

Flares in Sgr A*

Prateek Sharma (UCB, collaboration w.
Katie Dodds-Eden [MPE, Garching]
, Eliot Quataert [UCB])

Flares in Astrophysics

- sudden jump in luminosity across λ s
- unlike space physics: spatially unresolved;
only spectra and lightcurves
- magnetic flares: low-mass stars, magnetars, ...
- focus on Sgr A*, the Galactic center BH

Sgr A*

[UCLA group, Genzel et al.]

Galactic supermassive BH ($4 \times 10^6 M_{\text{sun}}$)

0.05pc

unremarkable in X-ray lum.
quiescent $L \sim 10^{36}$ erg/s (radio dom.)
barely resolved by *Chandra*

Flares from Sgr A*

IR [Genzel et al. 2003]

X-ray [Baganoff et al. 2001]

up to few/night
brighter rare

[Yusef-Zadeh et al. 2009]

Spectrum

[*Dodds-Eden et al. 2009*]

Generic Features

- IR flares most common; X-ray=>IR, not vice-versa
- only few simultaneous broad-band flares
- amplitude \downarrow as ν \downarrow ; highest amp. in X-ray, then IR, mm
- X-ray flare (20 min) \leq IR (40 min) \leq mm (few hrs)
- polarized IR (=>synchrotron), change in PA after peak

A multi- λ flare

[Yusef-Zadeh et al. 2009]

Modeling

$$L_{\text{synch}} \propto N \theta_E^2 B^2$$

$$L_{\text{IC}} \propto N \theta_E^2 R_Q^{-2}$$

$$L_{\text{SSC}} \propto N^2 \theta_E^4 B^2 R_F^{-2}$$

$$\nu_{\text{IC}} = \gamma^2 \nu_{\text{seed}}$$

$$\nu_c = 4.2 \times 10^6 B \gamma^2$$

IC: R_Q too small (contradicts size mm.), $\ll R_S$
 SSC: B too large

IC/SSC may apply for other flares where IR is softer and X-ray harder

Synchrotron+cooling

[Dodds-Eden et al. 2009]

B~30G from Faraday RM constrains
agree w. global MHD sims.
constrains on peaks of IR/X-ray spec.=>
optically thin synchrotron from IR to X-ray

$$\tau_{cool} = 8 \left(\frac{B}{30 \text{ G}} \right)^{-3/2} \left(\frac{\nu}{10^{14} \text{ Hz}} \right)^{-1/2} \text{ min}$$

Faraday RM

[Bower et al. 2003; Marrone et al. 2007]

$\text{RM} (\propto \int n B_{||} ds) \approx 6 \times 10^5 \text{ rad/m}^2$; steady in time
assuming $B \sim (nT)^{1/2}$, $\text{RM} \sim n^{3/2}$; measuring RM constrains n_{in}

Faraday RM consistent w. this

Hot Accretion sims.

[Hawley & Balbus 2002]

MHD turbulence & transport

MHD simulations

[movies by John Hawley]

accretion very efficient $E \sim 0.1 mc^2$; fusion $\sim 0.007 mc^2$
behind most energetic events in the universe:
GRBs, quasars, AGN, XRBs,...

RIAFs: only a small fraction of mass falls in!
 $L = \eta \dot{M} c^2$; low luminosity by 10^5
accretion energy goes to ions $\Rightarrow \eta \ll 1$

Flares in MHD sims?

single initial loop, current sheet at equator
must look at short time (sampled at 8
min.), small volume

CME?

[SOHO]

Initial B-geometry

two initial loops, current sheets above/below equator
much more turbulent, thicker disk
less dramatic flares, still related to drop in B & rise in T

Variety in flares

[TRACE]

really Reconnection?

really Reconnection?

Tail reconnection

[McPherron & Hsu]

energy stored in B , suddenly released
change in B -geometry (B_z)
almost like the accretion flare!

Lightcurve/spectra

[courtesy Dodds-Eden]

$$\tau_{cool} = 8 \left(\frac{B}{30 \text{ G}} \right)^{-3/2} \left(\frac{\nu}{10^{14} \text{ Hz}} \right)^{-1/2} \text{ min}$$

one-zone model $n_e(\gamma, t)$; adiabatic,
cooling losses

X-ray traces particle injection;
IR affected by cooling

reduction in B sufficient to
energize flare e⁻s (eff~0.002)

Radio flare

[in progress]

blob expands & become optically thin; delay inc. w. λ
quiescent flow optically thick @43GHz; turbulent fluc. in \dot{M} look like flare
higher freq. flares are cleaner because optically thin

Time-dependent model

Future

- Modeling:
 - GRMHD flares in 3-D; resistivity??
 - better radiation transfer; GR, inclination/spin effects
 - effect of initial B-field configurations
- Observations:
 - time resolved spectra of bigger flares
 - better statistics; is sync. soft X-ray hard IR or IC/SSC needed?
 - polarization, Faraday rotation during flares
- Connections w. space physics!

Thank You!