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radio feedback from AGN, minihalos

radio halos & mergers: turbulent
acceleration

radio relics: head on major mergers

accretion/virial shock

role of SKA




Cooling flow problem

[Johnstone et al. 2002]
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Cooling absent!

[Peterson et al. 2003]
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soft X-ray lines missing! X-ray observations kicked off this field SKA is future




AGN feedback

[McNamara & Nulsen 2007]

cooling ICM can power SMBH
which launches jets

radio bubbles/X-ray cavities: FRI & FRII

negative feedback loop prevents
catastrophic cooling

jet/cavity power ~ X-ray luminosity
& lack of cooling

=> rough thermal balance




Rogues’ gallery

Beam sizes
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roughly 10s of kpc
small scale radio bubbles

with its higher sensitivity SKA can detect dimmer radio bubbles out to high z




[McNamara & Nulsen 2012]
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radio power subdominant relative to mechanical power of jets

reasonable estimates of Py can balance radiative losses!
How does radio-mode feedback evolve at high z? spectral index maps, high
resolution images, etc. => jet-ICM coupling in different environments
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AGN jet-ICM sims.
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to mimic injection by

In(p/p”) = —n° Al feedback AGN jets

-V - pv = G| mass

d
v —1dt

source term applied in a small
bipolar cone at the center:
opening angle of 30° 3 kpc
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jets & buoyant bubbles

[Prasad et al. 201 5]
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Radio minihalos

steep spectrum radio sources associated with strong cool-cores

S, X v 1 or steeper

L, o v(1=P/2(+p)/2 => p >3 for dn/dy o 77

likely emission beyond cooling break
Q. = eB/me.c~ 170(B/10uG) s+
v~ 3 x 103(B/10uG)"%(v/1.4 GHz)'/?

tsync ~ 0.1 Gyr(B/lOMG)—3/2(V/14 GHZ)_1/2
tai ~ 0.1 Gyr(r/100 kpe)*(D/3 x 10*! em®s ™)~

~100 kpc low SB diffuse radio emission associated with massive CC clusters

AGN/sloshing driven turbulence reaccelerated e's! secondaries from pp!?
a large D required for CR transport => in-situ acceleration

Bevp ~ 3(1 4+ 2)° uG




Minihalo examples

1% .
. =0. Brunetti & |ones 2014
uﬁ?ﬂﬁf 9+:121 (z=0.35) Siibring (1993) PEI"SEUS [ ] ]

Fabian et al. (2000)

Relathve Degl, (oreses)

head tail  A478 () JRXI1720.1428 head tai
radio galaxy : ' radio galaxy

confined within cold fronts (contact discontinuities) observed in X-rays



MH & BCG radio correlated

[Giacintucci et al. 201 4]
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BCG radio jets powered by cold gas condensing in cores
do MHs also have something to do with it?




Giant radio halos
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[Brunetti & Jones 2014]
mostly unpolarized

Right ascension




RHs are mergers

[Brunetti & Jones 2014] mergers
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Radio relics

[Brunetti & Jones 2014]

equal-mass head-on collisions!?
high polarization => ordered B




Simulating NT emission

need B for synchrotron, Uy, for IC
relativistic electrons, power-law, cut-offs

turbulence, merger shocks, virial shock (Ist
& 2nd order Fermi)

recipe for acceleration, escape, cooling
radio, X-rays & gamma-rays

hadronic (via secondary es) vs. leptonic

much more involved than thermal=>X-rays




Model for primary e's

diffusion-loss eq. for primary e's
dn(E 9
nagt ) = —n(E)V-v+ V:|[D(E)Vn(E)] oG En(E)] + q(E)

n(E)dE number density of e-s with energy [E,E+dE]; d/dt Lagrangian derivative

ON (F) i[EN(E)] +Q(E) volume integrated |-zone model;

Ot - OF assuming confinement of es

B, \° sin?

( MG) ) /C |
SYNC. osSses

Boms ) 2/3 Y

In(y/nm)
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—3.3 x 10 n, [1 +

} Coulomb losses




Energy gains & losses
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[Sarazin 1999]
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MH simulations

TURBULENCE AND RADIO MINI-HALOS IN THE SLOSHING CORES OF GALAXY CLUSTERS

J. A. ZUHONE!, M. MARKEVITCH', G. BRUNETTI?, AND S. GIACINTUCCI®

MHD simulations w. prescription for test e” acceleration & losses

e's accelerated by turbulence driven by sloshing due to mergers
2

IN(p, J d d 4D d
(p, 1) o |:N(p,f)( ap + ap — pp)] + ﬁ[DppN(pat)]

at  dp dt

rad dt coll P P
only compressive MHD modes accelerate

this physics is uncertain; Landau damping

RC
~ —11 2.2 o .
Dyp.rrp A 1.5 X 107 (k) ( | ) (0.25) 2P momentum diffusion due

to TTD & compression
Dypc ~ 1.3 x 107 kg, ( *p?

Fokker-Planck equation for particle DF solved via a stochastic/Langevin equation
Monte Carlo approach, technically quite sophisticated




t = 2.55 Gyr

t = 2.75 Gyr, a=2.17 +0.04
t = 3.15 Gyr, a=1.53 +:0.04
t = 3.55 Gyr, a=1.7740.04
t = 3.95 Gyr, a=1.85+0.04
t = 4.35 Gyr, a=1.95+0.04
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predictive but some uncertain physics




