped (see Figure 5.8). Although
temperature minimum can be accentuated by the entropy limited method, early on
one can choose sufficiently small time steps to ensure that temperature does not be-
come negative; this is equivalent to saying that entropy limited method will not give
negative temperatures at late times (see Figure 5.8 and Tables 5.1-5.4). This trick will
not work for the centered symmetric and asymmetric methods where temperatures
can be negative even at late times (see Figure 5.8).

To guarantee that temperature extrema are not amplified, in addition to entropy
limiting at all points, one should also use slope limiting of transverse temperature
gradients at extrema. This results in a method that does not amplify the extrema,
but is more diffusive compared to just entropy limiting (see Figure 5.9). Because of

simplicity of slope limited methods and their desirable mathematical properties (dis-
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cussed in the next section), they are preferred over the cumbersome entropy limited

methods.

5.6 Mathematical properties

In this section we prove that the slope limited fluxes do not amplify the temperature
extrema. Also discussed are global and local properties related to the entropy-like

condition, $* = —q - VT > 0.

5.6.1 Behavior at temperature extrema

Slope limiting of both asymmetric and symmetric methods guarantees that the tem-
perature extrema are not amplified further, i.e., the maximum temperature does not
increase and the minimum does not decrease. This ensures that the temperature is
always positive and numerical problems because of imaginary sound speed do not
arise. The normal heat flux in the asymmetric method (= —mxb297T/0x) and the L2
limited normal heat flux term in the symmetric method (Egs. 5.19 and 5.20) allows
the heat to flow only from higher to lower temperatures. Thus, the terms responsible
for unphysical behavior at temperature extrema are the transverse heat fluxes ¢, and
qye- Slope limiters ensure that the transverse heat terms vanish at extrema and heat
flows down the temperature gradient at those grid points.

The operator L(L(a,b), L(c,d)), where L is a slope limiter like minmod, van Leer,
or MC, is symmetric with respect to all its arguments, and hence can be written
as L(a,b,c,d). For the slope limiters considered here (minmod, van Leer, and MC),
L(a,b,c,d) vanishes unless all four arguments a, b, ¢, d have the same sign.

At a local temperature extremum (say at (i,7)), the x- (and y-) face-centered
slopes 0T /0yl j+1/2 and 0T /0y|; j—1/2 (and OT/Ox|it1/2,; and 0T /0x|;—1/2;) are of

opposite signs or at least one of them is zero. This ensures that the slope lim-
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ited transverse temperature gradients (07'/0y and 01/0x) vanish (from Egs. 5.17
and 5.22). The heat fluxes become ¢, ;41/2; = —WE23T/595|&1/2J and qy; 112 =
—Wb_yzaT/ Oylij+1/2 at the temperature extrema, which are always down the tem-
perature gradient. This ensures that temperature never becomes negative, unlike the

methods based on centered differencing.

5.6.2 The entropy-like condition, s* = —q-V1T >0

If the number density, n, remains constant in time, then multiplying Eq. 5.1 with T’

and integrating over all space gives

ﬁ%/nTde = —/TV~qu = /q-VTdV: —/nx|V”T|2dV <0,
(5.24)
assuming that the surface contributions vanish. This analytic constraint implies that
temperature fluctuations cannot increase in time (on an average).

Giinter et al. [76] have shown that the symmetric method is self-adjoint and
satisfies the entropy-like condition, Eq. 5.24. The local entropy-like source function
§* = —q - VT evaluated at the corner (i +1/2,j 4 1/2) for the symmetric method is

or or

(‘;;-:_1/2’]-_'_1/2 = _qx,i+1/2,j+1/2 8_ - Qy7i+1/2,j+1/2 8_ . (525)
i+1/2,j+1/2 Y livr/2,5+1/2

Using the form for symmetric heat fluxes (Eq. 5.9), the entropy-like function becomes,

—2 0T —20T — 0T oT
s = nxb, — +nxb, — +2nxb, b,— —,
S nx o7 + nX0y oy + 2nx Y O 2y
- e 2
—0T —0T
= nx |bp— +b,—| >0. 2
nx{ 8:L’+yy} >0 (5.26)

Thus, q - VT < 0, and integration over the whole space implies Eq. 5.24. Although

the entropy-like condition is satisfied by the symmetric method at the corners (both
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locally and globally), this condition is not sufficient to guarantee local positivity of
temperature at cell centers, as we demonstrate in Subsection 5.3.2. Also notice that
the modification of the symmetric method to satisfy entropy-like condition at face
pairs (see Section 5.5) does not cure the problem of negative temperature. Thus,
a method which satisfy the entropy-like condition ($* = —q-VT > 0) does not
necessarily satisfy the condition that temperature extrema should not be amplified.

With an appropriate interpolation, the asymmetric method and the slope limited
asymmetric methods can be shown to satisfy the global entropy-like condition, S* =
— [q-VTdV/V > 0. Consider

oT
+ Qy,ij+1/2 Em

G 1 [ oT

g NmNy Zj Qm,i—l—l/lj %

, (5.27)
Y i,j+1/2]

where N, and N, are the number of grid points in each direction. Substituting the
oT

2 2
+ [ mx0?
). . (Xy8y>”
i+1/2,5 i,j+1/2

N b oT oT
nxb,b, — —
X Y O i,j+1/2 dy

i+1/2,5

form of asymmetric heat fluxes,

. 1
S* — —b2
) (nx :

+ (n bba—T or
X ! oy i+1/2,5 Ox

where overlines represent appropriate interpolations. We define

i+1/2,5 i,j+1/2

r@%)

— oT
G:c,i-i-l/lj = (nX)i+1/2,jbx,i+l/2,j a— ) (5.29)
T liv1/2,5
— oT
Gyij+je = V(nX)i,j+1/Qby,i,j+1/2 Em ) (5.30)
ij+1/2
— oT
Gyirijzg = Vnxby - : (5.31)
Y liv1/2,5
— oT
Gm,i,j+1/2 = mbx a— . (532)
T lij+1/2
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In terms of G’s, Eq. 5.28 can be written as

S =5 S (G2 ii1yo; + G jirys + Gair12Gyisiyng + Gyijr12Gyijea] -
Y
(5.33)

A lower bound on S* is obtained by assuming the cross terms to be negative, i.e.,

. 1 _ _
S 2 v > G210+ Grijirys = |Goin/2iGyisijog| = [Gyiger2Gyijais]] -
ziVy

,J

(5.34)
Now define G ;+1/2; and G, j+1/2 as follows (the following interpolation is necessary

for the proof to hold):

ay,i—i—l/2,j = L(Gy,i,j+1/27 Gy7i7j—1/27 Gy,i+l,j+1/27 Gy,i+l,j—1/2)7 (535>

Q)

zij+l/2 = L(Gx,z'+1/2,j7 Geiz1/2.5) Giv1/1,5+15 Gy,i—l/2,j+1)7 (5.36)

where L is an arithmetic average (as in centered asymmetric method) or a slope limiter
(e.g., minmod, van Leer, or MC) which satisfy the property that |L(a,b,c,d)| <
(la| + |b] + |c| + |d|)/4, to put a lower bound on S*. Thus,

g 1 1
S N G+ Chisiye— = |Gaivr/2iGyigiye]
N.N, & 1

v

+ }Gx,i+1/2,ij,i,j—1/2‘ + ‘Gx,i+1/2,ij,i+1,j+1/2} + ‘Gm,i+1/2,ij,i+1,j—1/2‘
+ }Gy,i,j+1/2Gw,i+1/2,j‘ + ‘Gy,i,j+1/2Gz,i—1/2,j} + ‘Gy,i,j+1/2Gz,i+1/2,j+1}

+ }Gy,i,j+1/2Gx,i—1/2,j+1 H - (5.37)
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Shifting the dummy indices and combining various terms give,

- 1 1
ST = Z Gi,i+1/2,j + Gz,i,j+1/2 5 HGm,Hl/?,ij,i,jH/?‘
NN, > 2

+ | Guit1y25Gyigerje| T |Gais12Gyivrjarye| + |Grit1/2;Gyitri-is|]

1

- AN, N, ; [(G:c,i-i-l/lj — Gy,i7j+l/2)2 + (G%Hl/;j — Gy,i,j—1/2)2

2 2
+ (Gx,i+1/2,j — Gy,i+l,j+1/2) + (Gx,z'+1/2,j — Gy,z’+1,j—1/2) } > 0. (5.38)

Thus, an appropriate interpolation (for the asymmetric and the slope limited
asymmetric methods) can result in a scheme that satisfies the global entropy-like
condition just as it does for the non-limited symmetric method. A variation of this
proof can be used to prove the global true entropy condition S > 0 by multiplying
Eq. 5.1 with 1/7 instead of T" (see Appendix E), although the form of limiting would
need to be modified slightly. It is useful to know that introducing a limiter to the
asymmetric method does not break the global entropy-like condition, if the right
combination of quantities is limited in the interpolation. However, it is important
to remember that the entropy-like (or entropy) condition does not guarantee a local
heat flow in the correct direction, and hence temperature can still become negative.
Thus, to get a robust method for anisotropic diffusion, it is necessary that heat flows

in the correct direction at temperature extrema.

5.7 Further tests

We use test problems discussed in [148] and [181] to compare different methods. The
first test problem (taken from [148]) initializes a hot patch in circular field lines; ideally
the hot patch should diffuse only along the field lines, but perpendicular numerical
diffusion can cause some cross-field diffusion. There is a discontinuity in the initial

temperature of the hot patch and the background temperature. If the temperature
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Table 5.1: Diffusion in circular field lines: 50 x 50 grid

Method L1 error L2 error Loo error  Tiax Twin  XLnum/X]|
asymmetric 0.0324  0.0459 0.0995  10.0926 9.9744 0.0077
asymmetric minmod 0.0471 0.0627 0.1195  10.0410 10 0.0486
asymmetric MC 0.0358 0.509 0.1051  10.0708 10 0.0127
asymmetric van Leer 0.0426  0.0574 0.1194  10.0519 10 0.0238
symmetric 0.0114  0.0252 0.1425  10.2190 9.9544  0.00028
symmetric entropy 0.03332  0.0477 0.0997  10.0754 10 0.0088
symmetric entropy extrema  0.0341 0.0487 0.1010  10.0751 10 0.0101
symmetric minmod 0.0475 0.0629 0.1322  10.0406 10 0.0490
symmetric MC 0.0289  0.0453 0.0872  10.0888 10 0.0072
symmetric van Leer 0.0438 0.0585 0.1228  10.0519 10 0.0238

Table 5.2: Diffusion in circular field lines: 100 x 100 grid

Method L1 error L2 error Loo error  Tiax T XLnum/ X||
asymmetric 0.0256  0.0372 0.0962  10.1240 9.9859 0.0030
asymmetric minmod 0.0468 0.0616 0.1267  10.0439 10 0.0306
asymmetric MC 0.0261 0.0405 0.0907  10.1029 10 0.0040
asymmetric van Leer 0.0358 0.0502 0.1002  10.0741 10 0.0971
symmetric 0.0079  0.0173 0.1206  10.2276 9.9499  0.000041
symmetric entropy 0.0285 0.0420 0.0881 10.0961 10 0.0042
symmetric entropy extrema  0.0291 0.0425 0.0933  10.0941 10 0.0041
symmetric minmod 0.0471 0.0618 0.1275  10.0433 10 0.0305
symmetric MC 0.0123  0.0252 0.1133  10.1406 10 0.00084
symmetric van Leer 0.0374 0.0514 0.1038  10.0697 10 0.0104

jump is large temperature can become negative on using centered differencing (asym-
metric and symmetric methods). The second test problem includes a source term and
an explicit perpendicular perpendicular diffusion coefficient (). The steady state

temperature gives a measure of the perpendicular numerical diffusion, X1 num-

5.7.1 Circular diffusion of hot patch

The circular diffusion test problem was proposed in [148]. A hot patch surrounded

by a cooler background is initialized in circular field lines; the temperature drops
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Figure 5.7: The temperature at t = 200 for different methods initialized with the ring
diffusion problem on a 400 x 400 grid. Shown from left to right and top to bottom
are the temperatures for: asymmetric, symmetric, asymmetric-MC, symmetric-MC,
entropy limited symmetric, and minmod methods. Both the asymmetric and sym-
metric methods give temperatures below 10 (the initial minimum temperature). The
result with a minmod limiter is very diffusive. The slope limited symmetric method
is less diffusive than the slope limited asymmetric method. Entropy limited method
does not show non-monotonic behavior at late times, but is diffusive compared to the
better slope limited methods.



Table 5.3: Diffusion in circular field lines: 200 x 200 grid

Method L1 error L2 error Loo error  Tiax Twin  XLnum/X]|
asymmetric 0.0165 0.0281 0.0949  10.1565 9.9878 0.0012
asymmetric minmod 0.0441 0.0585 0.1214 10.0511 10 0.0191
asymmetric MC 0.0161 0.0289 0.0930  10.1397 10 0.0015
asymmetric van Leer 0.0264  0.0407 0.0928  10.1006 10 0.0035

symmetric 0.0052 0.0132 0.1125  10.2216 9.9509 1.90 x 10™°
symmetric entropy 0.0256 0.0385 0.0959  10.1103 10 0.0032
symmetric entropy extrema  0.0260 0.0391 0.0954  10.1074 10 0.0032
symmetric minmod 0.0444 0.0588 0.1219  10.0503 10 0.0192
symmetric MC 0.0053 0.0160 0.0895  10.1676 10 0.0002
symmetric van Leer 0.0281 0.0426 0.0901  10.0952 10 0.0038

Table 5.4: Diffusion in circular field lines: 400 x 400 grid

Method L1 error L2 error Loo error  Tiax T win X Lnum/ X||
asymmetric 0.0118  0.0234 0.0866  10.1810 9.9898 5.9 x 10~*
asymmetric minmod 0.0399  0.0539 0.1120  10.0629 10 0.0115
asymmetric MC 0.0102  0.0230 0.0894  10.1708 10 6.8 x 1074
asymmetric van Leer 0.0167 0.0290 0.1000  10.1321 10 0.0013
symmetric 0.0033  0.0104 0.1112  10.2196 9.9504 8.37 x 1076
symmetric entropy 0.0252  0.0384 0.0969  10.1144 10 0.0027
symmetric entropy extrema  0.0253 0.0383 0.0958  10.1135 10 0.0026
symmetric minmod 0.0401 0.0541 0.1124  10.0622 10 0.0116
symmetric MC 0.0032  0.0122 0.0896  10.1698 10 6.5 x 1075
symmetric van Leer 0.0182 0.0307 0.1026  10.1260 10 0.0013

discontinuously across the patch boundary. At late times, we expect the tempera-
ture to become uniform (and higher) in a ring along the magnetic field lines. The
computational domain is a [—1,1] x [—1, 1] cartesian box, with reflective boundary

conditions. The initial temperature distribution is given by

' 11 13
T = 12 if 0.5 <r < 0.7 and ETI‘<9<E7T,

= 10  otherwise, (5.39)
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where r = \/ﬁy2 and tanf = y/x. A set of circular field lines centered at the
origin is initialized. The parallel conduction coefficient x is chosen to be 0.01; there
is no explicit perpendicular diffusion. We evolve the anisotropic conduction equation
(5.3) till time = 200, using different methods that we have discussed. By this time we
expect the temperature to be almost uniform along the circular ring 0.5 < r < 0.7. In
steady state (at late times), energy conservation implies that the the ring temperature
should be 10.1667, while the temperature outside the ring should be maintained at
10.

Figure 5.7 shows the temperature distribution for different methods at time=200.
All methods result in a higher temperature in the annulus r € [0.5,0.7]. The slope
limited schemes show larger perpendicular diffusion (Tables 5.1-5.4 and Figure 5.10)
compared to the symmetric and asymmetric schemes. The perpendicular numerical
diffusion (X1 num) scales with the parallel diffusion coefficient x for all methods. How-
ever, for Sovinec’s test problem (discussed in the next subsection) where temperature
is always smooth, and an explicit x, is present, perpendicular numerical diffusion for
the symmetric method does not scale with x|

The minmod limiter is much more diffusive than van Leer and MC limiters. Both
symmetric and asymmetric methods give a minimum temperature below the initial
minimum of 10, even at late times (see Tables 5.1-5.4). At late times the symmetric
method gives a temperature profile full of non-monotonic oscillations (Figure 5.7).
Although, the slope limited fluxes are more diffusive than the symmetric and asym-
metric methods, they never show undershoots below 10. Although the entropy limited
symmetric method gives temperature undershoots at early times, the minimum tem-
perature is still 10 at late times (see Tables 5.1-5.4 and Figure 5.8). Entropy limiting
combined with a slope limiter at the extrema behaves similar to the slope limiter
based schemes.

Strictly speaking, a hot ring surrounded by a cold background is not a steady
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minimum temperature

10° 10° 10
time

Figure 5.8: The minimum temperature over the whole box for symmetric (dashed
line), asymmetric (solid line), and entropy limited symmetric (dot dashed line) meth-
ods in presence of circular field lines. Initially the temperature of the hot patch is
10 and the background is at 0.1. Both asymmetric and symmetric result in nega-
tive temperature, even at late times. The nonmonotonic behavior with the entropy
limited method is considerably less pronounced; the minimum temperature quickly
becomes equal to the initial minimum 0.1. The limited heat fluxes keep the minimum
at 0.1, as expected physically.
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solution for the ring diffusion problem. Temperature in the ring will diffuse in the
perpendicular direction (because of perpendicular numerical diffusion, although very
slowly) until the whole box is at a constant temperature. A rough estimate for time

averaged perpendicular numerical diffusion (X num) follows from Eq. 5.1,

J(Ty = T)dV

~ Jat (fveTav)’ (5.40)

<XJ_,num>

where the space integral is taken over the hot ring 0.5 < r < 0.7, and 7; and T’ are the
initial and final temperature distributions in the ring. Figure 5.10 plots the numerical
perpendicular diffusion (using Eq. 5.40) for the runs in Tables 5.1-5.4. The estimates
for perpendicular diffusion agree roughly with the more accurate calculations using
Sovinec’s test problem described in the next subsection (compare Figures 5.9 and
5.10). Table 5.6 lists the convergence of (X1 num) for the ring diffusion problem using
different methods; as with Sovinec’s test, the symmetric method is the least diffusive.

To study the very long time behavior of different methods (in particular to check
whether the symmetric and asymmetric methods give negative temperatures even at
very late times) we initialize the same problem with the hot patch at 10 and the
cooler background at 0.1. Figure 5.8 shows the minimum temperature with time for
the symmetric, asymmetric, and entropy limited symmetric methods; slope limited
methods give the correct result for the minimum temperature (Tp,;, = 0.1) at all
times. With a large temperature contrast, both symmetric and asymmetric methods
give negative values for the temperature minimum at all times. Such points where
temperature becomes negative, when coupled with MHD equations, can give numeri-
cal instability because of an imaginary sound speed. The minimum temperature with
the entropy limited symmetric method shows small undershoots at early times which
are damped quickly and the minimum temperature is equal to the initial minimum

(0.1) after time=1.
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5.7.2 Convergence studies: measuring X num

We have use the steady state test problem described in [181] to measure the perpen-
dicular numerical diffusion coefficient, x ;. The computational domain is a unit square
[—0.5,0.5] x [—0.5,0.5], with vanishing temperature at the boundaries. The source
term Q = 272 cos(mx) cos(my) that drives the lowest eigenmode of the temperature
distribution is added to the anisotropic diffusion equation, Eq. 5.1; the anisotropic
diffusion equation with a source term possesses a steady state solution. The equation
that we evolve is
Oe

a forward in time centered in space (FTCS) differencing is used to add the source
term.

The magnetic field is derived from the flux function of the form ¢ ~ cos(wz) cos(my);
this results in circular field lines centered at the origin. The temperature eigenmode
driven by the source function @) is constant along the field lines. The steady state
solution for the temperature is T'(x, y) = x| ' cos(mz) cos(my), independent of X|- The
perpendicular diffusion coefficient, y 1, is chosen to be unity, and 71(0,0) provides
a measure of total perpendicular diffusion, the sum of y, (the explicit perpendicular
diffusion) and X | num (the perpendicular numerical diffusion).

Figure 5.9 shows the perpendicular numerical diffusivity X1 um = |77(0,0) —
T::2(0,0)| for x;/x . = 10, 100 using different methods (where 77, (0,0) is the tem-
perature at the origin when x| = x. is used for the same resolution). Giinter et al.
[76] and Sovinec et al. [181] use X1 num = |T71(0,0) — 1| to measure perpendicular
numerical diffusion; this is not precise and exaggerates the error for the symmetric
method.

The perpendicular perpendicular diffusion (X num) for all methods except the

symmetric method increases linearly with x| /x .. This property has been emphasized
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Figure 5.9: A measure of perpendicular numerical diffusion X num = (T7(0,0) —
T 'so) for xj/x1. = 10 (top curve) and for y;/x. = 100 (bottom curve), using
different methods for heat conduction. The different schemes are: asymmetric (A),
asymmetric with minmod (V), asymmetric with MC (), asymmetric with van Leer
(*), symmetric (4), symmetric with entropy limiting (¢), symmetric with entropy
and extrema limiting (), symmetric with minmod (%), symmetric with MC (x), and
symmetric with van Leer limiter (<). The numerical diffusion scales with x for all
methods except the symmetric differencing [76]. The slope limited methods using the
van Leer and MC limiters show a second order convergence of the L1 error, like the
methods based on centered differencing. Limiting both symmetric and asymmetric
methods give similar results, but the desirable property of the symmetric method,

that the error is independent of x| /x., no longer holds.
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by [76] to motivate the use of symmetric differencing for fusion applications which
require the error (perpendicular numerical diffusion) to be small for y/x. ~ 10
Higher order finite elements, which maintain such high anisotropy, have also been
used for fusion applications [181].

The slope limited methods (with a reasonable resolution) are not suitable for
the applications which require xj/x1 > 10% this rules out the fusion applications
mentioned in [76, 181]. However, only the slope limited methods give physically ap-
propriate behavior at temperature extrema, thereby avoiding negative temperatures
in presence of sharp temperature gradients. The slope limited method with an MC
limiter appears to be the most accurate method which does not result in the ampli-

fication of temperature extrema.

Table 5.5: Asymptotic slopes for convergence of error X1 num = |T71(0,0) —T;.2(0,0)]

150

Method X)/x1L =10 xj/x. =100
asymmetric 1.802 1.770
asymmetric minmod 0.9674 0.9406
asymmetric MC 1.9185 1.9076
asymmetric van Leer 1.706 1.728
symmetric 1.726 1.762
symmetric entropy 2.407 2.966
symmetric entropy extrema 1.949 1.953
symmetric minmod 0.9155 0.8761
symmetric MC 1.896 1.9049
symmetric van Leer 1.6041 1.6440

The error (perpendicular numerical diffusion, X | jum = |T7(0,0) —7,,1(0,0)|) for
all methods, except the one which uses a minmod limiter, shows a second order con-
vergence (see Table 5.5). Figures 5.9 and 5.10 show that the perpendicular numerical
diffusivity with a van Leer (or an MC) slope limiter is ~ 1073 for ~ 100 grid points

in each direction. This anisotropy is more than sufficient to study qualitatively new

effects of anisotropic conduction on dilute astrophysical plasmas [16, 10, 148, 177].
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Figure 5.10: Convergence of X1 num/X| @s number of grid points is increased for
the ring diffusion problem. The numerical perpendicular diffusion, y |, is calculated
numerically, by measuring the heat diffusing out of the circular ring. The different
schemes are: asymmetric (A), asymmetric with minmod (V), asymmetric with MC
(0), asymmetric with van Leer (%), symmetric (+), symmetric with entropy limiting
(¢), symmetric with entropy and extrema limiting (>), symmetric with minmod (%),
symmetric with MC (x), and symmetric with van Leer limiter (<). The numerical
diffusion linearly scales with | for all methods, even with symmetric differencing for
this problem. The slope limited methods using the van Leer and MC limiters show a
second order convergence of L1 error, like the methods based on centered differences.
The slopes for asymptotic convergence are listed in Table 5.6.
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Table 5.6: Asymptotic slopes for convergence of x| num in the ring diffusion test

Method slope
asymmetric 1.066
asymmetric minmod 0.741
asymmetric MC 1.142
asymmetric van Leer 1.479
symmetric 1.181
symmetric entropy 0.220
symmetric entropy extrema (.282
symmetric minmod 0.735
symmetric MC 1.636
symmetric van Leer 1.587

Among the various limiters discussed, MC is the least diffusive, followed by the van

Leer limiter, and minmod is the most diffusive of all.

5.8 Conclusions

It is shown that simple centered differencing of anisotropic conduction can result in
negative temperatures in presence of large temperature gradients. We have presented
simple test problems where asymmetric and symmetric methods give rise to heat
flowing from lower to higher temperatures, leading to negative temperatures at some
grid points. Negative temperature results in numerical instabilities, as the sound
speed becomes imaginary. Numerical schemes based on slope limiters are proposed
to solve this problem.

The methods developed here will be useful in numerical studies of hot, dilute,
anisotropic astrophysical plasmas [148, 177], where large temperature gradients may
arise. Anisotropic conduction can play a crucial role in determining the global struc-
ture of hot, nonradiative accretion flows (e.g., [11, 177, 130]). Therefore, it will be
useful to extend ideal MHD codes used in previous global numerical studies (e.g.,

[188]) to include anisotropic conduction. Because of the huge temperature gradients
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that may occur in global disk simulations with a hot, dilute corona and a cold, dense
disk, slope limited methods, which guarantee the positivity of temperature, must be
used.

Although the slope and entropy limited methods in the present form are not suit-
able for fusion applications that require accurate resolution of perpendicular diffusion
for huge anisotropy (x|/x 1 ~ 10%), they are appropriate for astrophysical applications
with large temperature gradients. A relatively small anisotropy of thermal conduction
is sufficient to study the effects of anisotropic conduction. The primary advantage of
the limited methods is their robustness in presence of large temperature gradients.
Apart from the simulations of dilute astrophysical plasmas with large temperature
gradients (e.g., solar corona, magnetosphere, and magnetized collisionless shocks),
our methods may find a use in diverse fields where anisotropic diffusion is important,
e.g., image processing, biological transport, and geological systems.

Chapters 3 and 4 explored local (linear and nonlinear) properties of the MRI in the
collisionless regime, but global calculations are required to study the relative roles of
conduction, convection, and outflows, which determine the radial profile of different
quantities, e.g., density, temperature, and radiation. Anisotropic conduction (and
pressure) is crucial to understand the structure of hot, thick, collisionless RIAFs (see
Section 1.4), and the slope limited methods are the only option for robust nonlinear
simulations because large temperature gradients (e.g., the disk corona interface) arise

naturally in global disk simulations.
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Chapter 6

Conclusions

The main goal of the thesis was to study plasma kinetic processes operating in radia-
tively inefficient accretion flows (RIAFs) around compact objects, such as the super-
massive black hole in the Galactic center and other nearby galactic centers (see 1.4 for
details). Global MHD simulations of hot, thick accretion disks show that very little
of the gas initially accreted from the outer regions actually makes it to the last stable
orbit; most of the matter is lost as magnetized outflows [188, 84, 83, 95, 149, 155].
Although the reduction of the net mass accretion rate is part of the reason for the
low luminosity, it is required by most models that the electrons radiate much less
efficiently than the standard 10% efficiency for such low observed luminosities ([156],
see 1.4). Some models, e.g., ADAFs, ascribe the low luminosity to low electron tem-
perature compared to ions. To understand whether electrons can be maintained much
cooler than ions, one needs to understand the conversion of gravitational energy into
internal energy of electrons and ions.

We began by looking into the MRI in the collisionless regime and studied the tran-
sition from collisionless to collisional regimes as the collision frequency is increased
(see Chapter 3). We show the equivalence of the drift kinetic equation and its mo-

ments closed with a Landau fluid closure for parallel heat flux, in both collisional
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and collisionless regimes. Unlike MHD, where energy is dissipated (resistively and
viscously) only at small scales, the collisionless plasmas have damped modes at all
scales which can heat electrons and ions differently (see Figure 3.4). The linear stud-
ies were followed by 3-D local unstratified shearing box simulations of magnetized
collisionless plasmas, using the kinetic MHD (KMHD) formalism closed with a local
form of Landau fluid closure for parallel heat flux (see Chapter 4). Although, both
linear studies and nonlinear simulations were carried out in a one fluid plasma with
T; > T., we can roughly estimate the heating rate for both electrons and ions. It is
important to investigate what collisionless effects can do to the structure of RIAFs;
especially to consider anisotropic thermal conduction, since it has important implica-
tions for the convective stability of plasmas [10, 11]. While implementing anisotropic
conduction we discovered that the centered finite differencing of anisotropic conduc-
tion can give negative temperature in regions with large temperature gradients. To
tackle this problem we developed a method where the transverse temperature gradi-
ent is obtained, not by simple averaging, but by using slope limiters. The method

based on slope limiters guarantees the positivity of temperature (see Chapter 5).

6.1 Summary

To assess the importance of plasma kinetic effects in RIAFs we began with the study of
collisionless MRI in the linear regime. The effect of collisions was introduced through
a BGK collision operator. We use 3+1 Landau fluid closure for parallel thermal fluxes,
which is equivalent to a Padé approximation for the fully kinetic plasma response.
The Landau closure gives a good approximation to linear collisionless effects like
Landau/Barnes damping,.

We verify the equivalence of a fully kinetic analysis and the one based on Landau

closure by considering the modes of a magnetized Keplerian disk, in both high and
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low collisionality regimes. Heating in a collisionless disk can occur at all scales due
to Landau/Barnes damping of the fast and slow modes; whereas, in MHD resistive
and viscous heating at small scales is the only source of heating. Since collisionless
damping is a resonant phenomenon, it can heat electrons or ions preferentially (7}, >
T, is required by some RIAF models; see 1.4). The fastest growing MRI is twice
as fast in the collisionless regime as compared to MHD. More importantly, it occurs
at much larger length scales compared to MHD. Fast growth at large scales can in
principle result in a different nonlinear saturation (for magnetic energy and stress)
compared to MHD (though our nonlinear simulations to date find that in practice
the final nonlinear spectra are similar). The MRI transitions from the collisionless
to the Braginskii regime (when the mean free path becomes short compared to the
wavelength, v > Q4/f3), and then to the MHD regime (when the parallel viscous
damping becomes negligible, v = Q3), as the collision frequency is increased.

Balbus and Islam (see [12, 96]) have studied collisionless effects on the MRI by
adding Braginskii anisotropic stress to the MHD equations, and verified our results;
they emphasize the importance of anisotropic stress and call it the “magnetoviscous”
instability because the instability occurs at long wavelengths even for an arbitrarily
small field strength.

The linear studies were followed by local shearing box simulations of magnetized
collisionless disks. The ZEUS MHD code was modified to include the kinetic MHD
terms: anisotropic pressure in the equation of motion, and equations evolving pj
and p; closed by a local Landau fluid closure for heat flux along the field lines.
Adiabatic invariant (u = p, /B) is conserved for collisionless plasmas at length scales
much larger than the Larmor radius and time scales much larger than the gyroperiod.
Pressure anisotropy (p. > pj) is created naturally as magnetic field is amplified by the
MRI. Small scale instabilities—mirrror, ion-cyclotron, and firehose—are excited even

at at small pressure anisotropies (Ap/p 2 few/3). Although, mirror and firehose
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instabilites are correctly captured in Landau MHD, we have to include a subgrid
model for pressure isotropization due to these and ion-cyclotron instabilities because
at large pressure anisotropies the fastest growing instabilities occur at the gyroradius
scale and violate adiabatic invariance.

The result of pressure anisotropy is that there is a qualitatively new mechanism
to transport angular momentum, the anisotropic stress. Apart from appearing in the
equation of motion, anisotropic stress also appears in the internal energy equation,
resulting in heating. The anisotropic stress is as important as the Maxwell stress,
and depends only weakly on kj (the parameter in the local Landau heat fluxes) and
the pitch angle scattering model.

Pitch angle scattering due to microinstabilities limit the pressure anisotropy and
results in MHD-like behavior—the reason MHD often provides a good approximation
for large scale dynamics of astrophysical systems. What MHD does not tell us is how
the energy released from accretion is dissipated—whether it goes into electrons or
ions? A fully kinetic simulation with huge resolution can address the issue of plasma
heating; but insights can be gained from fluid treatments like kinetic MHD (e.g.,
anisotropic stress can heat both electrons and ions).

The kinetic MHD simulations also show that the kinetic and magnetic energies are
peaked at large scales (as in MHD). The simulations with By = B, initially, confirm
that the linear growth rate in the kinetic regime is twice faster than in MHD; but
the nonlinear saturation is not very different in the two regimes. In fact, somewhat
counter-intuitively, the saturated magnetic energy for B, = B, simulations is smaller
compared to simulations with only a vertical field with the same 3. Anisotropic stress
can be larger than the Maxwell stress for § > a few 100. To sum up, the nonlinear
saturation of the MRI is quite similar for MHD and kinetic regimes.

Along with the local studies, it is crucial to understand the global structure of hot

collisionless accretion flows. Global MHD simulations have shown that very little of
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the mass initially accreted from the outer regions actually accreted on to the black
hole; most of it is lost in outflows. Anisotropic thermal conduction can be crucial
for the structure of hot collisionless accretion flows; collisionless plasmas with long
mean free path can transport heat very efficiently along the field lines. When we
used finite differencing to implement anisotropic conduction in a global simulation,
we discovered that the temperature became negative at the torus-corona interface.
This led us to investigate numerical algorithms for anisotropic thermal conduction
in presence of large temperature gradients. We devised simple test problems that
demonstrated that existing algorithms (both symmetric and asymmetric differencing)
can result in heat flux out of a cold region, causing temperature to become negative
in regions with high temperature gradient. This problem was solved by using slope
limiters to obtain the transverse temperature gradient, instead of using a simple
arithmetic average. The limiter-based methods are slightly more diffusive across
field lines than the asymmetric method, but still show second order convergence.
Although the symmetric method has very small numerical diffusion, it gives rise
to high frequency non-monotonic temperature fluctuations with large temperature

gradients.

6.2 Future directions

There are several directions for future work, for both local and global studies. Till
now we have only done single fluid simulations, assuming the electrons to be cold.
We can extended these simulations to include electrons to study comparative heating
of electrons and ions. The original ZEUS code did not conserve energy (up to 90%
of energy released from accretion was lost numerically), but energy conservation can
be restored to a large extent by adding the energy lost while updating velocities

and magnetic fields into heating of the plasma [194], or by switching to codes using
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conservative algorithms (such as the recently developed ATHENA code [65]). In the
absence of explicit resistivity and viscosity, the sources in the internal energy equation
are: energy lost in updating magnetic fields (mimics magnetic dissipation), energy
lost when updating velocity (represents viscous losses), the —pV - 'V heating, and the
work done by anisotropic stress.

The energy-conserving one fluid simulations show that the work done by anisotropic
stress is comparable to (or even larger than) the energy lost in magnetic field or
velocity update; this means that the physical anisotropic heating is not negligible
compared to resistive or viscous heating. This has important implications for local
two-fluid simulations. The electron pressure will also be anisotropic (7. > Tj.)
because of adiabatic invariance, and the anisotropy will be limited by pitch angle
scattering due to electron whistler instability with Ap/p ~ (a few)/3 (see [99, 68]).
This means that the heating rate due to anisotropic stress, (1/e)de/dt, is comparable
for electrons and ions, and is comparable to resistive or viscous heating. Thus, local
two-fluid simulations which conserve energy can shed some light on electron/ion heat-
ing and whether 7,,/T, > 1 is possible. This approach where both electrons and ions
are heated because of the energy released from accretion is different from an approach
where one looks for collisionless heat transport from hot ions to cold electrons (e.g.,
[24]).

Another area of progress is to implement more accurate non-local closures for
thermal conduction in nonlinear simulations (see Chapter 2); till now we have used a
crude, local approximation with a parameter k; that exaggerates damping for scales
smaller than 27 /k, and reduces damping for larger scales. A local approximation may
be fine if pitch-angle scattering due to microinstabilities reduces the effective mean free
path to be comparable to the fastest growing MRI mode, which reduces the sensitivity
to the parameter k. However, pitch angle scattering due to microinstabilities is not

uniform. This intermittency may lead to a larger effective mean free path than simple
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estimates at first suggest. It is important to understand the role of intermittent
scattering structures in imposing MHD-like dynamics in collisionless plasmas.

It’s important to realize that astrophysical plasmas are very different from fusion
plasmas; magnetic fields are strong in fusion devices, with only small perturbation
from the equilibrium condition, but in astrophysical plasmas with subthermal fields,
strong shear flows can mix the fields and magnetic fields can be chaotic. Chaotic
fields reduce thermal conduction as the effective mean free path is reduced to the
field correlation length [43], this may mean that results do not sensitively depend on
thermal conduction.

Another approach, which is computationally more challenging but feasible for
some problems; is to evolve the drift kinetic equation (DKE, Eq. 2.7) to evolve the
distribution function in a 5-D phase space and to use its moments for p; and p; to
close the kinetic MHD moment hierarchy. Many hydrodynamic codes are based on
Riemann solvers; given a discontinuity at grid boundaries, Riemann solvers divide the
discontinuity into wave families of the system and give the evolution of the variables
due to flux through the boundaries [116]. The number of modes of the drift kinetic
equation is huge, and it is impossible to solve the Riemann problem exactly. One
approach to solve hyperbolic equations that does not require the solution of Riemann
problems is based on central methods (alternatively, they can be related to a simple,
approximate Riemann solver; see [143, 112]); central methods have also been applied
to MHD simulations [9]. The DKE simulations do not require the closure approx-
imation, but like in KMHD with Landau closures, subgrid models for pitch angle
scattering to microinstabilities will be required. It is also possible to carry out full
Vlasov or particle-in-cell (PIC) simulations where a subgrid model for microinstabil-
ities is not required, but for such simulations to be applicable to RIAFs they will
need to resolve both the large MRI scale and the Larmor radius scale (8 orders of

magnitudes smaller than the disk height scale).
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Recent global MHD simulations were responsible for understanding that only a
small fraction of gas accreted in outer region actually make it to the black hole, most
of it is lost in outflows. A small accretion rate is one reason for small radiative lu-
minosities of RIAFs. An important direction for future research is to include kinetic
MHD effects like anisotropic conduction in global simulations. Since plasma in RIAFs
is hot and collisionless, anisotropic thermal conduction is rapid. This can be impor-
tant in determining the structure of RIAFs. The structure of the self-similar solution
for a RIAF changes dramatically if a saturated form of thermal conduction (due to
free streaming of particles) is included [130]. Another reason that anisotropic con-
duction can be important is because the convective stability criterion for anisotropic
plasmas is that temperature decreases outwards, d7'/dr < 0, instead of the usual
Schwarzschild condition of entropy increasing outwards, ds/dr < 0 [16, 10]. The
effect of thermal conduction is subtle because the MRI may generate chaotic fields
and suppress thermal conduction and impose more MHD-like behavior, instead of
giving a state which is stable to the magnetothermal instability. Thus, it will impor-
tant to know whether anisotropic thermal conduction will be a small effect due to its

suppression because of MHD turbulence, or it will alter the structure of RIAFs.
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Appendix A

Accretion models

A.1 Efficiency of black hole accretion

Black holes are different from neutron stars and white dwarfs as they do not have
a surface. Although there is no surface, black holes are characterized by an event
horizon, a region from which nothing, not even light, can escape. For a non-rotating
(Schwarzschild) black hole, Newtonian arguments (speed of light = escape velocity at
the event horizon) can be used to calculate the Schwarzschild radius, r, = 2G M, /c?,
radius of the event horizon for a black hole of mass M,.

To calculate accretion efficiency one needs to know the form of the effective po-
tential. In Newtonian theory, the energy equation for a mass with specific angular

momentum [ is

1 [(dr\?
B <E) + Pt (1) = E, (A1)
where E = constant is the total energy per mass, and ®.g(r) = ?/2r*> — GM,/r
is the effective potential. Newtonian approximation is not valid for a black hole,
and a full general relativistic treatment is required. However, Paczynski and Wiita

[145] introduced a pseudo-Newtonian potential for a non-rotating black hole, ®pw =

GM.,/(r — ry), which gives a good approximation for the effective potential of a
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Figure A.1: Comparison of the Newtonian and Paczynski-Wiita potential for [ =
4G M, /¢, corresponding to a marginally bound orbit in general relativity. Notice that
® — 0asr— oo.

non-rotating black hole. Using the Paczynski-Wiita potential, the energy equation

becomes

1(dr)2 2 GM,

il - _ = F A2
2 \ dt (A-2)

2 _
2r r—ry

The Paczynski-Wiita potential is useful because the effective potential, as in the
case of general relativistic potential, has a minimum and a maximum if the specific
angular momentum [ > 2v/3GM, /c [172]. In comparison, the Newtonian effective
potential has a single minimum (corresponding to the circular Keplerian orbit) for
any non-zero angular momentum. The general relativistic consequences are: 1) for
any given angular momentum, particles with sufficiently high energy can overcome
the centrifugal barrier and fall in, and 2) particles with low (not zero as in the New-
tonian case) angular momentum are captured by the hole [61]. The Paczynski-Wiita
potential obtains the correct general relativistic result for marginally stable (corre-

sponding to r = 3r, and | = 2v/3G M, /c, within which all orbits are unstable), and
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the marginally bound orbit (with r = 2r, and [ = 4GM, /c, particles with £ > 0 can
fall directly on to the hole for specific angular momentum smaller than this). Figure
A.1 shows the Newtonian, and the Paczynski-Wiita potential for a marginally bound
orbit, with | = 4G M, /c.

The presence of a last stable orbit has important consequences for accretion effi-
ciency; beyond this, matter plunges in the black hole with no time to radiate. Thus,
for a Schwarzschild black hole, matter radiates half the released gravitational energy
(and retains the other half as the kinetic energy) till the last stable orbit (3r,). This
gives a radiative efficiency of n = (GM,/6r,)/c* = 1/12. The relativistic relativistic
result of 6% is not too far off. For a rotating Kerr hole the last stable orbit moves
further in, resulting in a larger efficiency; a maximally rotating black hole has an

efficiency of 42.3% (see [133] for detailed introduction to spinning black holes).

A.2 Bondi accretion

Bondi accretion [35], a model for steady, spherical accretion of matter with vanishing
angular momentum (e.g., a star accreting from a stationary gas cloud), is commonly
used to estimate the accretion rate M from the measurement of ambient density and
temperature. The following presentation is based on [61].

We will solve the spherically symmetric, hydrodynamic equations in steady state
using spherical polar coordinates (7,6, ¢) with origin at the center of the star. The
fluid variables are independent of 6 and ¢, and the gas has only a radial velocity

component V, = V. The equation of continuity

- V) =0 A3
S, FpV) =0, (A.3)
gives a constant inward flux of matter M = —4mwr2pV = constant; for accretion
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Figure A.2: Mach number (the ratio of fluid velocity and sound speed) as a function
of radius for spherical accretion with different inner and outer boundary conditions.
Solution VI corresponds to accretion and V' to a spherical wind. Taken from Alan
Hood’s lecture notes, http://www-solar.mcs.st-and.ac.uk/"alan/sun_course/.

V < 0, as matter falls in. The Euler equation becomes

v 1dp GM,
y W Ldp GM.

2

— 4+ = 0. A4
dr pdr r ( )

A polytropic equation of state is used, p = Kp?, with 1 <~y < 5/3.
Using dP/dr = a*dp/dr, where a = \/~p/p is the sound speed, the continuity and

Euler equations can be combined to give

1 a*\ d ., GM, 2a*r
YOI ETA] I

This form is useful to draw inferences about steady, spherically symmetric accretion.

At large distances (r > G M, /2a?), the right side of Eq. A.5 is positive, and dV?/dr <
0 at large distances where gas is expected to be at rest. This implies that the gas is

subsonic (V2 < a?) for r > GM, /2a?; this is reasonable because far from the star, the
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gas has a non-zero temperature. One need to specify the inner boundary condition in
addition to the outer (ambient) boundary conditions to uniquely specify the solution;
we choose V2 > a? for small r for accretion (see Figure A.2).

At a radius r, = GM,/2a?, either V2 = a? or d/dr(V?) = 0; latter is true for
accretion solution with a supersonic flow for » < r,. The sonic point condition,
ro = GM,/ 242 leads to the relation between the accretion rate M and the ambient
conditions. The integral form of Eq. A.4 is the Bernoulli integral:

V2 a? GM

+ — —— = Be, a constant. (A.6)
2 -1 r

The boundary condition at r — oo, and the sonic point condition a?(r,) = GM, /2r,
combine to give a(r,) = a(c0)y/2/(5 — 37), which leads to the constant accretion

rate in terms of sonic point variables, M = 47r2p(r,)a(r,). Since a o< p¥~ !,

; (A7)

this combined with M in terms of sonic point variables gives the required expression

for M in terms of conditions at infinity:

M = nG>M? ploc)

9 (5=37)/2(v—1)
a’(00) { } '

5 — 3y

The dependence of M on 7 is weak. For v = 1.4, Eq. A.8 gives

' M p(00) a(c0) \ 7
~ 1 1
M =14x10 (M@) (10—24gc _3) (10k = gs . (A.9)

For r < r,, matter falls freely, v = 2GM,/r; the continuity equation gives

p =2 p(ry)(ra/r)?? for r < r,. One can define an effective accretion radius, beyond

which the thermal energy of the gas is larger than the gravitational binding energy.
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The ratio of the thermal and gravitational binding energy is (ma?(r)/2)/(GM,m/r) ~

2 Tace, since a(r) ~ a(oo) for r > 14 = 2GM,/a*(o0) [61]. Hence,

~

T/Tace, for r
for r > ru. the gravitational pull of the star has negligible effect on the gas. In
terms of the Bondi radius, an approximation for the mass accretion rate is given by

M ~ 72, a(00)p(c0).

acc
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Appendix B

Linear closure for high and low

collisionality

B.1 Closure for high collisionality: [(|> 1

For [(| > 1, Z(C) ~ —1/C — 1/2¢% — 3/4¢%, R ~ —1/2¢> — 3/4¢*, 1 + 2C°R ~
—3/2¢% —15/4¢*, Z — 2CR ~ 1/® + 3/¢5. Equation (3.26) then becomes

on  opl 5B< 1 ) G ( ) <5T 5B)

on _opL %2 (4 1+ — ) (= -2, B.1

o Po By 2¢? C 2¢? Th By (B
Assuming |(;/(2] < 1 (a high collisionality limit w < v) and using the binomial

expansion we get

R G G ot
no  po {1 C2+Cz< +<1) (2( Cl)}((zBo%_To). (B:2)

To the lowest nonvanishing order one gets

snc, opL 2G\ dpy (1 G\ _ GOB
___—<_+3Cz)+p—o<§_3—éz)_ G2 By B3
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Expanding equation (3.27) gives

571 15 5p|| 3 B 0B /1 3
(ze*@)* Po (zc2+4—c4) B (?*@)

0B  on T 3
+<Fo_n_o )<2<<3 <5)‘ (4

Again using the binomial expansion for |(;/(| < 1 we get

on (3G 9(GN\ 3\ dp (1l 1G 1(&)2 1

no( 2C2+ <C2) +4C22>+p0 (3 2C2+2 G2 +4C22
(16 () 1) (6 (@)

+po ( 3+C2 2((2) C%)_B()( C2+3 G2 ) (B:5)

The lowest order solution is

_3Gon (1 G oy (_1 Q)@: ¢ 0B
2C2n0+(3 2C2) Po * 3+C2 p G By (B6)

We shall expand the parallel and perpendicular pressure perturbations as dp;, =
Op1 + €1 /G0 p1 + (G1/6)?%py + ... and Opy = 8%p + 1/ G py + (Ci/C2)?0%p) + ...
From equations (B.2) and (B.5) one gets 6°p/po = 6°p1 /po = 56n/3ng for the lowest
order, and (dp, — 6'p)/po = 30B/By — 20n/ng. To the next order we can expand

the solution as

5 56 5! 2 42
opy _ Son  Gopy (&) ) (B.7)
po 3no G2 Do G/ Do
op. 5on G <5lp” 0B 5n) <g1)2 0%py
R HEL g (R R RAU A (et . B.8
Po 3ng G2 \ Po By o Ca Po (B:8)
To the next order in (; /(s in equation (B.2) one gets
1 on 16% p” (5 Py 52]9J_)
S + = =0. B.9
2(tng 2 po 3\ po Do (B:9)
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To the next order in equation (B.5) we get

on ot p 1 (52])” 52pj_) 30B
24 —_— -+ = — = . B.10
( 3(12) no P 3\ Do Po By (B.10)

Equations (3.29) and (3.30) follow from equations (B.9) and (B.10).

B.2 Closure for low collisionality: |(| < 1

This regime is useful for low collisionality v < kjjco and high 3, where the MRI is low
frequency as compared to the sound wave frequency. Using the asymptotic expansion
for || < 1, Z(¢) =~ iy/m (1 —¢?) —2¢ and R(¢) =~ 1 + i/ — 2¢?, we simplify

equation (3.26) to get

@_%:f;_fg(m_ng(é—T—‘s—B)@(ﬁ—zc). (B.11)

o Po Ty

The lowest order term in ¢ gives dp) /py = dn/ng. Let dp1 /po = dn/ng + C6'py/po.

To the next order one gets

5! =08 . 0B . 4B
¢ L _ —iVTC= 4 i T — = —iT(—. (B.12)
BO B(] BO

Do

Therefore to second order in ¢, dpy /py & 0n/ng—i/7(16B/By+(?6*p) /p,. On using

the asymptotic formula for Z and R in equation (3.27), one gets

5_"_(1+M<) = iﬁcg—f—<2<f—4<>(—-——§). (B.13)

no

To the lowest order one gets dp/po = dn/ng, so let dpy/po =~ dn/ng + (6'py/po. To

the next order,

(Spﬂ = —ZfC — +Z\/_C1 (B.14)
0
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Therefore through second order dp /po = dn/no+iy/7¢1 (6B/By — dn/ng)+¢*6%py/po.

The comparison of the terms of the order ¢? in equation (3.26) give

o 2p¢
Po

C2

0B w 0B on
= 2C1<F0 — 30t (Fo + n_o) : (B.15)

and the terms of the order ¢? in equation (3.27) give

52
CQ% _ (4@@ — - %Q@) i—: + <\/7_TC1C - %C1<2 —2¢% — 4C2C) 53_&? (B.16)

From equations (B.15) and (B.16) the asymptotic expansion in equations (3.31)
and (3.32) follow.
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Appendix C

Kinetic MHD simulations:

modifications to ZEUS

C.1 Grid and variables

Figure C.1 shows the location of variables on the grid. Scalars and diagonal compo-
nents of second rank tensors (p, pj, and p, ) are zone centered. Vectors, representing
fluxes out of the box, are located at the cell faces (V, B, and q ). The inductive
electric field (E) is located at cell edges such that the contribution of each edge in
calculating § E - dl over the whole box cancels, and V - B = 0 is satisfied to machine
precision. The off diagonal part of the pressure tensor in Cartesian coordinates is
related to IT = Bf)(p|| — p1). This is a symmetric tensor whose components Pzy,
Pzz, and Pyz are located such that the finite difference formulae for the evolution of

velocities due to off diagonal components of stress are given by

Vi jk = Vi jr" — @(P‘Tyi,j-i-l,k - nyi,j,k:) - E(Pzzi,j,k-i-l - szi,ggl@g-l)
n+1 n 5t n n 5t n n

Vijk =Vyijk" — %(nyi—i-l,j,k - nyi,j,k) - &(Pyzi,j,k—i-l - Pyzi,j,kOC'Q)

Ve = V" - %(Pmm,j,k — Pxzi;,) — @(Pyzmﬂ,k — Pyzi;,(C.3)
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Figure C.1: Location of different variables on a 3-D staggered grid. Vectors V, B,
and qj; are located at the face centers. Density (p) and diagonal components of the
pressure tensor (p., pj) are located at the zone centers. EMF’s (E,, E,, E.), and off
diagonal components of the pressure tensor (P, P, P,,) are located on appropriate
edges.
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C.1.1 Determination of dt: Stability and positivity

A time explicit algorithm must limit the time step in order to satisfy the Courant-
Friedrichs-Levy (CFL) stability condition. Physically, 6¢ must be smaller than the
time it takes any signal (via fluid or wave motion) to cross one grid zone. There is
also a limit imposed on §t for numerical stability of the diffusive steps. Additionally,
since there are quantities which must be positive definite (p, p|, p1), we also require

0t to satisfy positivity. We adopt the following procedure to choose dt:

min{dz, dy, 4z}

Ot gdy = , C4
= VT [Val + Vil + 0L (C4)
: 2 2 2
5ty = min{dx*, Jy*, 2%} (C.5)
2/-6”
. 2 2 2
5t — min{dz*, 0y*, 0z }’ (C.6)
2/€J_

where V4 = B/V/Ar is the Alfvén speed, and V, = max{+/3p|/p, /2p./p} is the
maximum sound speed, taking the anisotropy into account. 0t.q,, 0t, and and ot
correspond to limits on the time step for stability to advection, and parallel and
perpendicular heat conduction, respectively.

The source steps for p| and p, are given by

n+1

p - pn ~ ~ A\ N

”T” - (—v cq — 29D VV B +20,V - b) — Al (C.7)

P - pl - - o\

Bt = (<Vequr —puV- V4 pib VV b=V b)) = A2,(C8)
where q v = —k1 VT, denotes the temperature gradient part of q . For positivity

of p’”“’1 and pTFl we require that the following conditions are satisfied: whenever

Al and A2 are negative, dt,os = min{—pﬁ/Al,—pﬁ/A2}; if A1 > 0, A2 < 0, then

Otpos = —p'} JA2; if A1 <0, A2 > 0, then 6,5 = —p|’|‘/A1. Thus, our final constraint
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on the timestep 0t is given by
5t = Cy x min {1 JImax{6t,3, + 8t;% + 67272, min{étpos}} (C.9)

where the max and min are taken over all zones in the box and Cj is a safety factor

(Courant Number) which we take to be 0.5.

C.2 Implementation of the pressure anisotropy “hard
wall”

If the pressure anisotropy is larger than the constraints given in §2 by equations
(4.33)-(4.35), then microinstabilities will turn on that will enhance the pitch-angle
scattering rate and quickly reduce the pressure anisotropy to near marginal stability.
Because this is a numerically stiff problem, we use an implicit approach, following
the treatment of [26]. Whenever equation (4.33) is violated, we use the following

prescription for pitch angle scattering:

n+1
P = pf — gmot (T A= (C.10)
n+1
1 p B?
pTl = pzl_ + gV;nét (lT _p?_—i_l - E) ) (Cll)

where v, is a very large (> 1/0t) rate at which marginal stability is approached.
This implicit implementation (which can be solved by inverting a 2 x 2 matrix) with
large v, ensures that each time step the pressure anisotropy will drop to be very
near marginal stability for the firehose instability to break p invariance. Given this
pitch angle scattering, the collisionality parameter v.¢; in the thermal conductivity

(Eqgs. 4.43-4.45) is obtained by comparing equations (C.10) and (C.11) with equations
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(4.39) and (4.40):

N7 (C.12)

The effective pitch angle scattering rate v.ss is independent of v, (and much smaller
than v,) in the limit of large v, and is by definition just large enough to balance other
terms in equations (4.39-4.40) that are trying to increase the pressure anisotropy
beyond marginal stability.

The prescriptions for pitch angle scattering due to mirror modes and ion cyclotron

waves are similar. For mirror modes we use

9 pn—i-l

pﬁ”rl = pﬁ — gupét (pﬁ”’l - p’f’l + 2¢ %ﬂ) , (C.13)
1 pn+1

Pt = + gupét (pﬁ”rl —pth + 25%) (C.14)

to limit the pressure anisotropy (£ = 3.5 for our fiducial run ZIl4) and v,.ss is given

by
n+1 n+1 p\r\wl
by =Py + 2£ﬁz+1
Veff = Max { v, N7 (C.15)
<p|r|z+1 _ prj_—i-l)
For ion cyclotron pitch angle scattering we use
9 pn+1
P = = gt | At - s | | (C.16)
ﬁn—l—l
l
1 pn+1
PE =0 gt (o P S ” , (C.17)
6ﬁz+1
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and vsy is given by

n+l _  n+l pﬁle
P P+ S

Ve = Max § Vp 3
(pﬁﬂ B p’f’l)

(C.18)

C.2.1 Implementation of the advective part of V- q

The flux of p;, q. = qlla, is given by

p|—DP B-VB
qL = —K1V| (&) + ( zlr‘ L) 28 pL=—K1V| (ZA) + VinagD1
P P ( %%h + Veff> P

(C.19)

where the quantity in square brackets can be thought of as an advection speed due
to parallel magnetic gradients. Because of this term, q, is not a purely diffusive
operator, but also has an advective part characterized by the velocity V.. If one
treats the advective part via a simple central difference method, it does not preserve
monotonicity. Instead, to treat the advective part of q, properly, we include the
advective part in the transport step. After including the advective heat flux in the

transport step, it takes the form

) )
%%+v-w+ummm}:o (C.20)

Thus, for updating p, in the transport step we calculate fluxes on the cell faces using
V + Vmagla instead of just V. The transport step is then directionally split in the
three directions. The procedure for monotonicity preserving schemes for calculating

fluxes is described in [185].
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C.3 Numerical tests

The kinetic modifications to the ZEUS MHD code have been tested for the ability to

capture the collisionless effects.

C.3.1 Tests for anisotropic conduction

The kinetic MHD code used for the shearing box simulations of the collisionless MRI
uses the asymmetric method for anisotropic thermal conduction [177]. Although, the
asymmetric method can result in negative temperature, its fine to use it for local
simulations as there are no sharp temperature gradients (see Chapter 5). Anisotropic

conduction tests have been discussed extensively in Chapter 5.

C.3.2 Collisionless damping of fast mode in 1-D

We initialize a fast wave eigenmode traveling along the field lines to verify that the
Landau closure reproduces the correct damping rate. We choose the following param-
eters: pg = 1.0, pjo = p1o = 107%, kV4o = 1072, and 3 = 10. A periodic box with the
size of two wavelengths is used. Since we initialize a parallel propagating fast mode,

there is no magnetic perturbation, and the initial eigenmode is given by

dp = Acos(kz), (C.21)
opy = A107%(3pcos(kz) + 1.36 sin(kz)), (C.22)
6p. = A10 %cos(kz), (C.23)
§V. = A(0.0015cos(kz) + 0.00046 sin(k2)), (C.24)

where A=0.01 is the amplitude. Figure C.2 shows the results from the ZEUS code
modified to include kinetic effects. Simulation recovers the correct phase speed and

damping rate. Velocity perturbations are damped and the energy goes to internal
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Figure C.2: Figure on top left shows damping of kinetic energy in time; solid line
is from the simulation and the dashed line is the result from eigenmode analysis
in MATHEMATICA. Top right figure shows the initial eigenmode (solid line) and
the damped eigenmode (dashed line) at a later time. Bottom left figure shows the
increase in internal energy (solid line) and the result expected from the heating term
(dashed line). Bottom right figure shows the initial fast mode eigenmode (solid line)
and the eigenmode at a late time (dashed line) with the CGL equation of state, and
as expected, there is no damping.
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energy. Figure also shows that a fast mode eigenmode in the CGL limit shows no
damping.

Since the magnetic perturbation vanishes for this case, there is no —uV) B Barnes
damping. This leaves only the parallel ey Landau damping. With eEj = ikdp)(me/m;)/n,
assuming cold electrons, Landau damping is hidden in pressure terms in the equation

of motion and the internal energy equation.

C.3.3 Mirror instability in 1-D

The mirror instability criterion in the CGL limit is p, /6pj—1—1/3, > 0 as compared
to the criterion in the kinetic regime, p, /py—1—1/8, > 0 [110, 180]. We test Landau
closure by initializing an anisotropic pressure (p, /p| = 2.5, § = 1) which is unstable
according to the kinetic criterion but stable by the CGL criterion. Landau closure
with parameter k;, = 127/L (gives correct kinetic behavior for 6 wavelengths in the
box, for larger wavenumber growth rate is faster than the kinetic result, see Figure
2.1). Figure C.3 shows the results of nonlinear simulations initialized with a small
amplitude random white noise. Pressure anisotropy is reduced to marginality with
time. Particles are trapped in low magnetic field regions due to the mirror force,
and density and magnetic field strengths are anticorrelated. Growth rate increases
linearly with the resolution, as v oc k.

For small pressure anisotropy, adiabatic invariance is obeyed and plasma rear-
ranges itself in the form form of mirrors and becomes marginally stable. These 1-D
results are consistent with previous fluid [20] and kinetic [127] studies. Similar 1-D
tests for the firehose instability results have shown results consistent with the previ-
ous kinetic simulations [162]. Here too, the growth rate is proportional to the grid
resolution (as v o< k). Fastest growing firehose mode is the one with a parallel
wavenumber. The transverse magnetic field disturbances grow until the plasma be-

comes marginally stable to the firehose instability. A 2-D test for firehose instability
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Figure C.3: Figure on left shows normalized parallel and perpendicular pressure (solid
and dashed lines respectively), and difference from marginal stability, p, /pj — 1 —
1/5, (dot-dashed line), with time. Pressure anisotropy is reduced towards marginal
stability. Right figure shows anticorrelated density (solid line) and magnetic field
strength (dashed line), normalized to their mean value, in saturated state (c,t/2m =
2).

is discussed in the next section.

C.3.4 Shear generated pressure anisotropy: Firehose insta-
bility in 2-D

We have also devised a test problem where the magnetic field strength decreases
because of the shear in the box; a decreasing field strength causes pressure to become
anisotropic (py > py). The firehose instability is excited when the pressure anisotropy
increases beyond the firehose instability threshold (py/p. — 1 —2/8. > 0). The
shearing rate is small so that the firehose instability locks the pressure anisotropy to
the marginal value.

We use a 50 x 50 2-D box with L, = L, = 1, pjo = p1o = 0.1, po = 1, 5 = 200
with B,y = By, Vy(—Ls/2) — V,(L,/2) = (3/2)QL, with Q = 0.01, and the collision
frequency v = 0.1. The Landau parameter is k;, = 0.5/dz; firehose instability is

insensitive to the parallel thermal conduction and the CGL equations give the correct
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Figure C.4: Figure on the left shows normalized parallel (solid line) and perpendicular
(dashed line) pressure, and the firehose marginal stability criterion (dot-dashed line),
p|/pL — 2/B1. At early times pressure anisotropy is caused by the shear, but as the
firehose instability sets in, pressure anisotropy saturates at the marginal state. Right
figure shows magnetic field strengths, B}/8m (solid line) and B} /87 (dashed line).
Magnetic strength in the y— direction is reduced by the shear, but at late times there
is a bump in field strengths showing the firehose instability.

instability threshold [110, 180]. Parameters are chosen such that the shearing rate
is the smallest followed by the collision frequency and the sound crossing frequency,
Q) < v < (2r/L)cy)o- In this ordering, plasma is effectively collisionless, and pressure
anisotropy is driven slowly by the shear, so that the firehose instability saturates in
the marginal state.

Figures C.4 and C.5 show the results: at early times p; o« B~? increases and
p1 x B decreases as magnetic field decreases. When pressure anisotropy crosses the
firehose threshold, the instability reduces the pressure anisotropy to the marginal state

by increasing the transverse (to the mean magnetic field) magnetic perturbations.

211



09

0.8

or

0.6

0.5

0.3

0.8

0.7

0.6

0.5

0.4

015

01

0.03

-0.05

-0.1

-0.15

0.2

015

01

0.05

-0.05

-0.1

-0.15

-0.2

Figure C.5: The 2-D plots of B,, V,, B,, and 6V}, normalized to the initial field
strength, at 2mcg ot ~ 8. The initially random perturbations give rise to the firehose

instability propagating primarily along the field lines.
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Appendix D

Error analysis

The standard errors in the time averages reported in Table 4.2 and in Figure 4.7 are
estimated by taking into account the finite correlation time for the physical quantities
in the simulation, using techniques recommended by [144]. Given a finite time series,
we want to calculate the ensemble average and the uncertainty around the ensem-
ble average. The standard deviation of the time series does not represent the error
(uncertainty) because the data in the time series are correlated.

For a time series with non-zero correlation time, the standard error for the time
average (z) = [dtz(t)/T of a signal x(t) is given by oy = /Var(z)/Ness, where
Var(z) = [dt (z(t) — (x))*/T is the variance of x, Nosy = T/(27in) is the effec-
tive number of independent measurements, 7' = 15 orbits is the averaging time for
the simulations described in Chapter 4, and 7;,; is an estimate of the integrated
autocorrelation time. There are significant subtleties in determining the integrated
autocorrelation time from data. To deal with this, we use a windowing technique as
recommended by [144], using 7,y = fOT dr C(T)W(7/Ty), where C(7) is the 2-time
correlation function from the data, W(7/7,) is a smooth window function that cuts
off the integral at 7 ~ 7, and 7, ~ /T'T;,; (this gives results insensitive to the choice

of window width for 7;,,; < T). If windowing is not used, i.e., W = 1, then the
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integral for 7;,; vanishes; therefore, an appropriate windowing function is necessary.

The two-time autocorrelation function is defined as
1 T—1
C(r) = —/ dtz(t)z(t + 7), (D.1)
0

where £ = = — (x). An example of the windowing function is the Hanning window

given by [144]

HE) = 501+ cos(me)],Je] <1 (D.2)
= 0,/¢)>1 (D.3)

Winters et. al. [200] found from comparing 3 realizations of shearing box MRI
simulations that the magnetic stress had a variation of approximately £6.5% after
averaging over 85 orbits. The simulations we show here were averaged over 15 orbits,
so extrapolating from [200] one might expect the uncertainties to be larger by a
factor of ~ \/85/715 ~ 2.4. This is consistent with the typical error bars we report in
Table 4.2 and Figure 4.7.
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Appendix E

Entropy condition for an ideal gas

The entropy for an ideal gas is given by S = nVEkIn(T"/0~Y /n) 4 const., where n
is the number density, V the volume, T" the temperature, and  the ratio of specific
heats (= 5/3 for a 3-D mono-atomic gas). The change in entropy that results from

adding an amount of heat d@ to a uniform gas is

nVk dT  dQ

s = — .
S vy—1T T

We measure temperature in energy units, so £k = 1 from now on. The rate of change
of entropy of a system where number density and temperature can vary in space

(density is assumed to be constant in time) is given by

. 0S V-q q-VT VT2
=7 _ _ I S = — > E.1
where we use an anisotropic heat flux, q = —anf)VT, and the integral is evaluated

over the whole space with the boundary contributions assumed to vanish. The local
entropy function is defined as $ = —q - VI'/T? can be integrated to calculate the rate
of change of total entropy of the system.

In Chapter 5 we use a related function (the entropy-like function $*) defined as
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ok

$* = —q - VT to limit the symmetric methods using face-pairs, and to prove some
properties of different anisotropic diffusion schemes. The condition —q-VT > 0

means that heat always flows from higher to lower temperatures.
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