

Heating & cooling cycles in cool cluster cores

Prateek Sharma (IISc)

Collaborators: Deovrat Prasad, Arif Babul

COOL CORE CYCLES: COLD GAS AND AGN JET FEEDBACK IN CLUSTER CORES

THE ASTROPHYSICAL JOURNAL, 811:108 (21pp), 2015 October 1

DEOVRAT PRASAD¹, PRATEEK SHARMA¹, AND ARIF BABUL²

¹ Joint Astronomy Program and Department of Physics, Indian Institute of Science, Bangalore, 560012, India;

deovrat@physics.iisc.ernet.in, prateek@physics.iisc.ernet.in

² Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1, Canada; babul@uvic.ca

Received 2015 April 12; accepted 2015 July 28; published 2015 September 28

Cold gas condensation

- allows feedback to act sufficiently fast, unlike Bondi
- $t_{\text{cool}}/t_{\text{ff}} \sim$ threshold around 10 seems robust (at least in sims)
- cooling & heating cycles
- push ϵ to smallest allowed by observations
- cold gas inflows & outflows
- angular momentum: stochastic cold accretion

AGN jet-ICM sims.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = S_\rho \quad \text{mass}$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p - \rho \nabla \Phi + S_\rho v_{\text{jet}} \hat{\mathbf{r}} \quad \text{momentum}$$

$$\frac{p}{\gamma - 1} \frac{d}{dt} \ln(p/\rho^\gamma) = -n^2 \Lambda$$

source terms to mimic injection by feedback AGN jets

AGN jet-ICM sims.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = S_\rho \quad \text{mass}$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p - \rho \nabla \Phi + S_\rho v_{\text{jet}} \hat{\mathbf{r}} \quad \text{momentum}$$

$$\frac{p}{\gamma - 1} \frac{d}{dt} \ln(p/\rho^\gamma) = -n^2 \Lambda$$

source term applied in a small
bipolar cone at the center:
opening angle of 30°, size 2 kpc

$$\dot{M}_{\text{jet}} v_{\text{jet}}^2 = \epsilon \dot{M}_{\text{acc}} c^2$$

$v_{\text{jet}} = 0.1c$, $\epsilon = 6 \times 10^{-5}$, $r_{\text{in,out}} = 1$, 200 kpc
robust to variations

Dependence on halo mass & efficiency

larger ϵ
suppresses
accretion

more massive
halos require
larger ϵ

depends on where
Mdot calculated

Density movie

r - θ slices

temperature reasonable

density reasonable

Cold rotating torus

few kpc scale
molecular torus

Cold torus in Hydra A

[Hamer et al. 2014]

more examples from ALMA, Hershel?
may be SF doesn't let a massive torus form

Jets & fast outflows

Jets & fast outflows

Jets & fast outflows

Snapshots of inflow/ outflow phases

radially-dominant component

Cold gas observations

10^{10} Msun of molecular gas

A1664 [Russell et al. 2014]

low (200 km/s) and high (600 km/s) velocity components

AGN feedback cycles

Cycles in sims.

“phase space”
of jet power
cold gas mass vs.
hot gas properties

Huge scatter in sims.

cold accretion does not show tight correlations!

consequence of chaotic cycles!

Observations of cycles

[McDonald et al. 2011]

observations of
“phase space”

hot accretion inadequate

$$\dot{M}_{\text{BH}} \lesssim 0.01 \dot{M}_{\text{Bondi}}$$

only a small fraction
makes it to SMBH
because of outflows

Bondi resolved in
Sgr A*, M 87,
NGC 3115: all show
suppression

Angular momentum problem

$$t_{\text{visc}} \sim \frac{1}{\alpha (H/R)^2 \Omega_K}$$

too long if $H/R \sim 10^{-3}$,
of standard AGN thin disks
moreover, star formation
where M_d/M_{BH} exceeds H/R

$$t_{\text{visc}} \sim 4.7 \text{ Gyr} \left(\frac{R}{1\text{pc}} \right)^{3/2} \left(\frac{H/R}{0.001} \right)^{-2} \left(\frac{\alpha}{0.01} \right)^{-1}$$

must avoid a large thin disk
 $t_{\text{visc}} <$ core cooling time

Key issues

- microscopic dissipation: turbulent mixing/heating, shocks, CRs
- conduction, hot accretion secondary
- from 1 kpc to $\ll 1$ pc (BH sphere of influence): core to BH accretion
- stochastic cold gas, angular momentum barrier, most cold gas consumed by SF
- relation to radio mini-halos
- spiral structures, cold fronts, sloshing

Thanks!

turbulent velocities

structure of hot gas vs halo mass

[Sharma et al. 2012]

*L*_X–*T*_X relation and missing baryons 1223

