Flares in Sgr A*

Prateek Sharma (UCB, collaboration w. Katie Dodds-Eden [MPE, Garching] , Eliot Quataert [UCB])

Flares in Astrophysics

• sudden jump in luminosity across λ s

- unlike space physics: spatially unresolved; only spectra and lightcurves
- magnetic flares: low-mass stars, magnetars, ...
- focus on Sgr A*, the Galactic center BH

Flares from Sgr A*

UT Time (Hours) on April 4, 2007

[Yusef-Zadeh et al. 2009]

Spectrum

[Dodds-Eden et al. 2009]

Generic Features

- IR flares most common; X-ray=>IR, not vice-versa
- only few simultaneous broad-band flares
- amplitude \downarrow as $\lor \downarrow$; highest amp. in X-ray, then IR, mm
- X-ray flare (20 min) \leq IR (40 min) \leq mm (few hrs)
- polarized IR (=>synchrotron), change in PA after peak

A multi- λ flare

[Yusef-Zadeh et al. 2009]

Modeling

IC/SSC may apply for other flares where IR is softer and X-ray harder

Synchrotron+cooling

B~30G from Faraday RM constrains agree w. global MHD sims. constrains on peaks of IR/X-ray spec.=> optically thin synchrotron from IR to X-ray

$$\tau_{cool} = 8 \left(\frac{B}{30 \text{ G}}\right)^{-3/2} \left(\frac{\nu}{10^{14} \text{ Hz}}\right)^{-1/2} \text{ min}$$

Faraday RM

[Bower et al. 2003; Marrone et al. 2007]

Hot Accretion sims.

MHD turbulence & transport

MHD simulations

[movies by John Hawley]

accretion very efficient E~0.1mc²; fusion~0.007mc² behind most energetic events in the universe: GRBs, quasars,AGN,XRBs,...

> RIAFs: only a small fraction of mass falls in! $L=\eta \dot{M}c^2$; low luminosity by 10^5 accretion energy goes to ions=> η <<1

Flares in MHD sims?

CME?

[SOHO]

Initial B-geometry

two initial loops, current sheets above/below equator much more turbulent, thicker disk less dramatic flares, still related to drop in B & rise in T

Variety in flares

[TRACE]

really Reconnection?

really Reconnection?

Tail reconnection

energy stored in B, suddenly released change in B-geometry (B_z) almost like the accretion flare!

Lightcurve/spectra

$$\tau_{cool} = 8 \left(\frac{B}{30 \text{ G}}\right)^{-3/2} \left(\frac{\nu}{10^{14} \text{ Hz}}\right)^{-1/2} \text{ min}$$

one-zone model $n_e(\gamma,t)$; adiabatic, cooling losses

X-ray traces particle injection; IR affected by cooling

reduction in B sufficient to energize flare e⁻s (eff~0.002)

blob expands & become optically thin; delay inc. w. λ quiescent flow optically thick @43GHz; turbulent fluc. in \dot{M} look like flare higher freq. flares are cleaner because optically thin

Time-dependent model

Future

- Modeling:
 - GRMHD flares in 3-D; resistivity??
 - better radiation transfer; GR, inclination/spin effects
 - effect of initial B-field configurations
- Observations:
 - time resolved spectra of bigger flares
 - better statistics; is sync. soft X-ray hard IR or IC/SSC needed?
 - polarization, Faraday rotation during flares
- Connections w. space physics!

Thank You!