Dynamics & Energetics of the ICM

Prateek Sharma (UC Berkeley) [+Ben Chandran, Eliot Quataert, Ian Parrish]

Outline

- Clusters: heating of ICM is required!
- conduction is along B field
- Mixing in the ICM: free vs. forced convection
- Thermal Instability in the ICM
- Implications

What is a cluster?

- DM halos > 10¹⁴M_☉; most massive bound structures; structure formation in ΛCDM
- ~10% ICM, few% galaxies
- T≈I keV =>X-rays via ff; R~few Mpc
- DM self-similarly (~NFW); gas does not! heating & cooling
- dlnn/dlnM(z,I) => σ_8 , Ω_m , Ω_h ; but accurate M

Structure Formation

Observational Windows

Puzzles

- overcooling problem: observed star formation too small!
- cooling flow problem: no catastrophic cooling; t_{cool}<t_H
- Downsizing: lack of massive spirals at z=0
- basically observed cooling (mainly in core) << expected

Evidence for heating

[Peterson et al. 2003]

Solution

Feedback

supernova winds (not enough) quasar (only for short time) AGN bubbles (anisotropic jets) cosmic rays (isotropic? Fermi?) sound waves (amplitude, viscosity?) Non-feedback thermal conduction (globally unstable, HBI, not enough for all) galactic wake turbulence (not volume filling, efficiency?) DM clumps (no observational constrains, efficiency?) preheating (no justification, SF history?)

Typical (relaxed) Cluster

- rough hydrostatic equilibrium
- $T \sim T_v \sim keV => X$ -rays
- T, L_X=>M of most massive halo=>cosmology
- entropy a fn. of halo assembly
- lower entropy accreted earlier=>s inc. w. r (unlike stars)

Bimodality

[Cavagnolo et al.]

- cool-core vs. non-cool core
- entropy & cooling
- $j \sim n^2 T^{1/2} = > inner r cool!$

AGN Feedback

Pros:

-Energetically sufficient

-self-adjusting; explains correlations

-kinetic feedback for low dM/dt (radiatively inefficient accretion)

-jets/radio bubbles seen for large L_X

Cons:

-anisotropic jets/bubbles; isotropic heating?
-exact mechanism? cosmic rays? turbulence?
-how are bubbles blown/disrupted? is microphysics important?
-simulations not there yet!

Transport in the ICM

-thermal conduction is important: t_{cond} ≤ t_{buoy} ≤ t_{cool}
 -mean free path >> Larmor radius => parallel transport
 -conduction is along B-lines => buoyancy instabilities (HBI/MTI)

Anisotropically conducting plasma is convectively stable!

-buoyant restoring force $\approx \rho g \Delta z \ dlnT/dz$ ($\rho g \Delta z \ dlnS/dz$ for convectively stable adiabatic fluid) -similar restoring force for dT/dz<0! -HBI/MTI are buoyancy instabilities *not* convective instabilities

For movies see: http://astro.berkeley.edu/~psharma/clustermovie.html

-adiabatic CRs with ds/dr<0 built up in time
-plasma becomes convectively unstable for pcr/p≥0.2
-easier to mix a conducting plasma than an adiabatic one!

-easiest to mix isotropically conducting plasma!

Turbulent mixing in a convectively stable atmosphere: Richardson

Ri = stable buoyancy force/turbulent force $\approx [gdlnS/dz]/|\nabla u|^2$ for adiabatic plasma

 $Ri \ge I$ buoyant stabilization; $\le I$ turbulent

[Turner1973]

Turbulent mixing w. conduction along B: Richardson

Ri = stable buoyant force/turbulent force ≈[gdlnT/dz]/| ∇u |² for aniso. cond. ≈[gdlnS/dz]/| ∇u |² for adiabatic ≈0 for iso. cond.

$$Ri \approx 3g_{-8}r_{10}\frac{d\ln T/d\ln r}{u_{100}^2}$$

$$\nabla T \qquad \qquad T_0 + \Delta z dT/dz \\ \Delta z \\ T_0 \qquad \qquad T_0$$

-vigorous mixing w. iso. conduction; dlnS/dz≈4dlnT/dz=>more mixing w. aniso. cond.
 -strong mixing w. ~100 km/s turbulent velocities

g

Implications for ICM

• easier to redistribute energy in θ, Φ

- I00 km/s stirring is enough to isotropize Bfields => conductivity~Spitzer/3 (negligible conduction for smaller stirring!)
- source of turbulent motions: jets/bubbles, galaxy wakes,...

Thermal Instability

>0 for isobaric thermal stability

>0 for isochoric thermal stability valid when $p_{cr}/p \gg 1$ or $\beta \ll 1$

TI stabilized by conduction at scales smaller than $L_F \approx 10 \text{ kpc } T_{keV}^{7/4} n_{0.1}^{-1}$ Conduction along B => filaments along B!

Temperature

modified c.f.

x (kpc)

CRs may help explain 10s of kpc long filaments!

0.5

0

-0.5

-1

ID

40

30

x (kpc)

40

need to resolve L_F !

CRs prevent || compression

Log₁₀T(keV) at 0.95 Gyr

- -CRs needed to explain large ΔE emission lines [Ferland et al.] -lack of star formation in molecular filaments!
- -10⁹-10¹⁰ M $_{\odot}$ molecular gas [Salomé et al.]
- -Are CRs and B fields preventing gravitational collapse?

Is heating≈cooling?

t=1.43Gyr

yes! statistically over many cooling times, else either hot/cold phase

Implications

- ICM easier to mix than adiabatic sims. suggest => easy to redistribute jet/bubble kinetic energy
- ICM is convectively stable! Richardson# criterion
- how ICM is heated isotropically still unknown!
- Hα, molecular filaments due to TI; elongated because of anisotropic conduction (+CRs??); suppressed star formation
- not a cooling flow but heating≈cooling & TI