

Cluster, jet simulations & radio observations

Prateek Sharma, IISc

Continuum science with SKA, 25/01/2016

Outline

- radio feedback from AGN, minihalos
- radio halos & mergers: turbulent acceleration
- radio relics: head on major mergers
- accretion/virial shock
- role of SKA

Cooling flow problem

[Johnstone et al. 2002]

$t_{\text{cool}} \sim nkT/n^2\Lambda \ll \text{their age yet no signs of cooling}$

Cooling absent!

[Peterson et al. 2003]

soft X-ray lines missing! X-ray observations kicked off this field SKA is future

AGN feedback

[McNamara & Nulsen 2007]

cooling ICM can power SMBH
which launches jets

radio bubbles/X-ray cavities: FRI & FRII

negative feedback loop prevents
catastrophic cooling

jet/cavity power \sim X-ray luminosity
& lack of cooling

=> rough thermal balance

Rogues' gallery

roughly 10s of kpc
small scale radio bubbles

with its higher sensitivity SKA can detect dimmer radio bubbles out to high z

$L_{\text{radio}}, P_{\text{cav}}, L_{\text{X}}$

[McNamara & Nulsen 2012]

How does radio-mode feedback evolve at high z ? spectral index maps, high resolution images, etc. \Rightarrow jet-ICM coupling in different environments

AGN jet-ICM sims.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = S_\rho$$
$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p - \rho \nabla \Phi + S_\rho v_{\text{jet}} \hat{\mathbf{r}}$$
$$\frac{p}{\gamma - 1} \frac{d}{dt} \ln(p/\rho^\gamma) = -n^2 \Lambda$$

mass

momentum

source terms

to mimic injection by
feedback AGN jets

source term applied in a small
bipolar cone at the center:
opening angle of 30° , 3 kpc

$$\frac{\dot{M}_{\text{jet}} v_{\text{jet}}^2}{2} = \epsilon \dot{M}_{\text{acc}} c^2$$

$v_{\text{jet}} = 0.1c$

jets & buoyant bubbles

[Prasad et al. 2015]

Density movie

DB: BCG_NFW_r500
Cycle: 0 - Time: 0

256x128x32 in (r, θ, φ)
 $r_{\min}=0.5 \text{ kpc}$, $r_{\max}=0.5 \text{ Mpc}$
evolution for $\sim 1.2 \text{ Gyr}$
72 hrs on 1024 processors

Radio minihalos

steep spectrum radio sources associated with strong cool-cores

$$S_\nu \propto \nu^{-1} \text{ or steeper}$$

$$L_\nu \propto \nu^{(1-p)/2} B^{(1+p)/2} \Rightarrow p \geq 3 \text{ for } dn/d\gamma \propto \gamma^{-p}$$

likely emission beyond cooling break

$$B_{\text{CMB}} \approx 3(1+z)^2 \mu\text{G}$$

$$\Omega_c = eB/m_e c \approx 170(B/10\mu\text{G}) \text{ s}^{-1}$$

$$\gamma \approx 3 \times 10^3 (B/10\mu\text{G})^{-1/2} (\nu/1.4 \text{ GHz})^{1/2}$$

$$t_{\text{sync}} \approx 0.1 \text{ Gyr} (B/10\mu\text{G})^{-3/2} (\nu/1.4 \text{ GHz})^{-1/2}$$

$$t_{\text{diff}} \approx 0.1 \text{ Gyr} (r/100 \text{ kpc})^2 (D/3 \times 10^{31} \text{ cm}^2 \text{s}^{-1})^{-1}$$

~100 kpc low SB diffuse radio emission associated with massive CC clusters

AGN/sloshing driven turbulence reaccelerated e⁻s? secondaries from pp?

a large D required for CR transport => in-situ acceleration

Minihalo examples

confined within cold fronts (contact discontinuities) observed in X-rays

MH & BCG radio correlated

BCG radio jets powered by cold gas condensing in cores
do MHs also have something to do with it?

Giant radio halos

RHs are mergers

[Brunetti & Jones 2014]

mergers

Radio relics

[Brunetti & Jones 2014]

equal-mass head-on collisions?
high polarization => ordered B

Simulating NT emission

- need B for synchrotron, U_{ph} for IC
- relativistic electrons, power-law, cut-offs
- turbulence, merger shocks, virial shock (1st & 2nd order Fermi)
- recipe for acceleration, escape, cooling
- radio, X-rays & gamma-rays
- hadronic (via secondary e^- s) vs. leptonic
- much more involved than thermal \Rightarrow X-rays

Model for primary e⁻s

diffusion-loss eq. for primary e⁻s

$$\frac{dn(E)}{dt} = -n(E)\nabla \cdot \mathbf{v} + \nabla \cdot [D(E)\nabla n(E)] + \frac{\partial}{\partial E}[\dot{E}n(E)] + q(E)$$

$n(E)dE$ number density of e-s with energy [E,E+dE]; d/dt Lagrangian derivative

$$\frac{\partial N(E)}{\partial t} = \frac{\partial}{\partial E}[\dot{E}N(E)] + Q(E)$$

volume integrated 1-zone model;
assuming confinement of e⁻s

$$\left(\frac{dp}{dt}\right)_{\text{rad}} = -4.8 \times 10^{-4} p^2 \left[\left(\frac{B_{\mu G}}{B_{\text{CMB}}}\right)^2 \frac{\sin^2 \theta}{2/3} + (1+z)^4 \right] \quad \text{sync./IC losses}$$

$$\left(\frac{dp}{dt}\right)_{\text{coll}} = -3.3 \times 10^{-29} n_{\text{th}} \left[1 + \frac{\ln(\gamma/n_{\text{th}})}{75} \right] \quad \text{Coulomb losses}$$

Energy gains & losses

MH simulations

TURBULENCE AND RADIO MINI-HALOS IN THE SLOSHING CORES OF GALAXY CLUSTERS

J. A. ZUHONE¹, M. MARKEVITCH¹, G. BRUNETTI², AND S. GIACINTUCCI³

MHD simulations w. prescription for test e⁻ acceleration & losses
e⁻s accelerated by turbulence driven by sloshing due to mergers

$$\frac{\partial N(p, t)}{\partial t} = \frac{\partial}{\partial p} \left[N(p, t) \left(\left| \frac{dp}{dt} \right|_{\text{rad}} + \left| \frac{dp}{dt} \right|_{\text{coll}} - \frac{4D_{pp}}{p} \right) \right] + \frac{\partial^2}{\partial p^2} [D_{pp} N(p, t)]$$

only compressive MHD modes accelerate
this physics is uncertain; Landau damping

$$D_{\text{pp, TTD}} \approx 1.5 \times 10^{-11} \langle k \rangle \left(\frac{f}{1.5} \right) \left(\frac{v_t^2}{v_z^2} \right) \left(\frac{R^c}{0.25} \right) v_z^2 p^2$$

momentum diffusion due
to TTD & compression

$$D_{\text{pp, C}} \approx 1.3 \times 10^{-12} k_{\text{mfp}} \left(\frac{f}{1.5} \right) \left(\frac{v_t^2}{v_z^2} \right) \left(\frac{R^c}{0.25} \right) v_z^2 p^2$$

Fokker-Planck equation for particle DF solved via a stochastic/Langevin equation
Monte Carlo approach, technically quite sophisticated

X-ray & radio maps at 3.35 Gyr

simulations

particle spectra

predictive but some uncertain physics