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Cooling flow problem 
[Johnstone et al. 2002]

1kpc 200kpcr

tcool << cluster age

tcool~nkT/n2Λ << their age yet no signs of cooling



Cooling absent! 
[Peterson et al. 2003]

soft X-ray lines missing! X-ray observations kicked off this field SKA is future



AGN feedback

cooling ICM can power SMBH
which launches jets

radio bubbles/X-ray cavities: FRI & FRII

negative feedback loop prevents 
catastrophic cooling

jet/cavity power ~ X-ray luminosity
& lack of cooling

=> rough thermal balance

[McNamara & Nulsen 2007]
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Fig. 5.— Chandra 0.3–2.0 keV image of the core, with 1.36 GHz VLA B array configuration (blue) and 235 MHz GMRT (green) contours
overlaid. The contours start at 3� and are spaced by a factor of two. Low frequency radio emission fills the intermediate cavities near the
edge of the FOV, and emission at both frequencies fills the inner cavities. The central peak of the 1.36 GHz contours is coincident with
the AGN, while the peak of the 235 MHz contours is northwest of the AGN, roughly coincident with the center point of the elliptical edge
defined by the inner shock front. The dashed lines indicate the beam sizes for each radio observation.

roughly 10s of kpc
small scale radio bubbles

with its higher sensitivity SKA can detect dimmer radio bubbles out to high z



Lradio, Pcav, LX

radio power subdominant relative to mechanical power of jets
reasonable estimates of Pcav can balance radiative losses!

How does radio-mode feedback evolve at high z? spectral index maps, high 
resolution images, etc. => jet-ICM coupling in different environments

[McNamara & Nulsen 2012]
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Figure 3. Left: Cavity power versus broadband radio power for a sample of
cool core clusters (Bı̂rzan et al 2008). Right: Cavity power versus x-ray power
radiated from the region where the cooling time is shorter than 7.7 Gyr (Rafferty
et al 2006). Figures reproduced by permission of the AAS.

Rafferty et al 2006, Dong et al 2010). Figure 3 right shows average cavity power plotted
against the x-ray cooling luminosity for a sample of clusters. Lines of equality between
cooling and heating are shown for injected energies of 1, 4 and 16 pV per cavity. The diagram
shows that '4 pV per cavity is typically observed, which is enough to offset cooling in most
systems (McNamara and Nulsen 2007). AGN power output is variable. Objects move up or
down in Pcav depending on when they are observed. Therefore, the current power, low or high
with respect to the 4 pV line, may not equal its long term average.

Selection effects are at issue in figure 3. At high cooling luminosities, the cavity
detection fraction is about 70% (Dunn and Fabian 2006). With the general bias against
detection (McNamara and Nulsen 2007), their result implies that nearly all strong cooling flows
harbor powerful cavity systems. At the same time, we are aware of no powerful systems in low
cooling luminosity clusters lying to the left of the pV line. They would be easily detected. We
interpret the distribution of points as an envelope sampling the upper end of the distribution
of jet powers at a given cooling luminosity, and not a linear correlation. Most importantly, the
diagram shows that jet power correlates with the level of cooling: larger cooling flows host
increasingly powerful AGN that rival or exceed their cooling luminosities.

Figure 3 does not include additional power from shocks (David et al 2001), sound
waves (Fabian et al 2003a, Forman et al 2005), thermal conduction (Zakamska and
Narayan 2003, Voigt and Fabian 2004, Voit 2011), cosmic ray leakage (Mathews and Brighenti
2008) and other forms of energy. On average, cavity enthalpies underestimate the energy
deposited in the cooling regions, which only strengthens our view that AGN are energetically
able to offset cooling.

Figure 3 is weighted toward cavity systems in rich clusters. Cavity systems have recently
been identified in abundance in the hot atmospheres of groups (Sun et al 2009, Dong et al 2010,
Gitti et al 2010, Giacintucci et al 2011, O’Sullivan et al 2011a) and ellipticals (Nulsen

New Journal of Physics 14 (2012) 055023 (http://www.njp.org/)
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jets & buoyant bubbles

Figure 1. Pressure (upper panel), electron number density (middle panel), and temperature (lower panel) contour plots (R–z plane at 0f = ) in the core at different
times for the 3D fiducial run. The density is cutoff at the maximum and the minimum contour level shown. The low-density bubbles/cavities are not symmetric and
there are signatures of mixing in the core. The left panel corresponds to a time just before a cooling time in the core. The second panel from the left shows cold gas
dredged up by the outgoing jets. The rightmost panel shows infalling extended cold clouds. The pressure maps show the weak outer shock, but the bubbles/cavities so
prominent in the density/temperature plot are indiscernible in the pressure map, implying that the bubbles are in pressure equilibrium and buoyant. Also notice the
outward-propagating sound waves in the two middle pressure panels in which the jet is active. The infalling/rotationally supported cold gas has a much lower
temperature and pressure than the hot phase. The arrows in the temperature plots denote the projected gas velocity unit vectors.
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[Prasad et al. 2015]
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256x128x32 in (r,θ,φ)
rmin=0.5 kpc, rmax=0.5 Mpc

evolution for ~1.2 Gyr
72 hrs on 1024 processors

0.4 Mpc

Density movie



Radio minihalos
steep spectrum radio sources associated with strong cool-cores

S⌫ / ⌫�1 or steeper

L⌫ / ⌫(1�p)/2B(1+p)/2 => p � 3 for dn/d� / ��p

likely emission beyond cooling break

~100 kpc low SB diffuse radio emission associated with massive CC clusters
AGN/sloshing driven turbulence reaccelerated e-s? secondaries from pp?

a large D required for CR transport => in-situ acceleration

⌦c = eB/mec ⇡ 170(B/10µG) s�1

� ⇡ 3⇥ 103(B/10µG)�1/2(⌫/1.4 GHz)1/2

tsync ⇡ 0.1 Gyr(B/10µG)�3/2(⌫/1.4 GHz)�1/2

tdi↵ ⇡ 0.1 Gyr(r/100 kpc)2(D/3⇥ 1031 cm2s�1)�1

BCMB ⇡ 3(1 + z)2 µG



Minihalo examples
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Fig. 15. Images of radio mini-halos (contours) and the X-ray emission from the hosting clusters (colors). Cred-
its:212 for RXCJ1532, A2204, A478, Giacintucci in prep. for RXCJ1720, and213 for Perseus.

regions of galaxy clusters (Sect. 2.1). In principle these AGNs could represent the primary
source of the CRs in mini halos, however they are not sufficient by themselves, at least
without some dynamical assistance, to explain the diffuse radio emission. In particular, a
slow diffusion problem once again exists for mini halos; that is, the energy loss time scale
of the radio emitting CRe is still much shorter than the time needed by these particles to
diffuse efficiently across the emitting volume.

Similarly to giant halos, two physical mechanisms have been identified as possibly
responsible for the radio emission in mini halos: i) re-acceleration of CRe (leptonic models
or re-acceleration models) and ii) generation of secondary CRe (hadronic or secondary
models).
According to leptonic models mini halos originate due to the re-acceleration of pre-existing,
relativistic CRe in the ICM by turbulence in the core region, e.g.279 So, this model is similar
in character to the turbulence model for giant halos, except that the responsible turbulence
is concentrated in the cluster core region. In this case obvious sources of the seed CRe are,
for example, the buoyant bubbles that are inflated by the central AGN and disrupted by
gas motions in the core.121, 122, 277 A key question in this model is the origin of the turbu-
lence responsible for re-accelerating the electrons. Unlike giant halos, merger shocks and
Mpc-scale motions/flows would not be candidates. Gitti et al.(2002)279 originally proposed

[Brunetti & Jones 2014]

confined within cold fronts (contact discontinuities) observed in X-rays



MH & BCG radio correlated
The Astrophysical Journal, 781:9 (20pp), 2014 January 20 Giacintucci et al.

Figure 10. PMH, 1.4 GHz −PBCG, 1.4 GHz Diagram for the clusters with previously
known minihalos (empty black circle), new minihalo detections (magenta
circles), minihalo candidates (cyan circles), and central extended sources whose
classifications as minihalos are uncertain (blue triangles). Only error bars
corresponding to an uncertainty of >10% on the radio power are plotted.
(A color version of this figure is available in the online journal.)

These sources will be discussed in more detail in
Section 6.5.

The new minihalos and candidates and the previously known
minihalos reported in Table 5 are all well detected. Even
for the least significant detection—the candidate minihalo
in MACS J0329.6–0214—the brightest part of the minihalo
outside of the central point source is imaged at ∼7σ with respect
to the image noise (per beam), and the best cases are imaged at
more than 50σ .

6.1. Radio Properties of the BCG in Minihalo Clusters

By comparing the radio power of the BCGs and the radio
luminosity of the surrounding minihalos in six clusters, Govoni
et al. (2009) noticed that stronger minihalos tend to occur in
clusters with more powerful central radio galaxies, suggesting
that the minihalo emission could be partially related to the
activity of the central AGN. For our larger sample of minihalos
and candidates, we find a possible weak trend, although with a
very large scatter (Figure 10). A similar trend is also visible in
the flux-flux plane, indicating that the possible relation between
minihalo and BCG luminosities may be intrinsic. We find a
Spearman rank correlation coefficient of rs ∼ 0.5 in both planes
with a probability of no correlation of a few percent.

This result suggests that the central AGN activity is not
directly powering the minihalo emission, although it is one
of the plausible sources of the seed relativistic electrons for
the reacceleration models (Cassano et al. 2008). As argued by
Govoni et al. (2009), a tight correlation between the minihalo
and BCG radio properties is not expected, as the radio galaxy
likely undergoes multiple cycles of activity within the lifetime of
the minihalo, which is supported by the evidence for recurrent
radio outbursts for a number of cluster and group dominant
galaxies (e.g., Clarke et al. 2009; David et al. 2009; Giacintucci
et al. 2011b; Randall et al. 2011; Giacintucci et al. 2012, Venturi
et al. 2013).

6.2. Comparison between Radio Minihalos and Global
Properties of the Cluster Hosts

Cassano et al. (2008) found that clusters with higher X-ray
luminosity tend to possess more powerful minihalos. However,
this result was based on the only six minihalos that were known
at the time of their study. A more recent investigation was
carried out by Kale et al. (2013) for a larger number of minihalo
clusters (11, 5 of which were from the GRHS cluster sample).
Despite the large scatter, they found indication of a possible
radio/X-ray luminosity correlation, suggesting that an intrinsic
relation between the thermal and nonthermal cluster properties
may exist.

We can explore this possibility further using our larger sample
of 21 minihalo clusters. In Figure 11(a), we plot the minihalo
radio power at 1.4 GHz versus the cool core-excised cluster
temperature (Table 5), which can be used as a proxy for the
cluster total mass and is strongly correlated with the X-ray
luminosity. Our comparison does not indicate a clear scaling
between radio power and cluster temperature, regardless of
whether we include candidates or exclude them. We indeed
find rs ∼ 0.3 and Pno corr ∼ 20% (rs ∼ 0.1 and Pno corr ∼ 70%
if we consider only clear minihalo detections).

However, the plot provides us an important piece of infor-
mation on the kind of clusters that possess a minihalo at their
center: they all tend to have high global temperatures, with the
majority of minihalos found in T > 5 keV systems. While
proper statistical analysis should include nondetections (S.
Giacintucci et al., in preparation), this suggests that the hosts of
our detected minihalos are massive clusters.

An alternative way to estimate cluster masses is offered by
the SZ effect (e.g., Carlstrom et al. 2002). Of the 21 minihalo
clusters considered here, 14 are in the all-sky cluster catalog
of validated clusters from the first 15.5 months of Planck
observations (Planck Collaboration et al. 2013). In Table 5,
we report their total masses within R500, inferred from the
Planck observations. Figure 11(b) shows the distribution of
our subsample of minihalo clusters that have Planck data
in the PMH, 1.4 GHz − M500 plane. No obvious correlation is
visible between the radio luminosity and cluster mass—in
this case we find rs ∼ 0.3 and Pno corr ∼ 10%—which is in
agreement with the lack of a clear correlation with the global
temperature in panel (a). We note that this is in contrast with
the giant radio halos found in cluster mergers, whose radio
luminosity correlates with the cluster mass (Cassano et al.
2013 and references therein). Again, we find evidence that
minihalos are hosted by massive clusters, as all minihalos are
in M500 ! 5 × 1014 M⊙, except for the slightly less massive
system 2A 0335+096 (M500 = 2 × 1014 M⊙).

In a subsequent article, we will investigate possible corre-
lations with the thermodynamical properties of the cool cores
rather than the global cluster properties (S. Giacintucci et al., in
preparation).

6.3. Spectral Properties of Minihalos

Until now, our knowledge of the radio spectra of minihalos has
been limited to only two sources, Perseus and Ophiuchus, whose
integrated spectra are based on flux density measurements at
three frequencies. Figure 12 shows these spectra from Sijbring
(1993) and Murgia et al. (2010). In black, we show the spectrum
of a new minihalo detected in RX J1532.9+3021, based on flux
densities at four frequencies; this is reported in Section 4.2
(note that the spectrum has been multiplied by 100 for display

16

The Astrophysical Journal, 781:9 (20pp), 2014 January 20 Giacintucci et al.

Figure 11. PMH, 1.4 GHz −kT (a) and PMH, 1.4 GHz −M500 (b); Diagrams for the clusters with previously known minihalos (empty black circle), new minihalo detections
(magenta circles), minihalo candidates (cyan circles), and central extended sources whose classifications as minihalos are uncertain (blue triangles). Only error bars
corresponding to an uncertainty of >10% on the radio power are plotted.
(A color version of this figure is available in the online journal.)

Figure 12. Integrated radio spectra of the minihalos in RX J1532.9+3021
(black), Perseus (red, from Sijbring 1993), and Ophiuchus (magenta, from
Murgia et al. 2010). The total spectral index is α = 1.20 ± 0.03 for
RX J1532.9+3021, α = 1.21 ± 0.05 for Perseus, and α = 1.56 ± 0.04 for
Ophiuchus. Note that the spectrum of RX J1532.9+3021 has been multiplied by
100.
(A color version of this figure is available in the online journal.)

purposes). The three spectra appear very similar in shape, at
least in the range of frequencies currently explored. They all
seem to be well described by a power law with a steep spectral
index α = 1.21 ± 0.05 and α = 1.20 ± 0.07 for Perseus and
RX J1532.9+3021, and a slightly steeper slope for Ophiuchus,
α = 1.56 ± 0.04. For Ophiuchus, a steepening at the high
frequency may be present, although the spectral indices below
and above the data point at 610 MHz are consistent within the
errors (Murgia et al. 2010). A steepening may be also present
in the spectrum of RX J1532.9+3021, where the spectral index
changes from α = 1.02 ± 0.10 between 325 MHz and 1.4 GHz
to α = 1.41 ± 0.13 above 1.4 GHz.

The existing spectral information is not sufficient to discrimi-
nate between the competing models for the minihalo formation,
i.e., a power-law spectrum over the entire radio frequency range
expected in pure secondary models vs. a high-frequency break
predicted by turbulent reacceleration models. More data points
and a frequency range wider than that shown in Figure 12 are
necessary to accurately determine the shape of the minihalo
spectra and to confirm the high-frequency steepening in Ophi-
uchus and RX J1532.9+3021.

6.4. Is Particle Acceleration Needed in Small-size Minihalos?

As for the megaparsec-sized, giant radio halos found in many
massive, merging clusters, the few hundred kiloparsec scale
of large minihalos (such as Perseus and Ophiuchus) requires
that the relativistic electrons are continuously injected and/
or reaccelerated in situ throughout the large emitting volume.
Indeed, in the strong magnetic fields expected in the cool cores,
the radio-emitting electrons cannot diffuse from the central radio
galaxy out to the minihalo radius within their radiative lifetime,
which is almost two orders of magnitude shorter than their
diffusion timescale (e.g., Jaffe 1977).

The question we pose here is whether diffusion can still
account for smaller minihalos, such as the RMH ∼ 50 kpc
emission in A 2204. The typical diffusion velocity of relativistic
electrons in clusters is expected to be approximately the Alfvén
velocity (Jaffe 1977) vA = B/(4πρ)(1/2), where B is the cluster
magnetic field and ρ is the density of the ICM. Although
our knowledge of the magnetic field in clusters is still poor,
studies of the rotation measure of radio galaxies in or behind
clusters indicate that the magnetic field intensity in cool cores
can be as high as 5–10 µG or even stronger (e.g., Taylor et al.
2002; Clarke 2004). In these strongly magnetized, high-density
(ne ∼ 10−2 cm−3) cluster regions, vA ∼ 100 km s−1. At this
speed, the time required for the electrons to reach a radius of
∼50 kpc from the center is ∼5 × 108 yr, which needs to be
compared to their synchrotron radiative cooling time of ∼107 yr.

Thus, even the small minihalos like the one in A 2204 cannot
be produced by electrons leaking from the central radio galaxy
and diffusing within the cluster core volume. However, other
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BCG radio jets powered by cold gas condensing in cores
do MHs also have something to do with it?



Giant radio halos
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Fig. 11. Radio images of giant radio halos (contours) overlaid on the thermal X-ray emission of the hosting
clusters. Images are reported with the same physical scale (credits : Giacintucci in prep. for A2163,210 for A520
and A665,211 for A2744).

4.2. Giant Radio Halos

Returning to CRs, we note that two principal mechanism proposals are presently advo-
cated to explain the origin of CRe emitting in giant radio halos: i) (re)-acceleration of
relativistic particles by MHD turbulence in the ICM14, 15, 44, 45, 138, 162, 163, 173, 174, 236, 237 and,
ii) continuous production of secondary electron-positron pairs by inelastic hadronic colli-
sions between accumulated CRp and thermal protons in the ICM,19, 23, 24, 46, 238, 239 and their
combination.172, 177

The hadronic scenario is based on the physics described in Sect. 2.3 and allows one to re-
solve the slow diffusion problemp, because CRe are continuously injected in situ throughout
the ICM. Also the morphological connection between radio and X-ray emission in galaxy
clusters can be explained by this scenario because the X-rays trace the thermal matter that
provides the targets for the hadronic collisions. An unavoidable consequence of this sce-
nario is the emission of g-rays due to the decay of p0 that are produced by the same decay
chain that is responsible for the injection of secondary CRe (Sect. 2.3).

pAs mentioned before, slow CR diffusion in the ICM is incompatible with unavoidably rapid electron energy
loss rates unless observed electrons are injected or accelerated throughout radio halo volumes.

[Brunetti & Jones 2014]

mostly unpolarized



RHs are mergers
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two populations (radio halos and limits) also in a radio–SZ diagram (although this bimodal
behaviour appears weaker than that in X-ray diagrams), and that the two populations corre-
late with the cluster dynamics246 as in previous X-ray based studies. However the fraction
of clusters hosting radio halos using SZ selected samples appears larger than that measured
using X-ray clusters samples.253 That may be due to the combination of a distinct time
evolution of the SZ ad X-ray signals from the ICM during cluster mergers and a bias to-
ward cool-core systems in X-ray selected samples,253 and opens to complementary ways
to study the connection of thermal and non-thermal components in galaxy clusters.

Fig. 12. Left panel: distribution of galaxy clusters of the GMRT sample”244 in the radio power – X-ray luminos-
ity diagram, showing that clusters branch into two : giant radio halos (the merging systems in the left panel of the
figure) and off state”, undetected, systems (the relaxed systems in the left panel of the figure) (adapted from248).
Right panel: distribution of galaxy clusters in the centroid-shift variance w vs power ratio P3/P0 diagram. Mergers
are expected in the top-right panel, relaxed systems in the bottom-left panel. Clusters hosting giant radio halos are
reported in red (adapted from68).

The existence of a connection between thermal and non-thermal ICM components is also
highlighted by point-to-point correlations discovered between the synchrotron brightness
of giant radio halos and the X-ray brightness of the hosting clusters38, 254 and, in the case
of the Coma cluster, between the Compton y-parameter and the radio brightness.255 These
correlations have been used to claim that the spatial distribution of CRs in galaxy clusters is
generally broader than that of the thermal ICM, with implications on the physics discussed

[Brunetti & Jones 2014]



Radio relics
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Fig. 16. Images of giant radio relics (contours) overlaid on the X-ray emission from the hosting systems (colors).
The three radio relics are reported with the same physical scale. Upper-left and upper-right panels highlight
the high-resolution radio images of the northern relics in CIZA2242 and A3667, respectively (credits:214, 215 for
CIZA2242,216 for A3667,217 for A3376).

Presumably the observed CRe are accelerated or re-accelerated at these shocks. Those
CRe are then advected into the downstream region at the velocity of the downstream flow,
Vd as they cool from ICS and synchrotron losses. This process sets the thickness of radio
relics as seen at different frequencies; the emitting CRe can travel a maximum distance
from the shock = Vdt , where t is the radiative life-time of CRe emitting at the observed
frequency no, t µ n�1/2

o . Typically the life-time of CRe radiating in the radio band is of
the order of 100 Myr implying a transverse size of radio relics ⇠ 100 kpc for a reference
downstream velocity Vd = 1000 km s�1 and ICS dominated losses (with z ⇠ 0�0.3). This
is consistent with observations, once projection effects are properly taken into account. In
this case radio synchrotron spectral steepening with distance from the shock front is ex-
pected in radio relics with spatially resolved cross sections as a consequence of the fact
that the oldest population of CRe is also the most distant from the shock. This expecta-
tion is in agreement with several observations that provide evidence for steepening in radio
relics along their transverse direction, from their front to the back.214, 302, 303 Furthermore,
recent analyses have shown evidences for synchrotron spectral curvatures along the trans-
verse dimension of a few particularly favorable relics and also that the curvature increases

[Brunetti & Jones 2014]

equal-mass head-on collisions?
high polarization => ordered B



Simulating NT emission
• need B for synchrotron, Uph for IC

• relativistic electrons, power-law, cut-offs

• turbulence, merger shocks, virial shock (1st 
& 2nd order Fermi)

• recipe for acceleration, escape, cooling

• radio, X-rays & gamma-rays

• hadronic (via secondary e-s) vs. leptonic

• much more involved than thermal=>X-rays



Model for primary e-s 
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We will detail the assumptions that go into the computation of
the reacceleration coefficient in our simulations in Section 4.2,
in particular, the evaluation of ⟨k⟩, Rc, and vt .

The rate of energy losses due to synchrotron and IC scattering
off of cosmic microwave background (CMB) photons for
individual electrons is (in cgs units)

(
dp

dt

)

rad
= − 4.8 × 10−4p2

[(
BµG

BCMB

)2 sin2 θ

2/3
+ (1 + z)4

]

= − βp2

mec
. (20)

Since our relativistic particles are not individual electrons
but samples of the electron distribution function (and hence
represent many electrons), we assume for simplicity that each
relativistic particle represents an isotropic distribution of pitch
angles, with ⟨sin2 θ⟩ = 2/3. BCMB = 3.2(1 + z)2 µG is the
equivalent magnetic field strength for the CMB at present, where
z is the cosmological redshift.

In our simulation the core passage of the disturbing subcluster
occurs at t ∼ 1.8 Gyr from the beginning of the simulation, and
our particle trajectories begin at t = 2.55 Gyr (after the onset of
turbulence due to sloshing, see Section 5.1), and we assign the
redshift z = 0 to the epoch t = 5 Gyr of the simulation, in order
to reproduce some of the observed nearby clusters exhibiting
cold fronts in their cores. Under these conditions, the redshift
at each epoch is computed from the simulation time assuming a
h = 0.7, ΩM = 0.3, and ΩΛ = 0.7 ΛCDM cosmology.

The Coulomb losses are given by (in cgs units)
(

dp

dt

)

coll
= −3.3 × 10−29nth

[
1 +

ln (γ /nth)
75

]
, (21)

where nth is the number density of thermal particles.

3.4. Solving for the Evolution of the Relativistic Particles

If spatial diffusion is not important, formally the time evolu-
tion of the relativistic electron momentum distribution N(p,t) is
a solution to the Fokker–Planck equation (Brunetti & Lazarian
2007):

∂N (p, t)
∂t

= ∂

∂p

[
N (p, t)

(∣∣∣∣
dp

dt

∣∣∣∣
rad

+
∣∣∣∣
dp

dt

∣∣∣∣
coll

− 4Dpp

p

)]

+
∂2

∂p2
[DppN (p, t)] (22)

Solving this equation numerically can be expensive, particu-
larly for the case of many individual tracer particle trajectories
as in our simulation. However, as previously described, we have
chosen to evolve relativistic “sample” particles instead of N(p,t)
explicitly, which can be thought of as the probability density for
the random variable Pt, which corresponds to the momenta of
the sample particles. For a given Fokker–Planck equation and
distribution function N(p,t) there is a corresponding stochas-
tic differential equation (SDE) for the evolution of Pt for an
ensemble of sample particles. By following the momentum tra-
jectories of many sample particles, we may reliably approxi-
mate the behavior of N(p,t) and the observable quantities that
depend on it, such as the resultant synchrotron and IC emis-
sion. SDEs have been used extensively in other astrophysical
contexts, in particular, for the integration of cosmic-ray trajec-
tories in the heliospheric and galactic magnetic fields (Zhang

1999; Florinski & Pogorelov 2009; Pei et al. 2010; Strauss
et al. 2011; Kopp et al. 2012). The main differences between
our approach and many of these works is that (1) we are only
integrating the momentum of each particle as the relativistic
particles are assumed to follow the tracer particle trajectories in
space and (2) we are integrating the equations forward in time
instead of backward to the original source of particles.

The SDE that corresponds to the above Fokker–Planck
equation is given (in the Itō formulation) by

dPt = a(p, t)dt + b(p, t)dWt, (23)

where the “drift” term is

a(p, t) =
∣∣∣∣
dp

dt

∣∣∣∣
rad

+
∣∣∣∣
dp

dt

∣∣∣∣
coll

−4Dpp

p
(24)

and the “stochastic” term is

b(p, t)dWt =
√

2DppdWt ∼
√

2DppdtN (0, 1), (25)

where dWt is a standard Wiener (or “Brownian motion”) process
and N (0, 1) is a normal distribution with zero mean and unit
variance (the “∼” symbol here indicates “is distributed as”).
The effects of each of these terms on the relativistic electron
spectrum will be shown in the Appendix.

We have integrated the drift term of this equation using a
fourth-order Runge–Kutta method. To integrate the stochastic
term, we use the Milstein method (Kloeden & Platen 2011).
This results in the following discretization for Equation (25):

b(p, t)dWt ≈ b(p, t)∆Wn +
1
2
b(p, t)

∂b(p, t)
∂p

[(∆Wn)2 − ∆t],

(26)
where

∆Wn ∼
√

∆tN (0, 1). (27)

This equation is integrated for each relativistic particle along
each tracer particle trajectory with a variable time step for each
tracer particle ∆tj = min{0.1(pi,j /ṗi,j ), 0.1(p2

i,j /Dpp,i,j)} to
ensure stability. To determine the fluid quantities (ρ, T , δv, B) at
any point on the trajectory, they are linearly interpolated between
the saved instances of each particle along that trajectory, which
have a time resolution of 10 Myr. In the Appendix we provide
tests of our method when compared to analytical solutions
and the results of a Fokker–Planck calculation. A detailed
description of the method and the code will be the subject of a
future paper (J. A. ZuHone et al., in preparation).

4. RESULTS: TURBULENCE

4.1. Characteristics of Turbulence Generated
in the Sloshing Region

In the sloshing/reacceleration hypothesis for radio mini-halos
that we are testing in this work, the radio emission coincident
with the envelope of the cold fronts as seen in X-rays is due
to the turbulence that is associated with the sloshing motions.
Figure 3 shows the spiral shape in temperature that results from
the sloshing motions for a few different epochs of the simulation.
We now determine the location and spectrum of turbulence
that results from the encounter with the subcluster. We note
at the outset that a very recent work (Vazza et al. 2012), using
an improved filtering technique, produced turbulent velocity
maps and power spectra for gas sloshing in the core of a galaxy
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We will detail the assumptions that go into the computation of
the reacceleration coefficient in our simulations in Section 4.2,
in particular, the evaluation of ⟨k⟩, Rc, and vt .

The rate of energy losses due to synchrotron and IC scattering
off of cosmic microwave background (CMB) photons for
individual electrons is (in cgs units)

(
dp

dt

)

rad
= − 4.8 × 10−4p2

[(
BµG

BCMB

)2 sin2 θ

2/3
+ (1 + z)4

]

= − βp2

mec
. (20)

Since our relativistic particles are not individual electrons
but samples of the electron distribution function (and hence
represent many electrons), we assume for simplicity that each
relativistic particle represents an isotropic distribution of pitch
angles, with ⟨sin2 θ⟩ = 2/3. BCMB = 3.2(1 + z)2 µG is the
equivalent magnetic field strength for the CMB at present, where
z is the cosmological redshift.

In our simulation the core passage of the disturbing subcluster
occurs at t ∼ 1.8 Gyr from the beginning of the simulation, and
our particle trajectories begin at t = 2.55 Gyr (after the onset of
turbulence due to sloshing, see Section 5.1), and we assign the
redshift z = 0 to the epoch t = 5 Gyr of the simulation, in order
to reproduce some of the observed nearby clusters exhibiting
cold fronts in their cores. Under these conditions, the redshift
at each epoch is computed from the simulation time assuming a
h = 0.7, ΩM = 0.3, and ΩΛ = 0.7 ΛCDM cosmology.

The Coulomb losses are given by (in cgs units)
(

dp

dt

)

coll
= −3.3 × 10−29nth

[
1 +

ln (γ /nth)
75

]
, (21)

where nth is the number density of thermal particles.

3.4. Solving for the Evolution of the Relativistic Particles

If spatial diffusion is not important, formally the time evolu-
tion of the relativistic electron momentum distribution N(p,t) is
a solution to the Fokker–Planck equation (Brunetti & Lazarian
2007):

∂N (p, t)
∂t

= ∂

∂p

[
N (p, t)

(∣∣∣∣
dp

dt

∣∣∣∣
rad

+
∣∣∣∣
dp

dt

∣∣∣∣
coll

− 4Dpp

p

)]

+
∂2

∂p2
[DppN (p, t)] (22)

Solving this equation numerically can be expensive, particu-
larly for the case of many individual tracer particle trajectories
as in our simulation. However, as previously described, we have
chosen to evolve relativistic “sample” particles instead of N(p,t)
explicitly, which can be thought of as the probability density for
the random variable Pt, which corresponds to the momenta of
the sample particles. For a given Fokker–Planck equation and
distribution function N(p,t) there is a corresponding stochas-
tic differential equation (SDE) for the evolution of Pt for an
ensemble of sample particles. By following the momentum tra-
jectories of many sample particles, we may reliably approxi-
mate the behavior of N(p,t) and the observable quantities that
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contexts, in particular, for the integration of cosmic-ray trajec-
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1999; Florinski & Pogorelov 2009; Pei et al. 2010; Strauss
et al. 2011; Kopp et al. 2012). The main differences between
our approach and many of these works is that (1) we are only
integrating the momentum of each particle as the relativistic
particles are assumed to follow the tracer particle trajectories in
space and (2) we are integrating the equations forward in time
instead of backward to the original source of particles.

The SDE that corresponds to the above Fokker–Planck
equation is given (in the Itō formulation) by

dPt = a(p, t)dt + b(p, t)dWt, (23)

where the “drift” term is
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∣∣∣∣
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b(p, t)dWt =
√
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√

2DppdtN (0, 1), (25)

where dWt is a standard Wiener (or “Brownian motion”) process
and N (0, 1) is a normal distribution with zero mean and unit
variance (the “∼” symbol here indicates “is distributed as”).
The effects of each of these terms on the relativistic electron
spectrum will be shown in the Appendix.

We have integrated the drift term of this equation using a
fourth-order Runge–Kutta method. To integrate the stochastic
term, we use the Milstein method (Kloeden & Platen 2011).
This results in the following discretization for Equation (25):

b(p, t)dWt ≈ b(p, t)∆Wn +
1
2
b(p, t)

∂b(p, t)
∂p

[(∆Wn)2 − ∆t],

(26)
where

∆Wn ∼
√

∆tN (0, 1). (27)

This equation is integrated for each relativistic particle along
each tracer particle trajectory with a variable time step for each
tracer particle ∆tj = min{0.1(pi,j /ṗi,j ), 0.1(p2

i,j /Dpp,i,j)} to
ensure stability. To determine the fluid quantities (ρ, T , δv, B) at
any point on the trajectory, they are linearly interpolated between
the saved instances of each particle along that trajectory, which
have a time resolution of 10 Myr. In the Appendix we provide
tests of our method when compared to analytical solutions
and the results of a Fokker–Planck calculation. A detailed
description of the method and the code will be the subject of a
future paper (J. A. ZuHone et al., in preparation).

4. RESULTS: TURBULENCE

4.1. Characteristics of Turbulence Generated
in the Sloshing Region

In the sloshing/reacceleration hypothesis for radio mini-halos
that we are testing in this work, the radio emission coincident
with the envelope of the cold fronts as seen in X-rays is due
to the turbulence that is associated with the sloshing motions.
Figure 3 shows the spiral shape in temperature that results from
the sloshing motions for a few different epochs of the simulation.
We now determine the location and spectrum of turbulence
that results from the encounter with the subcluster. We note
at the outset that a very recent work (Vazza et al. 2012), using
an improved filtering technique, produced turbulent velocity
maps and power spectra for gas sloshing in the core of a galaxy
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losses. Since the number of cosmic-ray electrons is small
compared to the number of thermal electrons, this popu-
lation is probably not important.

Some of the assumed properties of the numerical models
are summarized in Table 1. The models start at a redshift of

In models with continual particle injection, this starts atz
i
.

The value of the Hubble constant in the models is givenz
s
.

in column (4). The average thermal electron density andn
emagnetic Ðeld B are given in columns (5) and (6). A ““ Yes ÏÏ in

the columns labeled ““ Initial ÏÏ or ““ Continual ÏÏ indicates that
the model includes an initial population of relativistic elec-
tron at and/or that there is continual particle injectionz

isince The values of p, and indicate the form ofz
s
. p0, cbr, p

lthe power-law or broken power-law injection spectrum,
according to equations (45)È(48). If no value is given for cbr,the injection spectrum is a single power law (eqs. [45] and
[46]). For a model with both an initial population and
continual particle injection, the value of is the fractionFinjof the total particle energy that is contributed by the contin-
ual particle injection. The last column gives a comment on
the model.

5.2. Solutions
Some of the results for the numerical models for the elec-

tron population in clusters are given in Table 2. For each
model, the column (2) gives the total number of relativistic
electrons at present (at z \ 0). Columns (3) and (4) giveNtotthe kinetic energy in relativistic electrons at present (z \ 0),
either for all of the electrons (c [ 1) or only for those with
c [ 300. Column (5) gives the energy-averaged mean value
of c, deÐned here as

ScT 4
/ N(c)c2 dc
/ N(c)c dc . (50)

Sarazin & Lieu (1998) show that this quantity is useful
for estimating the emission properties of these electrons.
For models without particle injection at the present time
(° 5.2.2), the last column gives the upper cut o† to the elec-
tron distribution, cmax.

5.2.1. Steady Particle Injection
I Ðrst considered models in which relativistic electrons

are injected into the ICM at a constant rate over the history
of the cluster, and there was no initial population of elec-
trons. Figure 4 shows the result of steady injection since an
initial redshift of the solid curve is for model 1 inz

i
\ 2 ;

Table 1. For this large redshift, the age of the cluster exceeds
the loss time of the electrons for all values of c (Fig. 2). This
is particularly true when one includes the increase in the
energy density of the CMB with redshift. For example,
Figure 3 shows that IC losses will remove all of the particles
produced at z D 1 down to low values of c where Coulomb
losses dominate and the lifetime is short. Thus, one expects
that the particle distribution will approach steady state,
with the rate of injection balancing the rate of loss at most
energies. The injected electrons had a simple power-law dis-
tribution (eq. [46]) with p \ 2.3. Figure 4 shows that the
resulting electron population is essentially a broken power
law. The dashed lines show power-law distributions with
indexes of p@ \ 1.3 and 3.3. At lower energies, at which
Coulomb losses dominate the distribution is very(c [ 100),
nearly a power law with p@ \ 1.3. This is one power Ñatter
than the injected population, as expected from the steady
state result of equation (41). At high energies, at which IC

FIG. 4.ÈRelativistic electron population in a cluster in which particles
have been injected at a constant rate since The injected particles hadz

i
\ 2.

a power-law distribution with p \ 2.3. The solid curve (model 1) is the
distribution in a cluster with an average thermal electron density of n

e
\

cm~3. The two short-dashed lines are power-law distributions with10~3
p@ \ 1.3 and 3.3, which match the resulting particle distributions at low
and high energy, respectively. The two long-dashed curves are similar to
model 1 but have a decreased electron density of cm~3 (model 7)n

e
\ 10~4

or an increased magnetic Ðeld of B \ 5 kG (model 8).

and synchrotron losses dominate the distribu-(c Z 1000),
tion is nearly a power law with p@ \ 3.3. This is one power
steeper than the injected population, as expected from the
steady state result of equation (40).

The approach to steady state in models with constant
injection is shown in Figure 5, which gives the present-day
populations in models with initial redshifts of 0.1,z

i
\ 0.01,

0.3, 0.5, 1, and 2 (top to bottom ; these are models 1È6 in
Table 1.) Every model has an average electron density of

cm~3 and a magnetic Ðeld of B \ 0.3 kG. Then
e
\ 10~3

particles are injected with a power-law spectrum with
p \ 2.3. The older models 1, and 2) have achieved(z

i
\ 0.5,

steady state, since the loss times of electrons of all energies
are less than the age of the cluster. The younger cluster

FIG. 5.ÈPresent-day relativistic electron populations in a series of
models with steady particle injection but no initial populations of particles.
The solid curves show models for clusters that started at redshifts of z

i
\ 2,

1, 0.5, 0.3, 0.1, and 0.01 (bottom to top). These are models 1È6 in Table 1. In
all of the models, the particles are injected at a constant rate with a power-
law distribution with p \ 2.3. The short-dashed curve gives the total
power-law spectrum of all of the injected particle over the cluster lifetime.

steepening at large E, flattening at 
small E by Δp=1; slope changes at tloss=tage

p=2.3
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The numerical coefficient includes electron-ion and
electron-electron bremsstrahlung and assumes a helium
abundance by number of 10% of hydrogen.

The values of these loss functions as a function of c are
given in Figure 1 for an intracluster medium (ICM) electron
density of cm~3 and a typical ICM mag-n

e
\ 1.0 ] 10~3

netic Ðeld of B \ 1 kG. It is clear from this Ðgure and the
expressions for the loss functions that IC losses are domi-
nant at large energies, while Coulomb losses domi-c Z 200,
nate for sufficiently small or for higher densities.c [ 200
Bremsstrahlung losses are unlikely to be dominant unless
the density is higher than is typical in the bulk of the ICM
(outside of cooling Ñow regions). Similarly, synchrotron
losses are unlikely to be dominant unless the magnetic Ðeld
is much stronger than 1 kG.

2.3. Electron L ifetimes
One can deÐne an instantaneous timescale for particle

losses by

tloss 4
c

b(c)
. (11)

Values for this loss timescale at the present time (z \ 0) are
shown in Figure 2. The solid curve gives values assuming an
average electron density of cm~3 and a magneticn

e
\ 10~3

Ðeld of B \ 1 kG. For values of the magnetic Ðeld this small
or lower, synchrotron losses are not very signiÐcant, and

is nearly independent of B. The short-dashed curvetlossshows the e†ect of increasing the magnetic Ðeld to B \ 5
kG; the losses at high energies are increased, and the loss
timescales shortened. The dot-dashed curve shows the loss
timescale if the electron density is lowered to n

e
\ 10~4

cm~3. This reduces the losses at low energies and increases
the loss times there.

The characteristic features of for parameters relevanttlossto clusters are that it has a maximum at c D 100È500 and
that the maximum loss time is quite long, unless either the
magnetic Ðeld or electron density are larger than typical
values for most of the volume of a cluster. The maximum
loss times are D3È10 Gyr, which is comparable to the likely
ages of clusters. Thus, particles can accumulate with
c D 300 for long periods in clusters. In ° 3.1 below, we will

FIG. 1.ÈValues of the losses function b(c) for inverse Compton (IC)
emission, Coulomb losses, synchrotron losses, and bremsstrahlung losses
as functions of c. The values assume cm~3, B \ 1 kG, and z \ 0.n

e
\ 10~3

FIG. 2.ÈInstantaneous loss timescale (eq. [11]) as a function of ctlossfor electrons in a cluster with an electron density of cm~3 and an
e
\ 10~3

magnetic Ðeld of B \ 1 kG (solid curve) ; a magnetic Ðeld of B \ 5 kG
(dashed curve) ; and an electron density of cm~3 (dot-dashedn

e
\ 10~4

curve).

show that, although electrons at c D 300 can accumulate for
a signiÐcant fraction of the Hubble time, the increase in the
energy density of the CMB implies that the accumulation
period is restricted to z [ 1.

3. ANALYTIC SOLUTIONS

A number of simple analytic solutions for the evolution of
the cosmic-ray population (eq. [5]) are possible. I will con-
sider two simple classes of solutions : solutions with an
initial populations of particles N(c, at some initial timet

i
) t

ior redshift but no subsequent injection of additional par-z
iticles [Q(c) \ 0] and solutions with no initial population

[N(c, but with continual injection of particles at at
i
) \ 0]

rate Q(c, t). Since equation (5) is linear in N(c, t), any solu-
tion can be written as a superposition of these two solu-
tions.

3.1. Initial Injection Only
3.1.1. General Solution

First, consider a case where there is no continual source
of new particles (Q \ 0). Then, the population simply
evolves because of the loss of energy by individual particles.
At this point, assume that the loss function b(c, t) is an
arbitrary function of c and time t. Given an initial value for
the energy of a particle at time equation (4) can bec

i
t
i
,

integrated to give the value of c at a later time t. Alternative-
ly, equation (4) can be integrated backward in time to give
the initial energy at corresponding to a particlec

i
(c, t, t

i
) t

iwith energy c at a later time t. If there is no subsequent
injection of particles, then the number of particles is con-
served if one follows their energies. This implies thatP

c

=
N(c@, t)dc@ \P

ci

=
N(c@, t

i
)dc@ . (12)

The di†erential population density is then given by

N(c, t) \ N(c
i
, t

i
)

Lc
i

Lc
K
t
. (13)

3.1.2. Constant L oss Function
For periods of time that are short compared to the

Hubble time, the total loss function b(c) may be approx-

[Sarazin 1999]

t
loss

⌘ E/Ė

ne=10-3 cm-3
B=1μG

short cooling time for e-s emitting at1.4GHz
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TABLE 2

RESULTS FOR THE ELECTRON ENERGY SPECTRUM

ECR,e
Ntot c [ 1 c [ 300

MODEL (1066) (1061 ergs) (1061 ergs) ScT cmax
(1) (2) (3) (4) (5) (6)

1 . . . . . . . 11.98 28.39 9.48 544.6
2 . . . . . . . 14.96 35.46 11.85 544.6
3 . . . . . . . 21.16 50.15 16.81 546.2
4 . . . . . . . 29.12 67.32 23.50 564.2
5 . . . . . . . 65.38 119.23 42.59 675.7
6 . . . . . . . 377.34 264.52 71.55 1159.4
7 . . . . . . . 95.67 91.58 11.50 204.7
8 . . . . . . . 11.73 21.10 4.29 302.0
9 . . . . . . . 118.87 198.19 62.98 761.9 15107
10 . . . . . . 7.67 56.76 23.17 334.0 1379
11 . . . . . . 1.95 13.38 0.70 153.6 338
12 . . . . . . 0.67 2.17 0.00 60.6 110
13 . . . . . . 0.00 0.00 0.00 3.1 83
14 . . . . . . 44.38 88.65 4.17 93.2 405
15 . . . . . . 3.93 28.99 7.67 209.9 582
16 . . . . . . 1.95 13.43 0.74 154.4 340
17 . . . . . . 1.93 12.82 0.31 147.0 320
18 . . . . . . 1.76 9.01 0.00 104.7 211
19 . . . . . . 1.44 4.66 0.00 61.6 114
20 . . . . . . 8.51 21.01 6.93 527.5
21 . . . . . . 0.54 11.12 8.13 1513.9
22 . . . . . . 0.61 7.57 0.93 212.0 333
23 . . . . . . 113.10 159.80 53.50 787.0
24 . . . . . . 57.52 86.59 27.10 740.1
25 . . . . . . 29.74 49.98 13.90 664.4
26 . . . . . . 13.06 28.02 5.98 521.8
27 . . . . . . 3.06 14.84 1.23 224.6
28 . . . . . . 2.06 13.52 0.75 161.5

models show departures from steady state. For these
models, the energy spectra of electrons can be divided into
three regions. At very high energies the IC losses(c Z cmax),are sufficiently rapid that the loss timescale (eq. [11]) is
shorter than the age, the populations approach steady state,
and the population is a power law that is one power steeper
than the injected spectrum. Similarly, at low energies the
loss timescale is also generally shorter than the age (Fig. 2).
The population also approaches steady state below some
lower value of and the population is a power lawc [ clow,
that is one power Ñatter than the injection spectrum. At
intermediate energies the loss timescale isclow > c > cmax,longer than the age and the population is given by the
accumulation of the injection rate. Thus, it has the same
spectrum as the injection spectrum. For younger injection
models where the resulting electron populationclow > cmax,is given quite accurately by the self-similar solution (eq.
[44]).

Figure 4 also shows the e†ect of changing the gas density
or magnetic Ðeld in the models. The two long-dashed curves
are the same as model 1, but with the electron density
decreased to cm~3 (model 7) or the magneticn

e
\ 10~4

Ðeld increased to B \ 5 kG (model 8). Increasing or
decreasing the gas density mainly increases or decreases the
rate of Coulomb losses at low energies, and this decreases or
increases the electron population at low energies. Reducing

also decreases the electron energy or value of c at whichn
ethe transition between the two power-law slopes occurs in

steady state. Similarly, increasing magnetic Ðeld enhances

the rate of synchrotron losses at high energies. This reduces
the population of at high energies, but the e†ect is impor-
tant only if the Ðeld exceeds about 3 kG.

5.2.2. Initial Population with No L ater Particle Injection
Next, models were calculated with an initial electron

population at a redshift but with no subsequent injectionz
i
,

of particles. Figure 6 shows the result for models with di†er-
ing values of the initial redshift The initial particle popu-z

i
.

lation was a single power law with (eq. [45]). Atp0 \ 2.3
high energies, the electron population is reduced and the
shape of the spectrum steepened by IC and synchrotron
losses. There is an upper cuto† to the electron distribution
(eqs. [19] and [20]) for values of c beyond a maximum
values given approximately by equation (27), or equa-cmax,tion (18) for low redshifts. The cuto† energies in the numeri-
cal models are in reasonable agreement with these analytic
approximations as long as The value ofcmax Z 300. cmaxdecreases as the age of the electron populations (or, equiva-
lently, the initial redshift increases.z

i
)

In order to have any signiÐcant population of primary
electrons with at the present time, Figures 3 and 6c Z 102
show that there must have been a substantial injection of
particles into clusters at moderately low redshifts, z [ 1.

At low energies the electron population is(c [ clow),
reduced and the shape of the distribution Ñattened by
Coulomb losses to the thermal plasma. As discussed in
° 3.1.6, the slow variation of the Coulomb loss function with
c results in a Ñat energy spectrum at low energies (eq. [36]).
All of the older cluster models in Figure 6 show this behav-
ior. In the younger models there is an extended(z

i
[ 0.3),

region where the initial population is pre-clow [ c [ cmaxserved. In the older models the Ñat energy spec-(z
i
Z 0.3),

trum at low energies and steep cuto† at high energies nearly
meet, and the energy spectra have a ““ top-hat ÏÏ form.

Figure 7 shows the e†ect of varying two of the basic
parameters of the models. The solid curve is model 11, with
an average electron density of cm~3 and an

e
\ 10~3

Hubble constant of km s~1 Mpc~1. In all of theseH0 \ 65
models, the electron population was injected into the cluster
at The short-dashed curve (model 14) is a modelz

i
\ 0.3.

FIG. 6.ÈRelativistic electron population in models with an initial
population of particles generated at a redshift but no subsequent injec-z

i
,

tion. The initial population (dashed line) had a power-law distribution with
The solid curves show the resulting present populations forp0 \ 2.3.

values of the initial redshift of 0.1, 0.3, and 0.5.z
i
\ 0.01,
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The function R(x) is deÐned as (Ghisellini, Guilbert, &
Svensson 1988)

R(x) 4 2x2MK4@3(x)K1@3(x)[35x[K4@32 (x)[K1@32 (x)]N ,

(59)

where K is the modiÐed Bessel function. The normalized
frequency variable x is

x 4
l

3c2l
c

, (60)

where is the cyclotron frequencyl
c

l
c
4

eB
2nm

e
c

. (61)

The values of the magnetic Ðelds in the models are given in
Table 1. For an electron with a given energy, the radio
spectrum in equation (58) is maximum for x B 0.1146. Elec-
trons with a Lorentz factor of c produce radio emission with
l D 100(B/kG)(c/104)2 MHz, and rather high electron ener-
gies are needed to produce observable radio emis-(c Z 104)
sion. Thus, these are likely to be the same electrons that
produce the hardest HXR emission.

Column (9) of Table 3 gives the resulting radio powers of
the models at a wavelength of 91 cm (l \ 328 MHz), while
column (10) gives the spectral index between 91 and 21 cm
(l \ 1.4 GHz). The results are very similar to those for the
HXR emission. Because of the short lifetimes of the high-
energy electrons required for radio emission, only models
with very recent particle injection (at have anyz [ 0.01)
signiÐcant radio emission. The high-energy particles tend to
be in steady state, and the radio spectra of the models tend
to be quite similar. Three of the most divergent radio
spectra are shown in Figure 16. The radio spectrum of
model 23 is typical of those for steady state models with
continual particle injection and applies to most of the
models with signiÐcant radio emission. In model 6, the elec-
trons have not yet reached steady state, and the radio spec-

FIG. 16.ÈRadio synchrotron emission from three cluster models. The
solid curve gives the radio spectrum of model 23, which is typical of the
models with current particle injection that has reached steady state.
Almost all of the models that have signiÐcant radio emission have spectra
that are nearly identical to that of model 23. In model 6, the electrons have
not reached steady state and the spectrum is somewhat Ñatter than that of
model 23. On the other hand, in model 9, all of the electrons were injected
at and the highest energy electrons have lost energy by IC andz

i
\ 0.01

synchrotron emission. This spectrum is much steeper than that of model 23
at high frequencies.

trum is Ñatter. All of the electrons in model 9 were injected
at and the highest energy particles have beenz

i
\ 0.01,

removed by IC and synchrotron losses. This spectrum is
quite steep.

In general, HXR emission and radio synchrotron emis-
sion are expected only in clusters with very recent or current
injection of relativistic electrons. Thus, both measure the
current rate of particle injection. For example, if the par-
ticles are accelerated in ICM shocks, HXR and radio emis-
sion would be expected only in clusters that are currently
undergoing (or that very recently underwent) a merger.

6.3. Optical and UV Emission
One also expects that the lower energy portion of the

cosmic-ray population in clusters will produce di†use
optical and UV emission. Di†use optical emission is known
to exist in many clusters, particularly in those with central
cD galaxies (see, e.g., Boughn & Uson 1997). Although the
origin is not completely understood, the optical colors of
the di†use light suggest that it is due to old stars, which may
have been stripped from cluster galaxies. It is likely that the
near or vacuum UV are better regions to detect low surface
brightness di†use emission due to IC emission, since the
older stellar population in E and S0 galaxies (and, presum-
ably, the intracluster stellar population) are fainter there.

Table 3 gives the power at a wavelength of 2000L l(UV) A!
and the best-Ðt power-law spectral index betweenaOpt,UV2000 and 8000 The UV powers of most of the models lieA! .
within a relatively narrow range of about an order of mag-
nitude. Unless the electron density in the ICM is much
higher than 0.001 cm~3 and Coulomb losses are catastro-
phic or the electron population in clusters is very old, one
would always expect a signiÐcant population of lower
energy electrons. The IC spectra in the optical and UV are
fairly Ñat, with spectral indexes of In[0.5 Z aOpt,UV Z 0.3.
models with current particle injection, the lower energy
electron population should be approaching steady state
with the Coulomb losses (eq. [41]). Then, the expected
power-law for the IC emission is a B [(p [ 2)/2 B [0.15.
For models with only an initial electron population, the
electron spectrum is expected to be nearly Ñat at low ener-
gies, and the spectrum is given by equation (55). Thus, the
spectral indexes should be slightly positive in these models.

The predicted Ñuxes are rather low when compared to the
di†use optical emission seen in clusters of galaxies or to the
sensitivity of current and UV instruments for detecting
di†use emission.

7. CONCLUSIONS

Models for the integrated population of primary cosmic-
ray electrons in clusters of galaxies have been calculated.
The evolution of the relativistic electrons included the
e†ects of energy losses due to IC scattering, synchrotron
emission, Coulomb losses to the ICM, and bremsstrahlung.
For typical cluster parameters, the combined timescale for
these losses reaches a maximum of D3 ] 109 yr for elec-
trons with Lorentz factors c D 300. This maximum loss
timescale is comparable to the Hubble time or the typical
age of clusters. For relativistic electrons with either much
higher or lower energies, the loss timescale is considerably
shorter than the typical age of a cluster.

Although the models do not depend on the detailed
nature of the source of the relativistic electrons, we assume
that they are accelerated by shocks, either due to the forma-

steady injection since zi=0.01, 0.05

cooling break w.o. injection, zi=0.01
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ABSTRACT

A number of relaxed, cool-core galaxy clusters exhibit diffuse, steep-spectrum radio sources in their central regions,
known as radio mini-halos. It has been proposed that the relativistic electrons responsible for the emission have
been reaccelerated by turbulence generated by the sloshing of the cool core gas. We present a high-resolution
MHD simulation of gas sloshing in a galaxy cluster coupled with subgrid simulations of relativistic electron
acceleration to test this hypothesis. Our simulation shows that the sloshing motions generate turbulence on the
order of δv ∼ 50–200 km s−1 on spatial scales of ∼50–100 kpc and below in the cool core region within the
envelope of the sloshing cold fronts, whereas outside the cold fronts, there is negligible turbulence. This turbulence
is potentially strong enough to reaccelerate relativistic electron seeds (with initial γ ∼ 100–500) to γ ∼ 104 via
damping of magnetosonic waves and non-resonant compression. The seed electrons could remain in the cluster
from, e.g., past active galactic nucleus activity. In combination with the magnetic field amplification in the core,
these electrons then produce diffuse radio synchrotron emission that is coincident with the region bounded by
the sloshing cold fronts, as indeed observed in X-rays and the radio. The result holds for different initial spatial
distributions of pre-existing relativistic electrons. The power and the steep spectral index (α ≈ 1–2) of the resulting
radio emission are consistent with observations of mini-halos, though the theoretical uncertainties of the acceleration
mechanisms are high. We also produce simulated maps of inverse-Compton hard X-ray emission from the same
population of relativistic electrons.

Key words: galaxies: clusters: general – magnetohydrodynamics (MHD) – radio continuum:
galaxies – turbulence – X-rays: galaxies: clusters

Online-only material: color figures

1. INTRODUCTION

A number of relaxed, cool-core clusters are hosts to faint,
diffuse radio emission with a radius comparable to the size of
the cooling region (r ∼< 100–300 kpc) and a steep spectrum
(α > 1; Sν ∝ ν−α). These sources, called mini-halos, are
relatively rare, with currently only around 10 clusters with
confirmed detections. Examples include Perseus (Burns et al.
1992; Sijbring 1993), A2029 (Govoni et al. 2009), Ophiuchus
(Govoni et al. 2009; Murgia et al. 2010), RXC J1504.1−0248
(Giacintucci et al. 2011), and RXJ 1347−1145 (Gitti et al.
2007), to name a few. Questions still remain about the physical
properties and the origin of these sources.

Though clusters hosting mini-halos have central active galax-
ies, they are not sufficient by themselves to power the diffuse
radio emission. The radiative timescale of the electrons at the
required energies for the observed emission (∼108 years) is
much shorter than the time required for these electrons to dif-
fuse across the cooling region (Brunetti 2003). Two physical
mechanisms have been identified as possibly responsible for the
radio emission: reacceleration of pre-existing, low-energy elec-
trons in the intracluster medium (ICM) by turbulence in the core
region (Gitti et al. 2002, 2004) and the generation of secondary
particles via inelastic collisions between relativistic cosmic-ray
protons and thermal protons (Pfrommer & Enßlin 2004; Keshet
& Loeb 2010; Keshet 2010).

In the reacceleration model, the seed electrons may be
provided by buoyant bubbles inflated by the central active
galactic nucleus (AGN) and disrupted by gas motions in the
core. In the absence of a reacceleration mechanism, electrons
in such disrupted bubbles cool rapidly and emit at radio
frequencies well below those currently observable. However,

a key question is the origin of the turbulence responsible
for reaccelerating the electrons. Gitti et al. (2002) originally
proposed that the cooling flow of gas inward in the core
may generate turbulence. However, recent X-ray observations
indicate that, while “cooling flows” as envisioned in Fabian
& Nulsen (1994) probably do not materialize, even relatively
relaxed clusters have large-scale gas motions in their cores.
The observational signature of these gas motions are the spiral-
shaped “cold fronts” seen in the majority of cool-core clusters
(for a review see Markevitch & Vikhlinin 2007). These cold
fronts are believed to be produced by the cold gas of the core
“sloshing” in the cluster’s deep potential well. Fujita et al. (2004)
showed that sloshing motions can produce significant turbulence
in the cluster core. Mazzotta & Giacintucci (2008) discovered
spatial correlations between radio mini-halo emission and cold
fronts in the X-ray images of two clusters—the mini-halos
apparently contained within the region delineated by the cold
fronts. A similar correlation is seen in the Perseus Cluster.
These authors suggested the correlation arises from turbulence
generated by the sloshing motions, a hypothesis that we test
in this work. Figure 1 shows a particularly striking example of
this in the cluster RXJ1720.1+26, clearly showing that the radio
emission of the mini-halo is bounded by the cold fronts as seen
in X-rays.

In the last few years, a suite of hydrodynamic and magne-
tohydrodynamic simulations of idealized cluster mergers have
been carried out to test the sloshing scenario for the origin of
the cold fronts in cool cores (Ascasibar & Markevitch 2006,
hereafter AM06), determine the physical effects of sloshing on
the cluster thermal gas and magnetic field (ZuHone et al. 2010,
2011, hereafter ZMJ10 and ZML11), and make comparisons
to observations of specific clusters with sloshing cold fronts
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We will detail the assumptions that go into the computation of
the reacceleration coefficient in our simulations in Section 4.2,
in particular, the evaluation of ⟨k⟩, Rc, and vt .

The rate of energy losses due to synchrotron and IC scattering
off of cosmic microwave background (CMB) photons for
individual electrons is (in cgs units)

(
dp

dt

)

rad
= − 4.8 × 10−4p2

[(
BµG

BCMB

)2 sin2 θ

2/3
+ (1 + z)4

]

= − βp2

mec
. (20)

Since our relativistic particles are not individual electrons
but samples of the electron distribution function (and hence
represent many electrons), we assume for simplicity that each
relativistic particle represents an isotropic distribution of pitch
angles, with ⟨sin2 θ⟩ = 2/3. BCMB = 3.2(1 + z)2 µG is the
equivalent magnetic field strength for the CMB at present, where
z is the cosmological redshift.

In our simulation the core passage of the disturbing subcluster
occurs at t ∼ 1.8 Gyr from the beginning of the simulation, and
our particle trajectories begin at t = 2.55 Gyr (after the onset of
turbulence due to sloshing, see Section 5.1), and we assign the
redshift z = 0 to the epoch t = 5 Gyr of the simulation, in order
to reproduce some of the observed nearby clusters exhibiting
cold fronts in their cores. Under these conditions, the redshift
at each epoch is computed from the simulation time assuming a
h = 0.7, ΩM = 0.3, and ΩΛ = 0.7 ΛCDM cosmology.

The Coulomb losses are given by (in cgs units)
(

dp

dt

)

coll
= −3.3 × 10−29nth

[
1 +

ln (γ /nth)
75

]
, (21)

where nth is the number density of thermal particles.

3.4. Solving for the Evolution of the Relativistic Particles

If spatial diffusion is not important, formally the time evolu-
tion of the relativistic electron momentum distribution N(p,t) is
a solution to the Fokker–Planck equation (Brunetti & Lazarian
2007):

∂N (p, t)
∂t

= ∂

∂p

[
N (p, t)

(∣∣∣∣
dp

dt

∣∣∣∣
rad

+
∣∣∣∣
dp

dt

∣∣∣∣
coll

− 4Dpp

p

)]

+
∂2

∂p2
[DppN (p, t)] (22)

Solving this equation numerically can be expensive, particu-
larly for the case of many individual tracer particle trajectories
as in our simulation. However, as previously described, we have
chosen to evolve relativistic “sample” particles instead of N(p,t)
explicitly, which can be thought of as the probability density for
the random variable Pt, which corresponds to the momenta of
the sample particles. For a given Fokker–Planck equation and
distribution function N(p,t) there is a corresponding stochas-
tic differential equation (SDE) for the evolution of Pt for an
ensemble of sample particles. By following the momentum tra-
jectories of many sample particles, we may reliably approxi-
mate the behavior of N(p,t) and the observable quantities that
depend on it, such as the resultant synchrotron and IC emis-
sion. SDEs have been used extensively in other astrophysical
contexts, in particular, for the integration of cosmic-ray trajec-
tories in the heliospheric and galactic magnetic fields (Zhang

1999; Florinski & Pogorelov 2009; Pei et al. 2010; Strauss
et al. 2011; Kopp et al. 2012). The main differences between
our approach and many of these works is that (1) we are only
integrating the momentum of each particle as the relativistic
particles are assumed to follow the tracer particle trajectories in
space and (2) we are integrating the equations forward in time
instead of backward to the original source of particles.

The SDE that corresponds to the above Fokker–Planck
equation is given (in the Itō formulation) by

dPt = a(p, t)dt + b(p, t)dWt, (23)

where the “drift” term is

a(p, t) =
∣∣∣∣
dp

dt

∣∣∣∣
rad

+
∣∣∣∣
dp

dt

∣∣∣∣
coll

−4Dpp

p
(24)

and the “stochastic” term is

b(p, t)dWt =
√

2DppdWt ∼
√

2DppdtN (0, 1), (25)

where dWt is a standard Wiener (or “Brownian motion”) process
and N (0, 1) is a normal distribution with zero mean and unit
variance (the “∼” symbol here indicates “is distributed as”).
The effects of each of these terms on the relativistic electron
spectrum will be shown in the Appendix.

We have integrated the drift term of this equation using a
fourth-order Runge–Kutta method. To integrate the stochastic
term, we use the Milstein method (Kloeden & Platen 2011).
This results in the following discretization for Equation (25):

b(p, t)dWt ≈ b(p, t)∆Wn +
1
2
b(p, t)

∂b(p, t)
∂p

[(∆Wn)2 − ∆t],

(26)
where

∆Wn ∼
√

∆tN (0, 1). (27)

This equation is integrated for each relativistic particle along
each tracer particle trajectory with a variable time step for each
tracer particle ∆tj = min{0.1(pi,j /ṗi,j ), 0.1(p2

i,j /Dpp,i,j)} to
ensure stability. To determine the fluid quantities (ρ, T , δv, B) at
any point on the trajectory, they are linearly interpolated between
the saved instances of each particle along that trajectory, which
have a time resolution of 10 Myr. In the Appendix we provide
tests of our method when compared to analytical solutions
and the results of a Fokker–Planck calculation. A detailed
description of the method and the code will be the subject of a
future paper (J. A. ZuHone et al., in preparation).

4. RESULTS: TURBULENCE

4.1. Characteristics of Turbulence Generated
in the Sloshing Region

In the sloshing/reacceleration hypothesis for radio mini-halos
that we are testing in this work, the radio emission coincident
with the envelope of the cold fronts as seen in X-rays is due
to the turbulence that is associated with the sloshing motions.
Figure 3 shows the spiral shape in temperature that results from
the sloshing motions for a few different epochs of the simulation.
We now determine the location and spectrum of turbulence
that results from the encounter with the subcluster. We note
at the outset that a very recent work (Vazza et al. 2012), using
an improved filtering technique, produced turbulent velocity
maps and power spectra for gas sloshing in the core of a galaxy
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We will detail the assumptions that go into the computation of
the reacceleration coefficient in our simulations in Section 4.2,
in particular, the evaluation of ⟨k⟩, Rc, and vt .

The rate of energy losses due to synchrotron and IC scattering
off of cosmic microwave background (CMB) photons for
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Solving this equation numerically can be expensive, particu-
larly for the case of many individual tracer particle trajectories
as in our simulation. However, as previously described, we have
chosen to evolve relativistic “sample” particles instead of N(p,t)
explicitly, which can be thought of as the probability density for
the random variable Pt, which corresponds to the momenta of
the sample particles. For a given Fokker–Planck equation and
distribution function N(p,t) there is a corresponding stochas-
tic differential equation (SDE) for the evolution of Pt for an
ensemble of sample particles. By following the momentum tra-
jectories of many sample particles, we may reliably approxi-
mate the behavior of N(p,t) and the observable quantities that
depend on it, such as the resultant synchrotron and IC emis-
sion. SDEs have been used extensively in other astrophysical
contexts, in particular, for the integration of cosmic-ray trajec-
tories in the heliospheric and galactic magnetic fields (Zhang
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et al. 2011; Kopp et al. 2012). The main differences between
our approach and many of these works is that (1) we are only
integrating the momentum of each particle as the relativistic
particles are assumed to follow the tracer particle trajectories in
space and (2) we are integrating the equations forward in time
instead of backward to the original source of particles.

The SDE that corresponds to the above Fokker–Planck
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where dWt is a standard Wiener (or “Brownian motion”) process
and N (0, 1) is a normal distribution with zero mean and unit
variance (the “∼” symbol here indicates “is distributed as”).
The effects of each of these terms on the relativistic electron
spectrum will be shown in the Appendix.

We have integrated the drift term of this equation using a
fourth-order Runge–Kutta method. To integrate the stochastic
term, we use the Milstein method (Kloeden & Platen 2011).
This results in the following discretization for Equation (25):

b(p, t)dWt ≈ b(p, t)∆Wn +
1
2
b(p, t)

∂b(p, t)
∂p
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where
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This equation is integrated for each relativistic particle along
each tracer particle trajectory with a variable time step for each
tracer particle ∆tj = min{0.1(pi,j /ṗi,j ), 0.1(p2

i,j /Dpp,i,j)} to
ensure stability. To determine the fluid quantities (ρ, T , δv, B) at
any point on the trajectory, they are linearly interpolated between
the saved instances of each particle along that trajectory, which
have a time resolution of 10 Myr. In the Appendix we provide
tests of our method when compared to analytical solutions
and the results of a Fokker–Planck calculation. A detailed
description of the method and the code will be the subject of a
future paper (J. A. ZuHone et al., in preparation).

4. RESULTS: TURBULENCE

4.1. Characteristics of Turbulence Generated
in the Sloshing Region

In the sloshing/reacceleration hypothesis for radio mini-halos
that we are testing in this work, the radio emission coincident
with the envelope of the cold fronts as seen in X-rays is due
to the turbulence that is associated with the sloshing motions.
Figure 3 shows the spiral shape in temperature that results from
the sloshing motions for a few different epochs of the simulation.
We now determine the location and spectrum of turbulence
that results from the encounter with the subcluster. We note
at the outset that a very recent work (Vazza et al. 2012), using
an improved filtering technique, produced turbulent velocity
maps and power spectra for gas sloshing in the core of a galaxy
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over the range ∼0–250 km s−1, clustering mainly within the
∼50–150 km s−1 range, until the epoch t = 3.95 Gyr, after
which the average velocity in the majority of these regions
steadily decreases to the ∼50–150 km s−1 range, though a tail
of strongly turbulent regions always remains. Throughout this
entire time period, the value of Rc for most of these regions
stays within ∼0.1–0.3, with a tail of regions extending up to
Rc ∼ 0.6 and a typical value of Rc ≈ 0.25 for cells with higher
(vt ∼> 100 km s−1) turbulent velocities, where acceleration is
important. Interestingly, the region of the phase plots with high
vt and high Rc is mostly devoid of points, likely related to
the fact that the numerical viscosity inherent in the simulation
preferentially damps compressible motions. As a consistency
check, we compute the ratio Rc for the entire region dominated
by the sloshing motions for the same epochs, and we find
that during this time Rc ∼ 0.25–0.5, consistent with our more
spatially resolved estimates.

We conservatively adopt the value Rc = 0.25 as the default
value for our calculations of the reacceleration and momentum-
diffusion coefficients. Adopting the average value is conserva-
tive, because what is more relevant in a nonlinear process such
as particle reacceleration is the tail of high values of Rc and vt ,
not their average.

A caveat must be made regarding this procedure for deter-
mining Rc. The Fourier transform over a finite domain assumes
that the field is periodic. Computing the Fourier transform of a
velocity field on a non-periodic domain is equivalent to taking
the transform of a field that has a sharp discontinuity such as
a shock or a cold front at the boundaries of the domain. This
will add spurious, unphysical power into the computation in
both the compressive and solenoidal components of the veloc-
ity field, though the amount of spurious power should be small
if the domain over which the fast Fourier transform is taken is
larger than the largest scale at which significant power is present
in the velocity field.

In order to make a rough determination of the spurious
compressive power that this effect will introduce, we have
performed the same analysis on a velocity field that has no
compressive power by construction. To construct this field, we
initialize a Gaussian random velocity field in k-space on a L3 =
(300 kpc)3 domain using a power spectrum very similar to
that found in our simulation and perform a divergence-cleaning
operation on this field to remove the compressible component
from the field. This field is Fourier-transformed to real space,
and the same analysis is performed on this field as on the velocity
field from our cluster simulation. Since there is no compressive
power in this field, any Rc > 0 in the smaller (ℓ = 30 kpc) boxes
must arise from the aforementioned effect at the edges due to the
non-periodic field in the subdomains (we have verified that over
the entire domain we find Rc = 0 to machine precision, since it
is periodic). We find that the value of Rc in these boxes ranges
from 0–0.1, with a mean value of Rc ≈ 0.07. This indicates
that about this much of the compressive power that we estimate
from our sloshing simulation is potentially spurious.

The third consideration regards the inertial range of the power
spectrum and its effect on the average wavenumber ⟨k⟩ as well as
on the total estimated kinetic energy of turbulence. The power
spectrum begins to drop off from the inertial range at high
wavenumbers due to the dissipation associated with the finite
resolution of the simulation. In reality, there will be a physical
damping scale, and we should try to use that scale, and not
the artificial numerical one, for calculating the reacceleration
coefficient.

Turbulence under conditions in cluster cool cores is mostly
collisional. Collisionless damping of the magnetosonic waves
with the thermal plasma becomes strong as soon as turbulence
reaches the electron Coulomb mean free path ℓmfp, and it is at
scales similar to this scale that we expect the turbulent cascade
to end (Brunetti & Lazarian 2007). If plasma instabilities play
a role, they will make the ICM more collisional, and we may
expect that the turbulent cascade would extend to much smaller
scales (Brunetti & Lazarian 2011b). To be conservative, we
adopt the standard picture where the turbulent cascade is cut off
by collisionless damping on thermal particles. For the conditions
in the core of our model cluster, the electron mean free path
ℓmfp ∼ 0.2–0.1 kpc. If we assume that the inertial range of
the turbulent cascade extends to at least kcut ≈ 2π/ℓmfp, we
conservatively estimate that the kinetic energy in turbulence
should be increased, over what we obtain by simply integrating
the spectrum in the simulations, by a factor of f ∼ 1.5.

Taking these considerations into account, we make the fol-
lowing modifications to Equation (15) for the TTD coefficient:

Dpp,TTD ≈ 1.5 × 10−11⟨k⟩
(

f

1.5

) (
v2

t

v2
z

) (
Rc

0.25

)
vz

2p2 (33)

and combining Equations (16) and (17) for the non-resonant
coefficient:

Dpp,C ≈ 1.3 × 10−12kmfp

(
f

1.5

) (
v2

t

v2
z

) (
Rc

0.25

)
vz

2p2, (34)

where v2
t /v

2
z ≈ 6, kmfp = 2π/lmfp, and the approximate

correction for extending the inertial range to high wavenumber
is f ∼ 1.5. The assumptions regarding the extent of the power
spectrum also affect the computation of the average wavenumber
⟨k⟩. Assuming (kmin, kcut) = (2π/30 kpc−1, 2π/0.1 kpc−1), from
Equation (14) we find ⟨k⟩ ≈ 3.6 kpc−1. For our conditions,
the coefficients Dpp,TTD and Dpp,C are of a similar order
of magnitude, and they are added to produce the total Dpp.
The various uncertainties associated with these corrections are
discussed in Section 6.4.

5. RESULTS: THE EVOLUTION OF RELATIVISTIC
ELECTRONS, SYNCHROTRON, AND IC EMISSION

5.1. The Evolution of Electron Spectra

Though unobservable directly in real clusters, from our
simulations we may examine the relativistic electron spectrum
of the cluster as a function of time during the simulation.
We construct the energy spectrum N (γ ) by binning up the
relativistic particle samples into 100 equally log-spaced bins
over the range (γmin, γmax) = (10, 105). For simplicity, we
include all of the relativistic particles in the cluster in the
binning procedure (we will examine the spatial distribution of
the relativistic electrons in the next section).

Figure 9 shows the relativistic electron energy spectrum
N (γ ) for all tracer particles for several different epochs of
the simulation, with times given from the beginning of the
simulation. Only 0.2 Gyr after the injection of relativistic
particles, reacceleration has already generated a population of
particles with energies up to γ ∼ 104.9 At later times (over

9 Since there is such a large change in the electron spectrum within the first
0.2 Gyr, we do not expect much of a dependence on the initial electron
spectrum. We have experimented with a few different initial spectra to confirm
this.
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over the range ∼0–250 km s−1, clustering mainly within the
∼50–150 km s−1 range, until the epoch t = 3.95 Gyr, after
which the average velocity in the majority of these regions
steadily decreases to the ∼50–150 km s−1 range, though a tail
of strongly turbulent regions always remains. Throughout this
entire time period, the value of Rc for most of these regions
stays within ∼0.1–0.3, with a tail of regions extending up to
Rc ∼ 0.6 and a typical value of Rc ≈ 0.25 for cells with higher
(vt ∼> 100 km s−1) turbulent velocities, where acceleration is
important. Interestingly, the region of the phase plots with high
vt and high Rc is mostly devoid of points, likely related to
the fact that the numerical viscosity inherent in the simulation
preferentially damps compressible motions. As a consistency
check, we compute the ratio Rc for the entire region dominated
by the sloshing motions for the same epochs, and we find
that during this time Rc ∼ 0.25–0.5, consistent with our more
spatially resolved estimates.

We conservatively adopt the value Rc = 0.25 as the default
value for our calculations of the reacceleration and momentum-
diffusion coefficients. Adopting the average value is conserva-
tive, because what is more relevant in a nonlinear process such
as particle reacceleration is the tail of high values of Rc and vt ,
not their average.

A caveat must be made regarding this procedure for deter-
mining Rc. The Fourier transform over a finite domain assumes
that the field is periodic. Computing the Fourier transform of a
velocity field on a non-periodic domain is equivalent to taking
the transform of a field that has a sharp discontinuity such as
a shock or a cold front at the boundaries of the domain. This
will add spurious, unphysical power into the computation in
both the compressive and solenoidal components of the veloc-
ity field, though the amount of spurious power should be small
if the domain over which the fast Fourier transform is taken is
larger than the largest scale at which significant power is present
in the velocity field.

In order to make a rough determination of the spurious
compressive power that this effect will introduce, we have
performed the same analysis on a velocity field that has no
compressive power by construction. To construct this field, we
initialize a Gaussian random velocity field in k-space on a L3 =
(300 kpc)3 domain using a power spectrum very similar to
that found in our simulation and perform a divergence-cleaning
operation on this field to remove the compressible component
from the field. This field is Fourier-transformed to real space,
and the same analysis is performed on this field as on the velocity
field from our cluster simulation. Since there is no compressive
power in this field, any Rc > 0 in the smaller (ℓ = 30 kpc) boxes
must arise from the aforementioned effect at the edges due to the
non-periodic field in the subdomains (we have verified that over
the entire domain we find Rc = 0 to machine precision, since it
is periodic). We find that the value of Rc in these boxes ranges
from 0–0.1, with a mean value of Rc ≈ 0.07. This indicates
that about this much of the compressive power that we estimate
from our sloshing simulation is potentially spurious.

The third consideration regards the inertial range of the power
spectrum and its effect on the average wavenumber ⟨k⟩ as well as
on the total estimated kinetic energy of turbulence. The power
spectrum begins to drop off from the inertial range at high
wavenumbers due to the dissipation associated with the finite
resolution of the simulation. In reality, there will be a physical
damping scale, and we should try to use that scale, and not
the artificial numerical one, for calculating the reacceleration
coefficient.

Turbulence under conditions in cluster cool cores is mostly
collisional. Collisionless damping of the magnetosonic waves
with the thermal plasma becomes strong as soon as turbulence
reaches the electron Coulomb mean free path ℓmfp, and it is at
scales similar to this scale that we expect the turbulent cascade
to end (Brunetti & Lazarian 2007). If plasma instabilities play
a role, they will make the ICM more collisional, and we may
expect that the turbulent cascade would extend to much smaller
scales (Brunetti & Lazarian 2011b). To be conservative, we
adopt the standard picture where the turbulent cascade is cut off
by collisionless damping on thermal particles. For the conditions
in the core of our model cluster, the electron mean free path
ℓmfp ∼ 0.2–0.1 kpc. If we assume that the inertial range of
the turbulent cascade extends to at least kcut ≈ 2π/ℓmfp, we
conservatively estimate that the kinetic energy in turbulence
should be increased, over what we obtain by simply integrating
the spectrum in the simulations, by a factor of f ∼ 1.5.

Taking these considerations into account, we make the fol-
lowing modifications to Equation (15) for the TTD coefficient:

Dpp,TTD ≈ 1.5 × 10−11⟨k⟩
(
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) (
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and combining Equations (16) and (17) for the non-resonant
coefficient:

Dpp,C ≈ 1.3 × 10−12kmfp
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) (
Rc
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)
vz

2p2, (34)

where v2
t /v

2
z ≈ 6, kmfp = 2π/lmfp, and the approximate

correction for extending the inertial range to high wavenumber
is f ∼ 1.5. The assumptions regarding the extent of the power
spectrum also affect the computation of the average wavenumber
⟨k⟩. Assuming (kmin, kcut) = (2π/30 kpc−1, 2π/0.1 kpc−1), from
Equation (14) we find ⟨k⟩ ≈ 3.6 kpc−1. For our conditions,
the coefficients Dpp,TTD and Dpp,C are of a similar order
of magnitude, and they are added to produce the total Dpp.
The various uncertainties associated with these corrections are
discussed in Section 6.4.

5. RESULTS: THE EVOLUTION OF RELATIVISTIC
ELECTRONS, SYNCHROTRON, AND IC EMISSION

5.1. The Evolution of Electron Spectra

Though unobservable directly in real clusters, from our
simulations we may examine the relativistic electron spectrum
of the cluster as a function of time during the simulation.
We construct the energy spectrum N (γ ) by binning up the
relativistic particle samples into 100 equally log-spaced bins
over the range (γmin, γmax) = (10, 105). For simplicity, we
include all of the relativistic particles in the cluster in the
binning procedure (we will examine the spatial distribution of
the relativistic electrons in the next section).

Figure 9 shows the relativistic electron energy spectrum
N (γ ) for all tracer particles for several different epochs of
the simulation, with times given from the beginning of the
simulation. Only 0.2 Gyr after the injection of relativistic
particles, reacceleration has already generated a population of
particles with energies up to γ ∼ 104.9 At later times (over

9 Since there is such a large change in the electron spectrum within the first
0.2 Gyr, we do not expect much of a dependence on the initial electron
spectrum. We have experimented with a few different initial spectra to confirm
this.
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Figure 12. Projected gas temperature maps with radio contours overlaid at several epochs for the frequencies 153, 327, and 1420 MHz in the y-projection. The color
bar is temperature in keV. Contours of radio emission at (153, 327, 1420) MHz begin at (1.0, 0.5, 0.125) × 10−3 mJy arcsec−2 and increase by a factor of two. Each
panel is 750 kpc on a side. Tick marks indicate a distance of 100 kpc.
(A color version of this figure is available in the online journal.)
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Figure 13. Profiles of gas temperature and radio emission across cold front surfaces. Left: projected gas temperature maps with radio contours overlaid at the epoch
t = 3.35 Gyr, in the z-projection. The color bar is temperature in keV. Contours are of 327 MHz radio emission which begin at 5 × 10−4 mJy arcsec−2 and increase
by a factor of two. The panel is 750 kpc on a side. Tick marks indicate 100 kpc distances. Right: profiles of projected gas temperature and radio emission from the left
panel, along the lines in the left panel.
(A color version of this figure is available in the online journal.)

quantify this steepening, we determine the spectral index of our
simulated emission for these epochs. We fit the total synchrotron
spectrum to a power-law Pν ∝ ν−α over the frequencies 327,
610, and 1420 MHz, assuming the errors to be 10% of the flux at
each frequency. The evolution of the spectral index is tabulated
in Figure 17. For most of the evolution of the mini-halo, the
spectral index hovers around α ≈ 1–2, comparable to that of
observed mini-halo sources. The spectra for the mini-halos in
the Perseus (Sijbring 1993) and Ophiuchus (Murgia et al. 2010)
clusters are shown for comparison. The spectrum of simulated
cluster is compatible in both shape and normalization (though
note that our normalization is uncertain by an order of magnitude
due to the weak constraints provided by IC measurements).

Figure 18 shows the evolution of the total synchrotron power
within r = 300 kpc of the cluster center in the z-projection
in W Hz−1 at the frequencies 153, 327, and 1420 MHz. From
the beginning of the injection of the relativistic particles at t =
2.55 Gyr until t ∼ 3.2 Gyr, the synchrotron power increases
from initially low values due to the acceleration of the low-
energy particles. At t ∼ 3.2 Gyr, the synchrotron power at
each frequency reaches a maximum, in line with the evolution
of the electron spectrum (see Figure 9). The peak of the
radio power for our simulated cluster is consistent with that
of observed mini-halos, which typically fall in the range of
P1.4 GHz ∼ a few ×1023–a few ×1024 W Hz−1 (Cassano et al.
2008, again, note that our normalization is uncertain by an
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Figure 9. Relativistic electron spectra for several different epochs of the
simulation, beginning with the initially injected spectrum at t = 2.55 Gyr.
(A color version of this figure is available in the online journal.)

the course of approximately 2 Gyr), reacceleration maintains a
population of relativistic electrons up to γ ≈ 2 × 104. In our
particular merger setup, reacceleration can no longer keep up
with the cooling of the relativistic particles about 1.5 Gyr after
the core passage (t ∼ 3.5 Gyr), and the spectrum begins to
steepen.

5.2. Simulated Synchrotron Radiation

Once we have the accelerated electron spectra at a given
epoch for each tracer particle, we can use them to compute
the synchrotron radiation they emit. The synchrotron power
for a single electron as a function of frequency is (Rybicki &
Lightman 1979)

P (ν, γ ) =
√

3e3B⊥

mec2
F (x), (35)

where F (x) is the synchrotron function and x = ν/νc, where
νc = (3/4π )γ 3eB⊥/mec is the synchrotron critical frequency.
The total synchrotron power at a given frequency for each
tracer particle is then the sum of synchrotron powers for the
electron samples associated with the tracer particle scaled by
the normalization constant:

Ptot,j(ν) =
∫

P (ν, γ )Nj (γ )dγ = Kj

∑

i

P (ν, γi,j ). (36)

We assume an isotropic distribution of electron pitch angles. To
generate maps of projected synchrotron emission, we construct
a two-dimensional grid upon which the tracer particle luminosi-
ties are mapped according to the “cloud-in-cell” prescription
(Hockney & Eastwood 1988) and projected along the chosen
line of sight. The resulting synchrotron brightness for each sky
pixel is given by Iν = (1 + z)Lν(1+z)/4πD2

L/∆Ω, where DL

is the luminosity distance and ∆Ω = ∆x∆y/D2
A, where DA is

the angular diameter distance. Our mock brightness maps are
then convolved with a two-dimensional Gaussian of FWHM

10 kpc, to simulate the effect of the point-spread function for a
high-resolution instrument (this corresponds to 3′′–10′′ for z =
0.05–0.2). No attempt was made to simulate the interferometric
effects on the images.

Figures 10 through 12 show the projected gas temperature
with radio brightness contours overlaid, for the frequencies 153,
327, and 1420 MHz in the z-projection (these fiducial values
are selected to correspond to the GMRT and Very Large Array
frequencies). From these maps, it can be seen that the radio
emission at lower frequencies persists over a long period and
is bounded by the core cold fronts, apparent in the temperature
maps. The mini-halo emission at ν = 1.4 GHz becomes dimmer,
covers a smaller area on the sky, and becomes more patchy
and amorphous. The time evolution will be discussed in more
detail below. The maps in the z-projection are particularly
striking when compared to the mini-halo in RXJ 1720.1+26
from Figure 1.

In the projections that are in the orbital plane (along the
x- and y-axes), it is difficult to see the cold fronts in the
temperature maps, but the radio emission is still clearly bounded
by them, with a radius r ∼ 100–300 kpc that increases as the
volume of the sloshing region increases with time. Figure 13
shows example profiles of the 327 MHz radio emission in the
z-projection at the epoch t = 3.35 Gyr, demonstrating the lack
of radio emission beyond the cold front surfaces. The spatial
coincidence of the radio emission with the X-ray cold fronts
in the cool core and the steep cutoff of the mini-halo emission
are in agreement with observed mini-halos (e.g., Mazzotta &
Giacintucci 2008; Giacintucci et al. 2011).

It is instructive to examine the properties of the thermal
plasma over the same period to compare to the features seen
in the radio maps. The radio emission will be dependent upon
the turbulent velocity to continuously reaccelerate electrons,
and the magnetic field to produce the emission itself. Figures 14
through 16 show the projected magnetic field strength and
turbulent velocity over the same epochs as the radio emission
in the preceding figures. Within the volume of the sloshing
region, the magnetic field has been significantly amplified,
and the turbulence is strongest (though not necessarily in the
same locations within the cool core). The fact that both of
these effects are bounded within the envelopes of the cold
fronts is what constrains the radio emission to these boundaries.
Additionally, within the sloshing region, the amplification of the
magnetic field and the strength of the turbulent velocity is far
from uniform. The regions with the highest turbulent velocities
(δv ∼ 100–200 km s−1) span spatial scales of ∼50–100 kpc.
Significant fluctuations in both of these quantities result in
stronger emission in localized regions. In particular, it appears
that the regions of brightest radio emission correspond to the
regions which have the highest turbulent velocities. This is due
to the fact that the reacceleration timescale, which is on the
order of 0.1 Gyr, is less than the timescale of the drift of regions
with high turbulent motions, which is on the order of Gyr.

One important observed characteristic of mini-halos is their
steep radio spectra. This is naturally explained by the reac-
celeration model implemented in our simulations. The balance
between reacceleration and losses sets a cutoff energy at which
there is a sharp drop in the relativistic electron population, which
in turn produces a steepening in the synchrotron spectrum. Since
there is a range of magnetic field strengths in the cluster core,
this break frequency will be different for different electrons, and
the resulting spectrum will gradually steepen at higher frequen-
cies. Assuming a power-law spectrum for the radio emission of
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Figure 16. Left: projected (volume-weighted) magnetic field strength in the y-direction for the epochs t = 2.95, 3.35, 3.75, and 4.15 Gyr. Right: projected (mass-
weighted) turbulent velocity (estimated using only the vz component and scaled to match the total turbulent energy) in the y-direction for the same epochs. Each panel
is 750 kpc on a side. Major tick marks indicate 100 kpc distances.
(A color version of this figure is available in the online journal.)

monochromatic IC power for a distribution of relativistic elec-
trons as a function of emitted photon energy ϵ1 is (Rybicki &
Lightman 1979)

P (ϵ1) = 3
4
cσT

∫
dϵ

(ϵ1

ϵ

)
v(ϵ)

∫
dγN(γ )γ −2f

(
ϵ1

4γ 2ϵ

)
,

(37)

where v(ϵ) is the incident photon number density at the incident
photon energy ϵ, σT is the Thomson cross section, and

f (x) = 2x ln x + x + 1 − 2x2, 0 < x < 1. (38)

Given that our distribution function for each tracer particle is
simply Nj (γ ) = Kj

∑
i δ(γ −γi,j ), the total IC power at a given

frequency for each tracer particle is then given by

Pj (ϵ1) = 3cσT Kj

∫
v(ϵ)

[
∑

i

(
ϵ1

4γ 2
i,jϵ

)

f

(
ϵ1

4γ 2
i,jϵ

)]

dϵ.

(39)

We assume that v(ϵ) is a blackbody spectrum with temperature
kBTCMB (which is redshift dependent) and integrate over all
photon energies and sum over all γi,j to obtain the emitted
power at each photon energy.

Since our main aim in this paper is to determine the proper-
ties of the radio emission of the mini-halo, our examination of
the properties of the IC emission will be comparatively brief.
Figure 19 shows maps of the IC intensity at the epochs t = 2.95
and 3.75 Gyr at the representative photon energy Eγ = 50 keV.
As in the case of the radio emission, the hard X-ray emission
at high energies is bounded by the cold front surfaces. The spa-
tial distribution of the IC emission is similar to the synchrotron
emission. This is expected, since, as we mentioned in the previ-
ous section, the spatial distribution of the radio emission follows
the location of the turbulent regions, and both kinds of emission
originate from the same populations of relativistic electrons.

Figure 20 shows the IC spectrum at a few different epochs
of the simulation for the central 300 kpc of the cluster core,

Figure 17. Time dependence of the spectrum of the mini-halo within a radius of
300 kpc of the cluster center in W Hz−1 vs. the frequency of the emission in MHz.
The effective power-law slope α between the frequencies 327–1420 MHz is
listed in the key, with 1σ errors given. The arrows indicate the rise and fall
of the spectrum with time. The spectra for the Perseus (Sijbring 1993) and
Ophiuchus (Murgia et al. 2010) cluster mini-halos are plotted for comparison.
(A color version of this figure is available in the online journal.)

compared to the thermal spectrum at the epoch t = 2.55 Gyr
from the same core region (a mixture of temperatures in the
range T ∼ 2–5 keV). At nearly all energies Eγ ∼ 1–100 keV,
the spectrum is dominated by the thermal emission. It will not be
possible to detect such emission against the thermal emission
from the bright cluster core with upcoming X-ray telescopes
with hard X-ray detection capabilities such as NuSTAR and
Astro-H, except possibly at energies near 100 keV.
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