

Dynamics & Energetics of the ICM

Prateek Sharma (UC Berkeley)
[+Ben Chandran, Eliot Quataert, Ian Parrish]

Outline

- Clusters: heating of ICM is required!
- conduction is along B field
- Mixing in the ICM: free vs. forced convection
- Thermal Instability in the ICM
- Implications

What is a cluster?

- DM halos $> 10^{14} M_{\odot}$; most massive bound structures; structure formation in Λ CDM
- $\sim 10\%$ ICM, few% galaxies
- $T \gtrsim 1 \text{ keV} \Rightarrow$ X-rays via ff; $R \sim \text{few Mpc}$
- DM self-similarly (\sim NFW); gas does not! heating & cooling
- $d\ln n/d\ln M(z,l) \Rightarrow \sigma_8, \Omega_m, \Omega_{\Lambda}$; but accurate M

Structure Formation

Observational Windows

Puzzles

- overcooling problem: observed star formation too small!
- cooling flow problem: no catastrophic cooling; $t_{\text{cool}} < t_{\text{H}}$
- Downsizing: lack of massive spirals at $z=0$
- basically observed cooling (mainly in core)
 \ll expected

Evidence for heating

[Croton et al. 2003]

[Peterson et al. 2003]

[O'Dea et al. 2008]

Solution

Feedback

supernova winds (not enough)

quasar (only for short time)

AGN bubbles (anisotropic jets)

cosmic rays (isotropic? Fermi?)

sound waves (amplitude, viscosity?)

...

Non-feedback

thermal conduction (globally unstable, HBI, not enough for all)

galactic wake turbulence (not volume filling, efficiency?)

DM clumps (no

observational constrains, efficiency?)

preheating (no justification, SF history?)

...

Typical (relaxed) Cluster

[Piffaretti et al.]

- rough hydrostatic equilibrium
- $T \sim T_v \sim \text{keV} \Rightarrow \text{X-rays}$
- $T, L_x \Rightarrow M$ of most massive halo \Rightarrow cosmology
- entropy a fn. of halo assembly
- lower entropy accreted earlier \Rightarrow s inc. w. r (unlike stars)

Bimodality

[Cavagnolo et al.]

- cool-core vs. non-cool core
- entropy & cooling
- $j \sim n^2 T^{1/2} \Rightarrow$ inner r cool!

AGN Feedback

Pros:

- Energetically sufficient
- self-adjusting; explains correlations
- kinetic feedback for low dM/dt (radiatively inefficient accretion)
- jets/radio bubbles seen for large L_x

Cons:

- anisotropic jets/bubbles; isotropic heating?
- exact mechanism? cosmic rays? turbulence?
- how are bubbles blown/disrupted? is microphysics important?
- simulations not there yet!

Transport in the ICM

- thermal conduction is important: $t_{\text{cond}} \lesssim t_{\text{buoy}} \lesssim t_{\text{cool}}$
- mean free path \gg Larmor radius \Rightarrow parallel transport
- conduction is along B-lines \Rightarrow buoyancy instabilities (HBI/MTI)

- magnetic field wants to be \perp to gravity [Quataert]
- shut off conduction [Parrish et al.]
- small velocities enough to rearrange B

- magnetic field wants to be \parallel to gravity [Balbus]

Anisotropically conducting plasma is convectively stable!

[PS et al., arxiv-0909.0270]

- buoyant restoring force $\approx \rho g \Delta z \frac{d \ln T}{dz}$ ($\rho g \Delta z \frac{d \ln S}{dz}$ for convectively stable adiabatic fluid)
- similar restoring force for $dT/dz < 0$!
- HBI/MTI are buoyancy instabilities *not* convective instabilities

Mixing in the ICM

conduction along B

adiabatic

[PS et al.]

For movies see: <http://astro.berkeley.edu/~psharma/clustermovie.html>

- adiabatic CRs with $ds/dr < 0$ built up in time
- plasma becomes convectively unstable for $p_{cr}/p \gtrsim 0.2$
- easier to mix a conducting plasma than an adiabatic one!

conduction along B

isotropic conduction

adiabatic

-easiest to mix isotropically conducting plasma!

Turbulent mixing in a convectively stable atmosphere: Richardson

$Ri = \text{stable buoyancy force/turbulent force}$
 $\approx [gd\ln S/dz]/|\nabla u|^2$ for adiabatic plasma

$Ri \gtrsim 1$ buoyant stabilization; $\lesssim 1$ turbulent

[Turner 1973]

Turbulent mixing w. conduction along B: Richardson

Ri = stable buoyant force/turbulent force
 $\approx [gd\ln T/dz]/|\nabla u|^2$ for aniso. cond.
 $\approx [gd\ln S/dz]/|\nabla u|^2$ for adiabatic
 ≈ 0 for iso. cond.

$$Ri \approx 3g_{-8}r_{10} \frac{d \ln T / d \ln r}{u_{100}^2}$$

-vigorous mixing w. iso. conduction; $d\ln S/dz \approx 4d\ln T/dz \Rightarrow$ more mixing w. aniso. cond.

-strong mixing w. ~ 100 km/s turbulent velocities

Implications for ICM

- easier to redistribute energy in θ, Φ
- 100 km/s stirring is enough to isotropize B-fields => conductivity \sim Spitzer/3 (negligible conduction for smaller stirring!)
- source of turbulent motions: jets/bubbles, galaxy wakes,...

Thermal Instability

[Sutherland&Dopita]

hot ICM is thermally unstable;
like the hot phase of the ISM

$$\frac{d \ln(\Lambda/T^2)}{d \ln T} > 0 \text{ for isobaric thermal stability}$$

$$\frac{d \ln \Lambda}{d \ln T} > 0 \text{ for isochoric thermal stability}$$

valid when $p_{cr}/p \gg 1$ or $\beta \ll 1$

TI stabilized by conduction at scales smaller than $L_F \approx 10 \text{ kpc} T_{\text{keV}}^{7/4} n_{0.1}^{-1}$
Conduction along B => filaments along B!

Temperature

modified c.f.

CRs may help explain 10s of kpc long filaments!

w. CRs

no CRs

ID

need to resolve L_F !

CRs prevent || compression

- CRs needed to explain large ΔE emission lines [*Ferland et al.*]
- lack of star formation in molecular filaments!
- 10^9 - $10^{10} M_{\odot}$ molecular gas [*Salomé et al.*]
- Are CRs and B fields preventing gravitational collapse?

Is heating \approx cooling?

$t = 1.43 \text{Gyr}$

yes! statistically over many cooling times, else either hot/cold phase

Implications

- ICM easier to mix than adiabatic sims. suggest => easy to redistribute jet/bubble kinetic energy
- ICM is convectively stable! Richardson# criterion
- how ICM is heated isotropically still unknown!
- H α , molecular filaments due to Tl; elongated because of anisotropic conduction (+CRs??); suppressed star formation
- not a cooling flow but heating \approx cooling & Tl