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Cold gas condensation

* allows feedback to act sufficiently tast, unlike Bondi

e teool/tii~threshold around 10 seems robust (at least in sims)

e cooling & heating cycles




AGN jet-ICM sims.
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source terms to mimic injection by feedback AGN jets



source term applied in a small
bipolar cone at the center:

. g
2 kpe opening angle of 309, size 2 kpc

Viet=0.1¢C, €=6X10, rinout=1, 200 kpc
robust to variations



Dependence on halo
mass & efficiency

1.8x10!> Msyn  =*-2D - massive cluster |arger &
2D - cluster suppresses

- \‘.7XIO|4 Msun -3 - cluster

accretion

more massive
halos require
larger €

depends on where
Mdot calculated




Density movie
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infalling cold gas condenses
when the jets are weak!
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temperature reasonable
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Cold rotating torus
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few Kpc scale
molecular torus




Cold torus in Hydra A

[Hamer et al. 2014]

(B) Ha Flux

~5 Kpc cold torus

Peak flux = 10.9

more examples from ALMA, Hershel?
may be SF doesn’t let a massive torus form



Jets & fast outflows

| | I E= T

IS there any relation Jet power (104 erg s2)
betwegn jets and
cold gas kinematigs?
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Jets & fast outflows

Jet power (104! erg s1)
Ougflow, 5 kpc
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Jets & tast outtlows

Jet power (104! erg s?)
Outflaw, 5kpc
Ii] O\:A!.'s 5§}§:pc =
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Snapshots of inflow/
outflow phases

radially-dominant component

| fast outflows
during jet rise

slow infall
at most times




Cold gas
observations

1010 Msun of molecular gas
A1664 [Russell et al. 2014]
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low (200 km/s) and high (600 km/s) velocity components




AGN feedback cyc\es

core cooling }

l

large cold accretion onto SMBH

l

negative FB, heating wins over cooling, energy
pumped back in ICM

N
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Huge scatter iIn sims.

cold accretion does not
show tight correlations!

consequence of chaotic cycles!
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Observations of cycles

[McDonald et al. 2011]

Decoupled
from feedback

B AGN Outburst

observations of
“phase space”
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hot accretion Inadequate

O

*

A

| —I— Rissell et al., 13

Power Law; Bondi %
#
Isothermal beta profile; Bondi

innner radii flux power; 1 kpc

Allen et al., 06

41.5

Mgy < 0.01Mpona

only a small fraction
makes it to SMBH
because of outflows

Bondi resolved in
Sgr A*, M 87,
Y NGC 3115: all show
suppression




Angular momentum problem

too long it H/R~1073,

of standard AGN t
moreover, star fo

NN disks

rmation

where Mq/MgH exceeds H/R

3/2 —2
b o d7 Gy [ H/R (&)
Ipc 0.001 0.01

g Must avoid a large thin disk
tvisc < core cooling time



Key ISsues

® microscopic dissipation: turbulent mixing/
heating, shocks, CRs

® conduction, hot accretion secondary

® from 1 kpc to << 1 pc (BH sphere of

influence): core to BH accretion




turbu\ent ve\ocmes
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structure of hot gas vs
nalo mass

[Sharma et al. 2012]

Lx—Tx relation and missing baryons 1223

ty/ty=10 ‘core’

—— entropy core

0.0




