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Outline

anisotropic diffusion eq. quite common: image
processing, transport In magnetized plasmas, etc.

finite difference scheme

monotonicity & extremum principle

limiters (minmod, van Leer)

stablility timestep & semi-implicit approach

super-time-stepping



Diffusion In image processing

[Image Credit: Manasi Datar]
Isotropic Anisotropic Anisotropic
quadradc flux exponential flux

aims:
-maintain sharp edges
-NO spurious edges at
low resolution
-maximum detail with
minimum storage




Diffusion In Image processing

0
—I(z,y,t) = cV?I(z,y,t) isotropic constant diffusion for intensity

ot

~ . 1.2 Fourier space: larger k modes damped more
]’f (t) = I3(0) exp(—ck™1) a low pass filter

Gy * I°(%) = /Gg(f — NI (2)d¥  image convolved with a kernel

Gy * ]O(E) — GU(E) O(E) convolution theorem

isotropic Gaussian smoothing Kernel

T - f) isotropic diffusion equivalent to
In real space



AD In Image processing

0 = > . more general diffusion equation
EI(% y,t) = V- (elz,y, V) Perona-Malik 1990

. y — —(IVI||/K)? . e .
c(||VI|]) =e NI nonlinear diffusion eqguation

1 larger diffusion where I(x,y) is smooth
smaller where sharp changes in | (edges)

c([IVI]) =

works quite well in practice
mathematical issues: ill-posed, regularization
Nnoisy images can have spurious large gradients! these must be smoothened



Diffusion In image processing

[Image Credit: Manasi Datar]
Isotropic Anisotropic Anisotropic
quadratc flux exponential flux

AD Iindeed produces
better results




Plasma Thermal Conductivity

diffusivity (cmas-1) x : vi x mfp; mfp~1/(no); o~b2In/A; b~e2/kT

diffusivity«192/n; e-s conduct heat as they are 40 times faster than protons

nT—t = —V-Q S = ] In (—,y) entropy



Plasma Thermal Conductivity

a tricky Iissue!

Q = —kVT = —xnkpVT for unmagnetized plasma | {Zay :

particles move along B w. small Larmor radii but
difftuse along B with a path length of mfp; mfp>>pL

2 2
D|| ~ Uy /V > D) ~ Pr.V true for all transport coeffts.

~ All this is fine for a given B, but B changes because of plasma
currents, small scale instabilities! Observed perp. transport is
enhanced. This is the key problem of tokamaks.



Buoyancy instabilities

buoyant response of gravitationally stratified fluids with anisotropic
conduction fundamentally different from adiabatic fluids

MTI: makes field line vertical McCourtetal. 2011]
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galaxy cluster temperature profiles:
inner radii dT/dr>0, HBI unstable
outer radii dT/dr<0, MTI unstable
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Numerical implementation

o1 .
— =-V-Q=V-(xbb-VT)
ot
Q= —XI;VHT with constant
0T o1 0T 0T
¢ X ( ox y@y) @y Xy( ox y@y)
Tiﬁr,bjtl_l o T’L??_] _ _Q:U,i—|—1/2,j — Qx,i—l/Z,j B Qy,i,j—l—l/2 — Qy,i,j—l/Q
At Ax Ay
Tovr i — T 37\ conservative differencing
Qz,it1/2,5 = —Xba (ba: —|—1JAZL’ = bya—y> s.t., internal fluxes cancel
~

needs to be interpolated at (i+1/2,))



Centered Ditferencing

0T Tiv1j+1+Tijr1 — Tiv1,5-1 — Tij—1

dy 1Ay

similarly,

O Tij1j41 +Tig1 —Tic1,j41 — Tio1,

IN general,

@T_C(é‘T o
0y

'Oy

oT
) ay

oT

or 4Ax
| 8_y i,j1/2)

i+1,5+1/2 i,j+1/2 i+1,5—1/2



Problem w. CD

Its not monotonicity preserving! can give -ve temperatures!

T oT
Qzi+v1/2.5 = —bs (bm %& | by3—y>

1(10—0.1 9.9

= —( ) = —— > 0!
2 4Ay S8AY

similarly, 9.9

Qg2 = g, =V

ansverse term can be made arbitrarily large
and of any sign!

| heat flux is out of temperature minimum!
retlective BC => not extrema preserving



Problem w. CD

Its not extrema preserving! can give -ve temperatures!

Ly
ANANAN

.

[Sharma & Hammett 2007]

2.5 pemmTmmmmT T

temperature at (i,j)

0 2 4 € 8 10
time
\

simple averaging of transverse T
gradients gives non-monotonicity!



Solution”?

5 OT
normal terms: Qu.n —b2 7Qy N = —bya—y flux always down the gradient
oT oT .
fransverse terms: Q.. r = —bxbya—y, Qyr = —bxby% can have any sign!
a_ (o or| o or
dy dy z—l—l,j—|—1/2’ 0y z',j—|—1/27 dy z‘+1,j—1/27 0y iji—1/2

choosing arithmetic averaging does not work!
can be arbitrarily large and of any sign

need to have a better interpolation which is not affected by a large +/-
value of the argument



L|m|ters Ia advectlon

inear reconstruction: AM of slopes " averaging

of | of

e b e

advection equation: REA approach

\
NOoN-Monotonic

causes osclillations
at discontinuities

advection with v>0



L|m|ters Ia advectlon

Imear reconstruchon L of slopes - averaging

: N
- : monotonic
5 —0 : 4# o— prevents oscillations

at discontinuities if
limited reconstruction

o of
/ ot Ou

advection equation: REA approach

advection with v>0



Minmod limiter

L(a,b) =ap(l,r =b/a) =bo(1,r = a/b)

L=0 if arguments have opposite sign

grey: monotonicity zone
3

minmod(a,b)=0 if ab<=0, min(a,b) if ab>0

van Leer limiter

smoother, higher order accuracy, still nonlinear

van Leer(a,b)=0 if ab<=0, 2ab/(a+b) if ab>0




Limited averaging

T <8T T

" 3y

or
78y

oT

= _r T

Oy

Oy

symmetric in arguments
i,j—1/2

i+1,j+1/2 i,j+1/2 i+1,j—1/2

limited averaging which vanishes if all 4 arguments don’t have the same sign

if Tijis a local extremum

0T y 0T 0

Ay i j+1/2 Iy ii-1/2
and

a_T X a_T O

Oz i+1/2,5 Oz i—1/2,7 B

ith limiter averaging transverse temperature gradients vanish
and heat flux is down the temperature gradient

extrema won't be accentuated!




RINg test problem

[Parrish & Stone 2005]

by = —y)(@® + %)V 2 by = 1/ (2 + )3

hot patch=12

ambient=10

arthmetic mean limited averggmq: van Leer
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notice minimum temperature
non-monotonic even at late times



Negative temperature!

with large temperature gradients

negative temperature => sound wave becomes unstable =>code blows up

large temperature gradients are natural in plasmas; e.g.,
solar prominences in corona, 3 phases of the ISM

our method is essential for simulating such plasmas robustly from first principles



Another problem

the scheme is explicit and governed by a stability CFL constraint

Ax?
At < ——
2X
| o | | Ax
for high conductivity plasma such as ICM, this can be 1000s time smaller than .
S

one can subcycle: for every hydro timestep apply many conduction cycles
but this is slow; better to go implicit where there is no stability constraint

* n * * * *
Ti_j - T,'_j 2 T,’ L1 Ti,j B bz Ti_j o Ti_l,j n bx.i+ 1,"2.jby.i+ 1/2j ﬁ” a bx.i—l,"z.jby.i— 1/2j Hn
Z At x.1+1/2) sz x.i-1/2j sz AXA_}/ i+1/2] AXA_}/ 1-1/2j°

n+1 * n+1 n+1 n+l n+1
Ti-j B Ti-j b2 Ti.j b1 Ti.j _ B Ti.j - Ti.j—l n by iji1/2bxiji1)2 AT* B byii_1/2bxij_11 AT*
7 At — Myij+1/2 Ay_)_ y.ij—1/2 Ay“)‘ AXAy ij+1/2 AXAy ij—1/2:

this requires solving a tridiagonal matrix (O[N]): simply use LAPACK



Does implicit work™

rlng dlfoSIOn teSt [Sharma & Hammett 2011]

ncfl=10 ncfl=100 ncfl=400

ncfl=10000 ncfl=1,explicit

2
1.5
0 1 0
. 0.5
-1 -1 -1
-1 0 1 -1 0 1 -1

xX O
-

X X

iINndeed it does: here, Thot=10, Tcoig=0.1



Does implicit work™

ring diffusion test

| llllllll | llllllll | Illlllll | llllllll |

[Sharma & Hammett 2011]

0.1

non-monotonicity not
guaranteed but much
. ncfl=10000 | | better than without

« ncfl=4000 | ||m|’[er8|
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A real application: 11

initially small density perturbations with global thermal balance
overdense regions cool and underdense are heated

ncl=At/Ateyxp

this is 100 times faster!



Parallel implementation

the implicit method is not yet parallel
parallelization strateqgy Is clear but work needs to be done
iterative packages like PETSc

another approach is to use paralle

coords(2)=1

coords(R2)=0

—> —> —> —>

4x2 processor grid

c(1)=38
c(1)=R
c(L)=1

c(1)=0



a faster explicit method

Super time stepping
AV AVAYAN

—dt— several variants
< T >
7=
T = dt ;
/ =1 ™\
super timestep ubstep |
diffusion eq. non-positive eigenvalues = -DKk? Z_f — |\ f
t

j=N
stability polynomial pn(A)  _ N = (H (1-— Adtj)) £l

Ion(A)| must be < 1 for numerical stability for all X \ 7=!

for a given N, choose largest T such that | pn(A) <1



COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, Vol. 12, 31-42 (1996)

Anax 5 SUPER-TIME-STEPPING ACCELERATION OF EXPLICIT
T > N“At,, > SCHEMES FOR PARABOLIC PROBLEMS
y—{
VASILIOS ALEXIADES

Mathematics Department, University of Tennessee, Kroxville, TN 37996-1300, U.S.A. and Mathematical Sciences
Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6367, U.S.A.

factor of N speed-up! GENEVIEVE AMIEZ

Laboratoire de Calcul Scientifique, Université de Franche-Comié, 25030 Besancon. France
AND

PIERRE-ALAIN GREMAUD

Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University,
Raleigh, NC 27695, US A.

2j—1 n)

-1
+1+v j=1,...N
N 2

|

At =2[/A,., stability parameter <<1

T,=A fexpl(("l + v)cos(

T = super timestep

]

N N {1+ = (1 =)
T, = At
- 209 \ (1 + /)™ + (1 = )2

J
prescription based on enforcing pn(A) to be Chebyshev polynomial
with [argument| < 1



Chebyshev vs Legendre

P, (z)T, (z)

| solid: T, dots: P

-1.0 -0.5 0.0 0.5 1.0

Comparison of Tn(X) & Pn(X): sinceI\P\<1 in (-1,1) => better stability



Stabilized Runge-Kutta (RK)

A stabilized Runge-Kutta-Legendre method for explicit
super-time-stepping of parabolic and mixed equations

[JCE 2014]

Chad D. Meyer ®*, Dinshaw S. Balsara?, Tariq D. Aslam "

typically multiple stages in RK introduced for higher accuracy
here it is for stability with as long a timestep as possible

P Mu(t) u(t)=e™u0)~ (1 + tM + %(tM)2 + - o)u(O)

analytic solution  Taylor series expansion

Rs(z) =as + bsPs(wo + w1z) stability polynomial for s-stage RKL, z=AT

. 2
for first order accuracy: Rs(0)=1, R's(0)=1,=> u" = Pj(l - _I_Sz)u”



RKLT

first order Runge-Kutta Legendre scheme:

Yo =u(fo)

Y1 =Yoo+ (1TMYp
Yi=piYj1+vYjo4@;TMY; 1; 2<j<s
ut+17t)=Ys

stability polynomial at jth substep

2i—1 1— GD_pf1.L 2 N
M]: ] , V]: ] uJ_P](1|52_|_SZ)u

2
. 2+




RKLT

compare with LP’s recursion relations
growth polynomial at each time substep matched to P;

(DPjx)=Q2) = DxPj_1(x) = () = DPj2(x)

Yi=uiYi1+viYjo+pmtMY;_1; 2<j<S

u(t+7t)=1Ys
szzj._1; v]-=1_,j
j j
=21 2 similar schemes for RKL2, RKC1, RKC2

J j s?+s



Comparison on ring diffusion
AAG STS, v=0.01 for N=5, 10, 20; blows up for 50

10.14 1.0 10.14 1.0

10.12 10.12
0.5 0.5
10.10 10.10
40.040
10.08 10.08
0.0 0.0 H0.032
10.06 10.06
0.024
10.04 10.04
-0.5 -0.5 0.016
10.02 10.02 0.008
. 10.00 -1.0 10.00 -1.0 0.000
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

RKLT; ok up to N=20; inaccurate beyond that

10.14 10.1- 10.14

1.0

10.12 10.1; 10.12
0.5

10.10 10.1 10.10

10.08 10.0¢ 110.08
0.0

10.06 10.0¢ 110.06

10.04 10.0: 10.04
-0.5

10.02 10.0; 10.02

10.00 10.0! -1.0 10.00

-1.0 -0.5 0.0 0.5



Conclusions

anisotropic diffusion important in plasmas
monotonicity, extrema-preservation
Limiters can maintain extrema

implicit scheme; parallelization is difficult
super-time-stepping: AAG, RKC, RKL

Thank Youl
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