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Outline

• Galaxy formation in cosmological context

• importance of cooling & feedback

• feedback regulation of star formation 

• supernovae to superbubbles & galactic winds

• Fermi bubbles in MW

• escape of LyC photons from dense disks



Cosmological context

Springel et al.

[Planck CMB map]

100 Mpc box 
start at z=6

DM simulation; just gravity

galaxy formation
due to gravitational
instability seeded by
CMB perturbations

galaxies form in overdense 
sheets, filaments & halos



gas cools and condenses into central galaxy
leaving behind hot gas with long cooling time

DM halo & hot gas extends much farther out 
compared to the visible disk

How does the distribution of baryons 
depend on the halo mass?

fraction of mass in stars, hot gas, cold gas, ...

structure of hot gas, disk as a function of halo mass1 kpc~3x1021 cm

spherical halo

*/gas disk

virial radius
200 kpc for MW

disk radius
10 kpc for MW

hot plasma~106 K

BH at center

Model for GF



DM halos vs. galaxies

need to understand galaxy 
distribution (i.e., stars)

vs. DM halo distribution 

cooling picks out a sweet spot
for galaxy formation

feedback is needed to suppress 
SF in both small and large halos

small: stellar/SN feedback
large: AGN/BH feedback

Galaxy Luminosity function 
Can we convert the observed 
luminosity function into a mass 
function? 
Yes, but we need to know (i.e. 
measure and model) the M/L for 
each type. 
What is our prediction? 
- DM halos form and evolve (easy) 
- Baryons trapped into their 

potentials pile up and light stars 
(complex) 

Simulations of DM halos reproduce 
a Schechter distribution for the 
halos, thus predicting a Schechter 
distribution for the mass (simple 
scaling based on matter/baryon 
ratio). 
Unfortunately, it’s totally different 
from the mass function inferred by 
observations! 

https://www.astro.virginia.edu/class/whittle/astr553/Topic04/t4_LF_origin_2.jpg 
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Physical model
no mass-scale picked out by gravitational physics

self-similarity is broken by cooling

Hubble expansion
at large scales

shocked virial plasma; 
GF if efficient cooling 

of shocked gas
happens for 109-1012 

Msun halos

log10T

atomic physics governs galaxy formation!

[Sutherland & Dopita]



[from the web]

Scales in the problem
spherical halo

*/gas disk

virial radius
200 kpc for MW

disk radius
10 kpc for MW

hot plasma~106 K

SMBH at center

halo scale - 200 kpc - 1 Gyr (hot halo)
galaxy size - 10 kpc - 50 Myr (SBs) 

GMCs - 100 pc - 1 Myr (UV, rad. pressure)

SN start in 5 Myr (lifetime of O stars)
isolated SN fizzle out in <1 Myr

need superbubbles!



What’s needed?

spherical halo

*/gas disk

disk radius
10 kpc for MW

to unbind gas from the disk & control SF

energy:  energy input rate > BE/(dynamical time)

ĖSN > fg
GM2

r(r/�)

momentum:  radiation force > gravity

�2 ⇡ GM/2r => ĖSN >
4fg
G

�5

L

c
> fg

GM2

r2
=> L >

4fg
G

�4c

easy to push gas out of the shallow potential wells with small σ
SN thermal/energy feedback important if cooling losses are overcome

SBs can retain substantial energy! 



CC Supernova

SN happens at the end stage of massive stars 
1 SN for every ~150 Msun of star formation

each SN produces ~1051 erg

mechanical energy produced per gram of 
SF: ~1015 erg/g ~10-6 c2

[Wikipedia]



SN evolution
interested in global (≳kpc) scale feedback, not inside molecular clouds
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Stars form in clusters
30 pc, R136 in LMC

young stars buried in dust clouds

stars form in clusters of size ~ 10s pc
supernovae go off in dilute bubbles created by 

previous SN can retain energy over 50 Myr, 
enough to unbind disk gas

SCs put in almost constant mechanical luminosity 
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HI shells & supershells
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S. Ehlerová and J. Palouš: H I shells in the outer Milky Way 103

Fig. 2. H I shells in the LDS corresponding to different types as shown in Fig. 1.

or more velocity channels (i.e. if its velocity extent is larger
than 4 km s−1), it is called an H I shell candidate. In the ma-
jority of cases the shell extends also to a few adjacent velocity
channels, in which the angular size is less than 1.5◦, and there-
fore it is not identified by our algorithm in step 1 (but it can be
identified in step 3, see below). If only four or five consecutive
velocity channels are involved, the velocity difference between
parts of the HI shell candidate is less than the typical velocity
dispersion in the ISM: σISM = 5−7 km s−1. In that case, we
probably see a static structure, which will be dissolved after
the dissolution time tdiss ∼ rsh/σISM, where rsh is the size of the
shell.

3.3. Verification using the central pixel spectrum

As a third step in the identification scheme the spectrum
through the center of the structure is automatically checked.
The coordinates of the center (lc, bc, vLSR) are mean values of
all pixels forming the HI shell candidate. A ∆TB = Thole − Tbg

spectrum through the center of an H I shell candidate is ana-
lyzed for depressions and peaks. The background brightness
temperature Tbg is defined in each velocity channel as an av-
erage emission from a strip around the structure with b = bc.
This definition proved to be more satisfactory than other tested
methods, e.g., the average emission from the surroundings of
the structure.

Structures that do not contain a clear depression in the ∆TB

spectrum or for which the depression is not located in the

velocity interval where the hole is visible in lb maps are ex-
cluded from further study. Figure 3 shows examples of spec-
tra. Structures in the upper row are identified in velocity chan-
nels where the ∆TB spectrum has a minimum, therefore all are
H I holes. The upper left gives the spectrum showing a mini-
mum in those velocity channels where the HI shell candidate is
identified (thick dashed line). The upper center shows a more
complex spectrum with several smaller peaks in velocity chan-
nels corresponding to a temperature depression of the HI shell
candidate. They probably come from small cloudlets engulfed
by the HI hole. The upper right gives an example of a spectrum
with a wall, which closes the HI hole at the position of the cen-
tral pixel. On the other hand the three spectra in the lower row
do not clearly demonstrate an H I structure. The spectrum in the
velocity channels where the HI shell candidate resides is either
too flat (left) or the identified structure is displaced from the
minimum in ∆TB (center) or the structure is not connected to
the minimum in ∆TB (right).

The interval ∆v between peaks surrounding the depression
in ∆TB or between endpoints of upward slopes if peaks do
not exist, equals twice the expansion velocity of the structure
vexp =

1
2∆v. The ∆v interval is usually larger than the velocity

interval where the hole is visible in lb maps. This is because the
algorithm searches for holes (i.e. minima in ∆TB) and moreover
for holes with dimensions larger than a given size. Therefore,
velocity channels that contain low-contrast or small parts of
the structure are not included in an H I shell candidate created
in the first two steps of the identification. Only a minority of

[Ehlerova & Palous 2005]
400 pc

HI shells & superbubbles



Overlapping SNe feedback

200 super star 
clusters within 200 pc 

of core

overlapping SN input 
mechanical energy & 
lead to galactic winds

20 kpc, galaxy scale



SB evolution

classic dimensional argument:

1051 erg in form of ejecta KE is 
put in at r=0 after every tSN in 

uniform ISM

Superbubble Feedback 7
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Figure 1. Number density as a function of radius (scaled to the
self-similar scaling) for different parameters of realistic KE runs
at 10 Myr. The outer shock is closer in for models using a larger
ejecta radius because energy is overwritten before it can couple to
the ISM.

where Lej = Eej/tSN = EejNOB/tOB) for different realis-
tic runs (results are similar for TEo models) with NOB =
100, 105 at 10 Myr. The runs with a large ejecta radius (100
pc) give a smaller outer shock radius because most of the
energy is overwritten without being thermalized (see section
4.1.1 for a discussion). The problem is worse for larger NOB

(shorter tSN), as expected from Eq. 1. The normalized loca-
tion of the outer shock falls almost on top of each other for
a small ejecta radius (rej = 2 pc). As expected, the shock
is weaker, broader, and with a modest density jump for a
smaller number of SNe.

5.2 Comparison of adiabatic models

While the KE model is most realistic, we expect other models
in section 2 to give a similar location for the outer shock
after the swept-up ISM mass equals the ejecta mass and the
shock is in the Sedov-Taylor regime. The structure within the
bubble depends on SN prescription, as we show in section 5.3.

Figure 2 shows the location of the outer shock (measured
by its peak density) as a function of time for various models
(KE, LD, TEa) and SN parameters in absence of cooling. The
solid line at the bottom shows the transition from a single
blast wave (outer shock radius, rOS ∝ t2/5) to a continuously
driven bubble (rOS ∝ t3/5; Weaver et al. 1977) for NOB =
100 run. The runs with more SNe show such a transition
very early on. The dot-dashed line shows the outer shock
radius for the KE run using a large ejecta radius violating the
criterion in Eq. 1; the outer shock radius is much smaller than
expected because energy is overwritten before it energizes the
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Figure 2. The outer shock radius as a function of time for various
runs using kinetic explosion (KE), luminosity driven (LD) and ther-
mal explosion addition (TEa) models. The KE models give correct
results only if the ejecta radius (rej) is sufficiently small; otherwise
energy is overwritten before getting coupled to the ISM. There is
no such problem for energy addition and luminosity driven models.
At early times the outer shock radius scales with the Sedov-Taylor
scaling (rOS ∝ t2/5) and later on, after many SNe go off, it steepens
(rOS ∝ t3/5).

hot bubble (see section 4.1.1). The luminosity driven (LD)
and kinetic explosion (KE) models agree only if the ejecta
radius satisfies Eq. 1 for KE models (we have verified that
this constraint also applies to the thermal explosion overwrite
[TEo] models). TEa (thermal explosion addition) runs and
LD runs fall on top of each other for both choices of rej (2,
100 pc). The outer shock radii for the runs with rej = 100 pc
increase only after a thermalization time (Eq. 5; although in
this case ρ is not the ISM density but the much lower density
of the bubble within which energy is added).

5.3 CC85 wind within the bubble

In this section we show that a simple steady wind, as pre-
dicted by CC85, exists within the bubble only if the number
of SNe is sufficiently large (see section 4.3). Figure 3 shows
the density profile as a function of the scaled radius for var-
ious models. The solid line shows density for a luminosity
driven (LD) model with NOB = 100 and rej = 2 pc; vari-
ous regions for the smooth CC85 wind within the bubble are
marked. The superwind has a structure identical to the CC85
wind; the sonic point is just beyond the energy injection ra-
dius (2 pc). The wind shocks at the termination shock (rTS)
where the wind ram pressure balances the bubble pressure.
The ratio of the termination shock and the outer shock (rOS)
is ≈ 0.07, in good agreement with Eq. 9. For comparison, Fig-

c⃝ 0000 RAS, MNRAS 000, 000–000
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ious models. The solid line shows density for a luminosity
driven (LD) model with NOB = 100 and rej = 2 pc; vari-
ous regions for the smooth CC85 wind within the bubble are
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hot bubble (see section 4.1.1). The luminosity driven (LD)
and kinetic explosion (KE) models agree only if the ejecta
radius satisfies Eq. 1 for KE models (we have verified that
this constraint also applies to the thermal explosion overwrite
[TEo] models). TEa (thermal explosion addition) runs and
LD runs fall on top of each other for both choices of rej (2,
100 pc). The outer shock radii for the runs with rej = 100 pc
increase only after a thermalization time (Eq. 5; although in
this case ρ is not the ISM density but the much lower density
of the bubble within which energy is added).

5.3 CC85 wind within the bubble

In this section we show that a simple steady wind, as pre-
dicted by CC85, exists within the bubble only if the number
of SNe is sufficiently large (see section 4.3). Figure 3 shows
the density profile as a function of the scaled radius for var-
ious models. The solid line shows density for a luminosity
driven (LD) model with NOB = 100 and rej = 2 pc; vari-
ous regions for the smooth CC85 wind within the bubble are
marked. The superwind has a structure identical to the CC85
wind; the sonic point is just beyond the energy injection ra-
dius (2 pc). The wind shocks at the termination shock (rTS)
where the wind ram pressure balances the bubble pressure.
The ratio of the termination shock and the outer shock (rOS)
is ≈ 0.07, in good agreement with Eq. 9. For comparison, Fig-

c⃝ 0000 RAS, MNRAS 000, 000–000

single SN

superbubble

[Sharma et al. 2014]
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NOB: number of OB stars/SNe over 30 Myr; NOB=100 corresponds to 1038 erg s-1
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Figure 3. Density profile as a function of normalized radius for
luminosity driven (LD), kinetic explosion (KE), and thermal ex-
plosion addition (TEa) models. The standard CC85 wind within
the bubble appears for the LD model, and for KE and TEa models
with NOB = 106, but not for KE/TEa models with NOB = 100;
the smooth CC85 wind is identified by the density profile varying
∝ r−2 between the ejecta radius and the termination shock (var-
ious regions have been marked for the LD run). The CC85 wind
density using NOB = 106 is slightly smaller for the KE model com-
pared to the TEa model because density is overwritten (and hence
mass is lost) in KE models.

ure 3 also shows the density profiles for the kinetic explosion
(KE) and thermal explosion addition (TEa) models with the
same parameters. While the outer shock radius agree for these
runs, the density profiles within the bubble are quite differ-
ent. The most blatant difference, for runs with NOB = 100,
is the absence of a CC85 wind in KE and TEa models. In ac-
cordance with the discussion in section 4.3, SN shocks do not
thermalize within the termination shock for a small number
of SNe (see Eqs. 10 & 11); therefore a smooth CC85 wind is
not expected in any model with small NOB except LD.

Only for a large enough NOB and late enough times does
a CC85 wind start to appear within the hot bubble. Figure
3 includes the density profiles for kinetic explosion (KE) and
TEa models using NOB = 106 (the inner [outer] radius of the
computational domain for these runs is 0.5 pc [5 kpc]; rej = 1
pc is chosen to satisfy the constraint in Eq. 1). Clearly, in
these cases we see the appearance of the CC85 wind solution
within the termination shock because the injected energy is
thermalized. For the KE run with NOB = 106 one can still
see the internal shocks due to isolated SNe interacting with
the superwind. The density profile for the KE model using
NOB = 105 is shown by the dotted line in Figure 1. In agree-
ment with Eq. 9, the ratio rTS/rOS increases with an increas-
ing NOB. For NOB = 105 thermalization is less complete as
compared to NOB = 106, but happens within the termination
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Figure 4. Density as a function of radius for different runs at 3
Myr to show that energy addition totally fizzles out for a high ISM
density. While TEa and LD models do not show the formation of
a hot, dilute bubble for ISM density of 20 cm−3, KE model indeed
shows a bubble and a forward shock. Also shown is the density
profile for TEa model with a lower density (5 cm−3) ISM; at later
times it shows a bubble which pushes the shell outwards. The outer
shock radius is larger for a lower density ISM because rOS ∝ ρ−1/5.

shock. In comparison, a clear termination shock is absent for
NOB = 100 because the thermalization radius is larger than
the termination shock radius (see Eq. 11).

5.4 Effects of radiative cooling

In this section we study the effects of radiative cooling on
SNe and SBs. We focus on a few aspects: the fizzling out
of thermal feedback in some models in which energy is not
injected over a sufficiently small scale; comparison of cooling
losses and mechanical energy retained by radiative SNRs and
SBs; the influence of magnetic fields and thermal conduction.

5.4.1 Unphysical cooling losses with thermal energy

addition

As we mentioned in section 4.2, some models (TEa, LD) in
which we add SN thermal energy in a dense ISM, over a large
radius, can suffer unphysical catastrophic radiative cooling.
In such cases a hot bubble is not even created and SN feed-
back has no effect, whatsoever. Early SN feedback simulations
suffered from this problem because of low resolution.

Figure 4 shows the density profiles at 3 Myr for three of
our energy injection models (KE, LD, TEa) with NOB = 100
and the ISM density of 20 cm−3. The ejecta radius is chosen
to be large such that it violates conditions in Eqs. 4 & 7.

c⃝ 0000 RAS, MNRAS 000, 000–000
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adiabatic scaling holds in absence
of cooling

wind-bubble structure:
outer-shock, contact discontinuity, 

termination shock,
CC85 wind

CC85 wind results only for 
a large SSC/NOB s. t. SN 

thermalizes before hitting TS
also verified in 3-D sims.
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Figure 6. Fractional radiative losses in shell ([shell cooling
rate]/[total cooling rate]) and bubble ([bubble cooling rate]/[total
cooling rate]) for KE models (NOB = 105) with and without con-
duction ( the run with thermal conduction is discussed in section
5.4.5). Most radiative energy losses happen at the radiative relax-
ation layer ahead of the dense shell. At late times, as the outer
shock weakens, radiative losses in the bubble become more domi-
nant. Bubble is comparatively more radiative (in fact, bubble losses
exceed shell losses after 5 Myr) with conduction because of mass
loading of the bubble by evaporation from the dense shell. Results
from the high resolution run and the luminosity driven (LD) model
are similar. The minimum in fractional radiative losses corresponds
to the time when the outer shock becomes radiative.

which is ∼ 10−4 pc for fiducial numbers, far from being re-
solved even in our highest resolution runs. While the tran-
sition layers (contact discontinuity and radiative relaxation
layer) where all our cooling is concentrated are unresolved, we
find that the volume integrated quantities such as radiative
losses, kinetic/thermal energy in shell/bubble are converged
even at our modest (1024 grid points; results are similar even
for 256 grid points) resolution.

5.4.4 Energetics of radiative SBs & isolated SNRs

In this section we focus on the energetics of SB shell/bubble
and compare it with the results from isolated SNRs. We de-
fine the shell to be the outermost region where the density
is larger than 1.01 times the ISM density. All gas at radii
smaller than the shell inner radius is included in the bub-
ble (this definition is convenient but not very precise as it
includes small contribution from the unshocked SN ejecta).
Figure 7 shows a comparison of kinetic and thermal energies
in bubble and shell as a function of time for a SB driven by
105 SNe. The bubble kinetic energy is not included because
it is much smaller. Also included is a comparison of the same
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shell KE, NOB=1, cum

nISM=1 cm−3

KE model, with cooling

Figure 7. Comparison of kinetic and thermal energies in the shell
and thermal energy in the bubble as a function of time for SBs and
an equal number of isolated SNe. Results from an isolated SN run
(NOB = 1) have been combined cumulatively (see Eq. 14), assum-
ing that SNe go off independently in the ISM. Pre-radiative phase
energetics are similar but isolated SNRs are extremely deficient in
mechanical energy (after 1 Myr) as compared to a SB with the
same energy input. The arrow on top right shows the bubble ther-
mal energy at the end for an adiabatic SB run. Isolated SN results
are only shown till 2 Myr because SNRs become weak sound waves
by then.

quantities for the same frequency of SNe that go off indepen-
dently. The results for multiple isolated SNe are obtained by
combining the single SN run at different times. We simply use
the data at an interval of tSN (time between individual SNe)
and add them to obtain total kinetic/thermal energy in the
shell and bubble at a given time. For instance, the thermal
energy in bubbles of all independent SNe at time 10tSN is
obtained by summing up the bubble thermal energy from a
single SN (NOB = 1) run at t = 0, tSN, 2tSN, ..., till 10tSN.
This is equivalent to a cumulative sum over time for a single
SN run,

Ecum(t) =
i<N
∑

i=0

E(itSN) =
1
tSN

∫ t

0

E(t′)dt′, (14)

where E stands for, say, bubble thermal energy and N is the
number of SNe till time t.

Weaver et al. (1977) have given analytic predictions for
energy in different components of SBs: the total energy of the
shell is (6/11)Lejt (40% of this is kinetic energy and 60% is
thermal) and the thermal energy of the bubble is (5/11)Lejt
(kinetic energy of the bubble is negligible). These analytic
predictions agree well with our numerical results in the early
adiabatic (non-radiative) SB phase in Figure 7.

Figure 7 shows that the SB shell loses most of its thermal

c⃝ 0000 RAS, MNRAS 000, 000–000

while isolated SN totally fizzle out by few Myr, SBs retain >20% 
of the energy put in as long as SNe go off in the center
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Figure 8. Radiative losses as a function of time for SBs and isolated SNe. Left panel shows the total radiated energy as a function of time
for an isolated SN run (solid line) and for SB runs (dashed lines) with NOB = 10, 1000, 105; larger NOB leads to larger radiative losses
because of a higher density and temperature in the radiative relaxation layer (see Fig. 5). The right panel shows fractional cooling losses
(1 - [energy radiated]/[input energy]) as a function of time; the total energy input at some time equals the number of SNe put in by that
time multiplied by 1051 erg (the spikes for NOB = 10, 103 in the right panel reflect the discreteness of SN energy input within SBs). All
SB runs, including those with conduction and with higher density, show that only a factor of 0.6− 0.8 is radiated by 20 Myr (and a factor
of 0.2− 0.4 is retained as mechanical energy). In contrast, the isolated SN run (solid line) loses 80% of its energy by 3 Myr, after which it
is no longer over-pressured with respect to the ISM.

magnetic pressure forces (and no tension) are present. We
choose a plasma β (ratio of gas pressure and magnetic pres-
sure) of unity in the ISM, and our SN ejecta is also magnetized
with the same value of β. Since the ejecta is dominated by
kinetic energy and the bubble is expanding, we do not expect
magnetic fields to affect the bubble and the ejecta structure.
However, the radiative shell is compressed because of cool-
ing, and due to flux-freezing magnetic pressure is expected to
build up in the dense shell. This is indeed what we find in our
simulations with magnetic fields. The left panel of Figure 9
shows the zoomed-in density and temperature structure of the
radiative outer shock with and without magnetic fields. The
key difference between the hydro and MHD runs is that the
dense shell in MHD has a lower density and is much broader.
This is because magnetic pressure prevents the collapse of
the dense shell.3 The dense shell (194 pc < r < 198 pc in the
left panel of Fig. 9) is magnetically dominated with plasma
β ∼ 0.01. The MHD run has two contact discontinuities; one

3 The photon mean-free-path for a dense shell can become smaller
than the shell thickness. When this happens, the assumption of op-
tically thin cooling breaks down, and the shell can become thicker
because of radiation pressure.

at the boundary of the hot bubble (r ≈ 191.5 pc), and another
at r ≈ 194 pc left (right) of which the plasma is dominated
by thermal (magnetic) pressure.

Another important physical effect, especially in the hot
bubble is thermal conduction. We carry out a 1024 resolu-
tion hydro run with thermal conduction to study its qualita-
tive influence. However, it is difficult to determine the ISM
conductivity in a magnetized (presumably turbulent) plasma.
Therefore, we use the Spitzer value with a suppression factor
of 0.2 (see Eq. 11 in Sharma, Parrish, & Quataert 2010).
Moreover, since the bubble can become very hot such that the
diffusion approximation breaks down, we limit the conductiv-
ity to an estimate of the free streaming diffusivity (chosen to
be 2.6 vtr where vt is the local isothermal sound speed and r
is the radius). Thermal conduction is operator split, and im-
plemented fully implicitly through a tridiagonal solver using
the code’s hydro time step.

Conduction is expected to evaporate matter from the
dense shell and deposit it into a conductive layer in the bub-
ble; in steady state the rate of conductive transport of energy
from bubble to the shell is balanced by the rate of heat advec-
tion from shell to the bubble (Weaver et al. 1977). The outer
and termination shock locations are not affected much by con-

c⃝ 0000 RAS, MNRAS 000, 000–000
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Figure 1. Density (left panels; log10 ng [cm−3]) and pressure (right panels) snapshots in z = 0 plane from our fiducial run shown before
(top panels) and after (bottom panels) supernovae coalesce. The yellow dots mark the projected location of supernovae in z = 0 plane.
Only four supernovae have gone off by 1.27 Myr, but 31 have gone off by 9.55 Myr. Top panels show that the supernovae at 1.27 Myr
are effectively isolated and even at this short time the pressure within their individual bubbles is smaller than the ISM pressure. The
bottom panels show the formation of a superbubble due to the overlap of several supernovae. The pressure inside in most of the bubble
volume, except at the center, is larger than the ISM value. Note that a supernova has gone off just before 9.55 My, and it creates a high
pressure sphere right at the center.

overlap assuming adiabatic evolution),

to,ad ∼ 0.16 Myr τ
5/11
OB,30N

−5/11
OB,4 E

−3/11
SN,51 n

3/11
g,1 r

15/11
cl,2 , (11)

where ng,1 is gas number density in units of 10 cm−3 and rcl,2 is
the radius of the star cluster in units of 100 pc.

We can make another estimate for the supernova overlap
timescale by assuming that supernovae overlap only after they
have become radiative. In this case, by a similar argument as
that of the last paragraph, the overlap time to,rad is given by

τOB/NOB (rcl/rbub)3, where rb,rad ∼ 37 pc E
1/3
SN,51n

−1/3
g (Eq. 2 in

Roy et al. 2013) is the hot/dilute bubble radius after the remnant
becomes radiative. Note that the bubble radius does not increase

by more than a factor of 2 after the radiative time (e.g., Fig.
2 in Kim & Ostriker 2015). Thus, the overlap time, assuming a
radiative bubble, is given by

to,rad ∼ 0.6 Myr τOB,30N
−1
OB,4E

−1
SN,51ng,1r

3
cl,2 . (12)

The evolution shown in Figure 6 is somewhere in between Eqs.
11 & 12.

The time for the overpressure volume to saturate after over-
lap of supernovae and transition to a superbubble evolution is
given by (using Weaver et al. 1977 scaling),

tsb ∼ 1.2 Myr r
5/3
cl,2 N

−1/3
OB,4 η

−1/3
mech,0.1E

−1/3
SN,51t

1/3
OB,30n

1/3
g,1 , (13)
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density pressure
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Figure 4. Volume distribution of pressure and gas number density ([1/8L3]d2V /d ln pd ln ng ; How is it normalized?) for the fiducial run
at different times. At late times there are two peaks in the distribution function corresponding to the WNM (ambient ISM at 104 K) and
the hot bubble (at ∼ 106 − 108 K). At 1.3 Myr we can see the signatures of non-overlapping supernovae fizzling out. Later, after about

5 Myr, we see the formation of a low density and (slightly) overpressured superbubble. At some times we see streaks with p ∝ n
5/3
g ,

representing adiabatic cooling of recent supernovae exploding in the low density cavity. The solid red line shows a temperature of 104 K.

where we have scaled the result with a mechanical efficiency ηmech

of 0.1 (i.e., only ∼ 10% of the input supernova energy goes into
blowing the superbubble; ∼ 90% is lost radiatively). This estimate
for the time of superbubble formation roughly matches the results
in Figure 6. Finally, the time when the superbubble pressure falls
to 1.5 times the ISM pressure is given by

tfiz ∼ 19 Myr T
−5/4

4 η
1/2
mech,0.1E

1/2
SN,51τ

−1/2
OB N

1/2
OB,4, (14)

(T4 is the ISM temperature in units of 104 K) which agrees with
the late time fall in the overpressure volume fraction in Figure 6.

5.1 Formation of Steady CC85 Wind

5.2 Overpressure fraction & Mach number

One of the interesting quantity is the efficiency of the superbub-
ble formation mechanism. As the bubble expands it does work
on the surrounding gas, and cools radiatively. Therefore, the en-
ergy retained in the superbubble is a small fraction of the energy
injected by supernovae. Here we compare the

6 DISCUSSION

6.1 Radius - velocity space of superbubbles

6.2 Mechanical efficiency & critical NOB vs. ng

While isolated supernovae lose all their energy by 1 Myr, even
overlapping supernovae forming superbubbles lose majority of en-
ergy injected by supernovae. The mechanical efficiency of super-
bubbles is given by

ηmech ≡
(KE + ∆TE)

(Einj + KEinj )
, (15)

which by energy conservation (the computational box is large
enough that energy is not transported in to or out of it) is =
1−RL/(Einj+KEinj ), where KE is kinetic energy in the simulation
box, ∆TE is the change in thermal energy of the box, Einj is
the total thermal energy injected by supernovae, KEinj is the
total kinetic energy added due to mass injection by supernovae
(since mass is added at the local velocity). Figure 8 shows the
mechanical efficiency (Eq. 15) as a function of gas density (ng)
at various times for runs with different NOB. One immediately
sees that mechanical efficiency decreases with an increasing ISM
density (ng). Efficiency also decreases with time (by almost a
factor of 10 from 5 to 30 Myr), especially for higher densities.
The maximum efficiency is ∼ 20%, occurring at early times. The
mechanical efficiency is lower (and decrease with time is much
larger) than 1-D simulations (see Sharma et al. 2014; see section

MNRAS 000, 000–000 (0000)
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NOB ng rcl δL Cooling Sim Type ηH ηmech

(atoms/cc) (×100 pc) (pc) Y/N F/O

1.0E2 0.1 1.0 2.53 Y O
... 1 0.0 4.33 Y
... ... ... 6.49 N
... ... 0.3 2.34 Y
... ... 0.7 4.32 N
... ... 1.0 2.53 Y
... ... 1.5 4.32 Y
... 10 1.0

1.0E3 1 1.0 2.53
... 10 ... ...

1.0E4 10 0.5 2.53
... ... 1.0 ...
... ... 1.5 ...
... ... 2.0 ...
... ... 2.5 ...
... ... 3.0 ...

1.0E5 1 0.0 2.48
... ... 1.0 ...
... 10 ... ...
... 100 ... ...
... 1000 ... ...

Table 1. Input/Output parameters of all the simulations.

Figure 2. Energy and mass injected in the simulation box due to
supernovae as a function of time for the fiducial run. Injected mass
and energy are normalized (5M⊙ for mass and 1051 erg for energy)
such that every supernova adds 1 unit. Total energy injected is
larger than just the thermal energy put in due to supernovae
by ≈ 30% because kinetic energy is injected in addition to the
dominant thermal energy. The insets at top left and bottom right
show a zoom-in of injected energy and mass, respectively. One
can clearly see a unit step in the injected mass and energy for
each supernova that goes off.

Figure 3. Volume distribution of pressure (along horizontal axis)
at different times (along vertical axis) for the fiducial run. Color
represents the volume fraction (I think its log; [1/8L3]dV /dp PS:
how is the colorbar normalized?) of different pressures at all
times. The verical red line at 1.5 × 10−12 dyne cm−2 corresponds
to the large volume occupied by the ambient unperturbed ISM.
The circles mark the location of the maxima of the pressure distri-
bution within the superbubble. Before 5 Myr a coherent overlap
of isolated supernovae has not happened.

MNRAS 000, 000–000 (0000)
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Figure 5. The inner (green line) and outer (red line) radius of the
superbubble shell as a function of time for the fiducial run. The
blue line shows the overpressure function as a function of time.
We define the superbubble to be fizzled out when the overpressure
fraction falls below 0.8, which happens around 15 Myr.

4 for a comparison of 1-D and 3-D simulations). A rough scaling

of ηmech ∝ n
−2/3
g can be deduced from Figure 8.

Figure 6 shows that the overpressure volume fraction ηO

has a similar value for cluster sizes as large as rcl = 300 pc. This
means that the evolution of the superbubble is independent of rcl,
as long as overlap of supernovae happens before the cluster age,
which is very likely not only for individual star clusters but also for
clusters of star clusters as in the center of M82 galaxy (O’Connell
et al. 1995). Therefore, the key parameter that determines if the
superbubble remains sufficiently overpressured by the end of the
star-cluster lifetime, for a given gas density, is the number of
supernovae NOB.

Figure 9 shows the plot of critical number of supernovae
required to produce an average overpressure volume fraction of
0.5 at late times (25 to 30 Myr), for a given gas density. We
vary the ISM density for a given NOB, such that the late-time
overpressure fraction is close to 0.5. The critical NOB roughly
scales as n2

g .
The superbubble pressure as a function of time, according

to Weaver et al. (1977), is ∼ 3
4 ρv

2
sb, which at the end of cluster

lifetime becomes
psb, late

kB
∼ 1.7 × 105 Kcm−3N

2/5
OB,4η

2/5
mech,0.01t

−6/5
OB, n

3/5
g,1 . (16)

The ISM pressure is pISM/kB = 105ng,1T4. This estimate agrees
with Figure 9 in that the critical NOB for ng = 10 cm−3 is about
104. Equating the late-time superbubble pressure and 1.5 times
the ISM pressure we get the scaling of critical NOB as NOB,crit ∝

ngη
−1, which when we use the dependence of ηmech on ng from

Figure 8 (ηmech ∝ n−2/3), gives NOB,crit ∝ n
5/3
g . This scaling is

similar to the scaling of critical NOB observed in Figure 9. A
steeper ηmech versus ng , which is not inconsistent with Figure 8,
will give an even better match. The important point to note is
that a decreasing mechanical efficiency with an increasing ISM
density, is required to explain the critical NOB curve.

PS: Discussion in Biman’s notes and the relation
with Kenicutt-Schmidt law may be useful.

6.3 Effects of density inhomogenities

7 CONCLUSIONS
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APPENDIX A: RADIUS DETERMINATION OF

BUBBLES

We have determined radii of the inner cavity and the outer bound-
ary of the disturbance as shown in the following figure:

APPENDIX B: CONVERGENCE

In order to ensure the convergence of the results, we carried out
simulations with increasing grid resolution (see Table. B1). The
time increment (step size) becomes shorter with higher grid res-
olution as ∆t ∼ N −1, where N is the number of grid points along
any given axis. We compare the evolution of volume integrated
quantities and radius evolution of bubble for various grid resolu-
tions.

(i) Total energy loss due to optically thin cooling till time t is
a sum of radiative energy losses over the n time steps of size ∆ts:

t
∫

0

Ėraddt ≈

n
∑

s=1

⎛

⎜
⎜⎝

N
∑

i, j,k=1

(

nijk

µmH

)2

Λ̃(Tijk )dV

⎞

⎟
⎟⎠
∆ts, (B1)

where Ėrad is energy loss due to radiation integrated over the
simulation box at time t .

(ii) Radiative losses as a function of distance from the center
of the bubble. We divide the simulation box in to N spherical
shells of constant thickness 2L/N , where the computational do-
main extends from −L to L along each spatial direction and N is
the number of grid points along each direction.

⟨ėrad (r )⟩ =
1

∆V

r+∆r
∫

r

erad (r)d3
r, (B2)

where ėrad (r) is the energy loss due to radiation as a function of
radius, and ∆V is the shell volume.

(iii) Total kinetic energy of gas inside the simulation box as a
function of time is obtained by summing the kinetic energy along
the x, y and z directions.

EK =

∫

(KEx (r) + KEy (r) + KEz (r))d3
r (B3)

(iv) Evolution of thermal energy inside the simulation box. The
thermal energy is calculated using Eq. 4 as

ET =
1

γ − 1

∫

p(r)

ρ (r)
d3

r (B4)

(v) Hot volume fraction (ηH) which is defined as

ηH =
V>

V> +V<
, (B5)

where V> is the volume occupied by gas at pressure P > 1.5P0

and V< is the volume occupied by gas at P < P0/1.5. The above
definition ηH describes the fraction of the volume occupied by
high pressure gas.

MNRAS 000, 000–000 (0000)
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fizzled out when 

bubble pressure falls below
1.5 times the ISM value
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Figure 9. Critical NOB required for a given density of the ISM
for the superbubble to remain sufficiently overpressured at late
times. The colorbar and the size of squares represent deviation
from an average overpressure fraction of 0.5 at late times (25 to
30 Myr). The best-fit power-law scaling is indicated, and 3 − σ

spread about the best fit is indicated by the grey shaded region.

Figure A1. Determining the radius of superbubbles: first we
take spherical average of density in shells of size δL; outer radius
corresponds to the radius at which the mean density is larger than
1.1 times the ambient ISM density (ng) and the inner radius
corresponds to the radius at which the density falls below the
same value. There can be a large difference between the inner
and the outer radius, especially once the outer shock becomes
weak.
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Label L δL RO
sb R I

sb E⋆
K EK ET ηH ξ

(pc) (pc) (pc) (pc) (1051 erg) (1051 erg) (1051 erg)

C4.5 844 4.53 822 245 3.15 0.21 1.31 0.27 1.4
C3.6 714 3.57 713 283 18.92 0.57 3.81 0.39 3.5
C2.5 649 2.53 640 296 29.78 0.91 6.82 0.49 5.7
C1.3 649 1.27 635 316 31.02 1.04 8.28 0.65 6.8

Table B1. Details of the set of simulations used to study the convergence of results. The number of OB stars NOB = 100, the ambient
density is ng = 1.0 atom/cm3 and cluster radius rcl = 100 pc. The number of cells along each of the directions is same N1 = N2 = N3 = N .
Rsb is the final radius of the cavity. EK and ET is the total kinetic energy and total thermal energy inside the simulation box respectively.
ηH is the hot volume fraction as defined by Eq. B5.

Figure 7. Gas density as a function of radius (scaled with N
1/5
OB )

at 30 Myr for different NOB. The density profile attains a smooth,
steady CC85 profile within the bubble for a large NOB. The results
are consistent with the analytic considerations in section 4.3 of
Sharma et al. 2014.
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Figure 9. Critical NOB required for a given density of the ISM
for the superbubble to remain sufficiently overpressured at late
times. The colorbar and the size of squares represent deviation
from an average overpressure fraction of 0.5 at late times (25 to
30 Myr). The best-fit power-law scaling is indicated, and 3 − σ

spread about the best fit is indicated by the grey shaded region.

Figure A1. Determining the radius of superbubbles: first we
take spherical average of density in shells of size δL; outer radius
corresponds to the radius at which the mean density is larger than
1.1 times the ambient ISM density (ng) and the inner radius
corresponds to the radius at which the density falls below the
same value. There can be a large difference between the inner
and the outer radius, especially once the outer shock becomes
weak.
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Galactic outflows
105 SN over 50 Myr; SFR~0.7 Msun/yr

an equilibrium hot halo+rotating disk initialized
internal energy injected at small radius at a constant rate

SNe break out of the disk and pollute the halo with metals

[Sarkar et al. 2014]

6 Sarkar, Nath, Sharma, Shchekinov

Figure 2. Snapshots of density (top panel) and temperature (bottom panel) contours at 10, 30, 40 and 50 Myr for L = 1042 erg s−1 and
a box size of 30×30 kpc2. Notice that the cold, multiphase gas , which is mainly due to the uplifted disc gas, is confined to the outer wall
of the outflow.

Figure 3. Snapshots of density (top panel) and temperature (bottom panel) contours at 10, 30, 40 and 50 Myr for L = 1041 erg s−1 and a
box size of 30×30 kpc2. The evolution is different from Figure 2 in that, in addition to the cold gas at the outer wall, there is volume-filling
cold disk gas at 50 Myr dredged up by the ram pressure of the outflow. It will be shown later in §4.3 that the cold gas at the outer wall is
slower compared to the volume-filling cold gas.
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Cold clouds
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Figure 12. Temperature contour for L = 1041 erg s−1 at 50 Myr
for, on which we superpose the tracks for cold clouds. The main
sequence (S1) clouds (entrained by high velocity free wind) are
tracked back for 17 Myr, and the secondary sequence (S2) clouds
(entrained by the low velocity shocked wind) are tracked back for
40 Myr.
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Figure 13. Scatter plot temperature and radial distance of gas
particles, colour coded by the time average of density squared (av-
eraged over 50 Myr), shown for four different mechanical luminosi-
ties.

after the disk material advances inwards and is blown away
into a filamentary structure (see snapshots at 40 and 50 Myr
in Figure 3). The second sequence of clouds corresponds to
the ones formed in the interaction zone between the hot halo
gas and shocked ISM due to various instabilities as discussed
earlier (see Fig. 2).

Figure 11 also shows the cloud gas density in colours.
The clouds at large distances are in general more tenuous
than those at inner region, which can be understood from
adiabatic expansion of clouds moving in an ambient medium
(free wind) whose pressure decreases with distance.

The extension of the secondary sequence from ∼ −150
km s−1 to +200 km s−1 means that few clouds are also falling
back to the centre. The fraction of mass that falls back to the
center, however, is small trigger any noticeable star formation,
as will be discussed in the next section. Figure 12 shows the
time tracks of these two sequences of clouds seen at 50 Myr
for L = 1041 erg s−1. The main sequence (labelled S1) are
tracked back for 17 Myr, and represents relatively younger
disk material, whereas the secondary sequence clouds (S2)
are tracked for 40 Myr, which are basically older population
clouds. These two families of tracks clearly shows the source of
the clouds and supports our previous discussion about their
origin in the free and shocked wind. Other than these two
sequences, we also notice some island points at a galacto-
centric radius of ∼ 15–25 kpc having velocity close to ∼ 400
km s−1, which may represent rare high velocity-high latitude
clouds as observed by Sembach et al. (2002).

Figure 13 shows the temperature and position of gas
parcels, colour coded by the time average of the square of
particle density (averaged over 50 Myr), for four different
mechanical luminosities. Only the parcels of gas within 15
kpc are represented here. The two horizontal streaks at 106.5

K and 104 K corresponds to the hot halo and warm clouds,
respectively, whereas the rising envelope of increasing tem-
perature with radial distance corresponds to the mixture of
the disk and halo gas in the plane of the disk. The 1/r2 fall of
temperature in case of L = 1043erg s−1 is easily understood
as the adiabatically expanding gas. The regions marked in
red and orange correspond to gas with high emissivity, and
therefore are important from the consideration of observabil-
ity. The figure suggests that for very low luminosity outflows,
most of the emission would arise from gas at ∼ 105 K gas
within ∼ 5 kpc. X-ray emitting gas becomes important for
L ! 1042 erg s−1, corresponding to SFR of ∼ 10 M⊙ yr−1.
These results are consistent with observations of X-rays from
outflows (Stickland & Heckman 2007), including the X-ray
emission from the outflow from Milky Way (Snowden et al.
1995; Breitschwerdt & Schmutzler 1994).

4.4 Mass inventory

In addition to the mass loading factor, the velocity and the
temperature distribution, we have also estimated the total
outflowing mass. This is an important parameter in the con-
text of the evolution of the galactic disk and halo, as well as
the enrichment of the IGM. The total mass injected into the
halo is assumed to be proportional to the SFR or L, and it
is a small fraction of the total disk mass or the gas mass in
the halo, even for the largest SFR considered here. However,
the total mass of the outflowing gas ranges between 0.2–10%
of the total gas content (1011 M⊙), increasing roughly lin-
early with SFR, between 1.5–150 M⊙ yr−1. Therefore out-
flows corresponding to large SFR can change the halo gas
density by " 10%. We have also found that the average disk
mass does not change appreciably by either ejection or fall
back of gas (" 1% for the most vigorous outflows) and in
all cases, the change in the disk mass is much smaller than
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considered here. Therefore the outflows eject the gas out of
the virial radius with speeds comparable to the sound speed
of the halo gas. This has important implications for the en-
richment models of the IGM. Next, we focus on the wind
structure at observable scales (∼ 10 kpc) based on our small-
scale/short-duration simulations.

While ploughing through the ISM, the wind fluid en-
trains the warm disk gas with it. For low luminosities (! 1041

erg s−1) this entrained gas mixes with the wind and forms
filaments and cloud-like structures embedded within the 10
kpc free wind. For higher SFR, the disk gas is mainly located
near the contact disk ontinuity of wind cone. While being
carried away by the high velocity wind, a fraction of the cold
clumps gets evaporated and the rest propagates outwards due
to the ram pressure of the free wind. Therefore, the dynam-
ics of the clouds and filaments is momentum conserving, for
which the velocity increases with the distance (Murray et al.
2005). As the density of the hot gas decreases with distance,

Figure 11. Scatter plot of the velocity of the warm gas (T < 3×
105 K) and radial distance at 50 Myr. Top panel is for L = 1040.3,
1041 erg s−1 and bottom panel is for L = 1042 and 1043 erg s−1

respectively.

the ram pressure decreases, leading to an asymptotic speed
of the clouds. However, this result pertains to a steady state
situation, which is not the case here.

Figure 11 shows the position and velocity of warm/cold
gas (T < 3× 105 K) for four different luminosities at 50 Myr.
The figure shows that the velocity of the cold and warm gas
ranges from ∼ −150 km s−1 to ∼ 800 km s−1. The points
with constant velocity at ≃ 1600 km s−1 represent the adi-
abatically cooled free wind in case of L = 1042 and 1043 erg
s−1, while the points with nearly zero velocity represent the
stationary disk gas.

For L = 1041,42 erg s−1, we also notice two sequences of
velocity points, one which is a dominant sequence (referred to
as the main sequence here), which extends from zero velocity
to a velocity of ∼ 800 km s−1, and, a secondary sequence
which is almost parallel to the main sequence but extends
from −150 km s−1 to +200 km s−1. Both sequences are almost
linearly dependent on the radius. This can be understood as
the effect of ram pressure of the outgoing free/shocked wind,
as mentioned previously. The radial dependence of the veloc-
ity of the warm gas in our simulation can be compared with
the results obtained by Shopbell & Bland-Hawthorn (1998) in
case of Hα filaments in M82, who also observed a roughly lin-
ear relation between velocity and height above the disk (their
Figure 10).

The origin of these two sequences are quite similar. The
main sequence is entrained by the high velocity free wind,
thereby giving it a relatively higher velocity. On the other
hand, the secondary sequence arises because of the entrain-
ment of the clouds by the lower velocity shocked wind. As
shown in the evolution of wind for L = 1041 erg s−1 in Fig-
ure 3, the main sequence corresponds to the clouds formed
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considered here. Therefore the outflows eject the gas out of
the virial radius with speeds comparable to the sound speed
of the halo gas. This has important implications for the en-
richment models of the IGM. Next, we focus on the wind
structure at observable scales (∼ 10 kpc) based on our small-
scale/short-duration simulations.

While ploughing through the ISM, the wind fluid en-
trains the warm disk gas with it. For low luminosities (! 1041

erg s−1) this entrained gas mixes with the wind and forms
filaments and cloud-like structures embedded within the 10
kpc free wind. For higher SFR, the disk gas is mainly located
near the contact disk ontinuity of wind cone. While being
carried away by the high velocity wind, a fraction of the cold
clumps gets evaporated and the rest propagates outwards due
to the ram pressure of the free wind. Therefore, the dynam-
ics of the clouds and filaments is momentum conserving, for
which the velocity increases with the distance (Murray et al.
2005). As the density of the hot gas decreases with distance,

Figure 11. Scatter plot of the velocity of the warm gas (T < 3×
105 K) and radial distance at 50 Myr. Top panel is for L = 1040.3,
1041 erg s−1 and bottom panel is for L = 1042 and 1043 erg s−1

respectively.

the ram pressure decreases, leading to an asymptotic speed
of the clouds. However, this result pertains to a steady state
situation, which is not the case here.

Figure 11 shows the position and velocity of warm/cold
gas (T < 3× 105 K) for four different luminosities at 50 Myr.
The figure shows that the velocity of the cold and warm gas
ranges from ∼ −150 km s−1 to ∼ 800 km s−1. The points
with constant velocity at ≃ 1600 km s−1 represent the adi-
abatically cooled free wind in case of L = 1042 and 1043 erg
s−1, while the points with nearly zero velocity represent the
stationary disk gas.

For L = 1041,42 erg s−1, we also notice two sequences of
velocity points, one which is a dominant sequence (referred to
as the main sequence here), which extends from zero velocity
to a velocity of ∼ 800 km s−1, and, a secondary sequence
which is almost parallel to the main sequence but extends
from −150 km s−1 to +200 km s−1. Both sequences are almost
linearly dependent on the radius. This can be understood as
the effect of ram pressure of the outgoing free/shocked wind,
as mentioned previously. The radial dependence of the veloc-
ity of the warm gas in our simulation can be compared with
the results obtained by Shopbell & Bland-Hawthorn (1998) in
case of Hα filaments in M82, who also observed a roughly lin-
ear relation between velocity and height above the disk (their
Figure 10).

The origin of these two sequences are quite similar. The
main sequence is entrained by the high velocity free wind,
thereby giving it a relatively higher velocity. On the other
hand, the secondary sequence arises because of the entrain-
ment of the clouds by the lower velocity shocked wind. As
shown in the evolution of wind for L = 1041 erg s−1 in Fig-
ure 3, the main sequence corresponds to the clouds formed
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considered here. Therefore the outflows eject the gas out of
the virial radius with speeds comparable to the sound speed
of the halo gas. This has important implications for the en-
richment models of the IGM. Next, we focus on the wind
structure at observable scales (∼ 10 kpc) based on our small-
scale/short-duration simulations.

While ploughing through the ISM, the wind fluid en-
trains the warm disk gas with it. For low luminosities (! 1041

erg s−1) this entrained gas mixes with the wind and forms
filaments and cloud-like structures embedded within the 10
kpc free wind. For higher SFR, the disk gas is mainly located
near the contact disk ontinuity of wind cone. While being
carried away by the high velocity wind, a fraction of the cold
clumps gets evaporated and the rest propagates outwards due
to the ram pressure of the free wind. Therefore, the dynam-
ics of the clouds and filaments is momentum conserving, for
which the velocity increases with the distance (Murray et al.
2005). As the density of the hot gas decreases with distance,

Figure 11. Scatter plot of the velocity of the warm gas (T < 3×
105 K) and radial distance at 50 Myr. Top panel is for L = 1040.3,
1041 erg s−1 and bottom panel is for L = 1042 and 1043 erg s−1

respectively.

the ram pressure decreases, leading to an asymptotic speed
of the clouds. However, this result pertains to a steady state
situation, which is not the case here.

Figure 11 shows the position and velocity of warm/cold
gas (T < 3× 105 K) for four different luminosities at 50 Myr.
The figure shows that the velocity of the cold and warm gas
ranges from ∼ −150 km s−1 to ∼ 800 km s−1. The points
with constant velocity at ≃ 1600 km s−1 represent the adi-
abatically cooled free wind in case of L = 1042 and 1043 erg
s−1, while the points with nearly zero velocity represent the
stationary disk gas.

For L = 1041,42 erg s−1, we also notice two sequences of
velocity points, one which is a dominant sequence (referred to
as the main sequence here), which extends from zero velocity
to a velocity of ∼ 800 km s−1, and, a secondary sequence
which is almost parallel to the main sequence but extends
from −150 km s−1 to +200 km s−1. Both sequences are almost
linearly dependent on the radius. This can be understood as
the effect of ram pressure of the outgoing free/shocked wind,
as mentioned previously. The radial dependence of the veloc-
ity of the warm gas in our simulation can be compared with
the results obtained by Shopbell & Bland-Hawthorn (1998) in
case of Hα filaments in M82, who also observed a roughly lin-
ear relation between velocity and height above the disk (their
Figure 10).

The origin of these two sequences are quite similar. The
main sequence is entrained by the high velocity free wind,
thereby giving it a relatively higher velocity. On the other
hand, the secondary sequence arises because of the entrain-
ment of the clouds by the lower velocity shocked wind. As
shown in the evolution of wind for L = 1041 erg s−1 in Fig-
ure 3, the main sequence corresponds to the clouds formed
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considered here. Therefore the outflows eject the gas out of
the virial radius with speeds comparable to the sound speed
of the halo gas. This has important implications for the en-
richment models of the IGM. Next, we focus on the wind
structure at observable scales (∼ 10 kpc) based on our small-
scale/short-duration simulations.

While ploughing through the ISM, the wind fluid en-
trains the warm disk gas with it. For low luminosities (! 1041

erg s−1) this entrained gas mixes with the wind and forms
filaments and cloud-like structures embedded within the 10
kpc free wind. For higher SFR, the disk gas is mainly located
near the contact disk ontinuity of wind cone. While being
carried away by the high velocity wind, a fraction of the cold
clumps gets evaporated and the rest propagates outwards due
to the ram pressure of the free wind. Therefore, the dynam-
ics of the clouds and filaments is momentum conserving, for
which the velocity increases with the distance (Murray et al.
2005). As the density of the hot gas decreases with distance,

Figure 11. Scatter plot of the velocity of the warm gas (T < 3×
105 K) and radial distance at 50 Myr. Top panel is for L = 1040.3,
1041 erg s−1 and bottom panel is for L = 1042 and 1043 erg s−1

respectively.

the ram pressure decreases, leading to an asymptotic speed
of the clouds. However, this result pertains to a steady state
situation, which is not the case here.

Figure 11 shows the position and velocity of warm/cold
gas (T < 3× 105 K) for four different luminosities at 50 Myr.
The figure shows that the velocity of the cold and warm gas
ranges from ∼ −150 km s−1 to ∼ 800 km s−1. The points
with constant velocity at ≃ 1600 km s−1 represent the adi-
abatically cooled free wind in case of L = 1042 and 1043 erg
s−1, while the points with nearly zero velocity represent the
stationary disk gas.

For L = 1041,42 erg s−1, we also notice two sequences of
velocity points, one which is a dominant sequence (referred to
as the main sequence here), which extends from zero velocity
to a velocity of ∼ 800 km s−1, and, a secondary sequence
which is almost parallel to the main sequence but extends
from −150 km s−1 to +200 km s−1. Both sequences are almost
linearly dependent on the radius. This can be understood as
the effect of ram pressure of the outgoing free/shocked wind,
as mentioned previously. The radial dependence of the veloc-
ity of the warm gas in our simulation can be compared with
the results obtained by Shopbell & Bland-Hawthorn (1998) in
case of Hα filaments in M82, who also observed a roughly lin-
ear relation between velocity and height above the disk (their
Figure 10).

The origin of these two sequences are quite similar. The
main sequence is entrained by the high velocity free wind,
thereby giving it a relatively higher velocity. On the other
hand, the secondary sequence arises because of the entrain-
ment of the clouds by the lower velocity shocked wind. As
shown in the evolution of wind for L = 1041 erg s−1 in Fig-
ure 3, the main sequence corresponds to the clouds formed
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Figure 18. Comparison of the Fermi bubbles with features in other maps. Top left: point-source subtracted 1–5 GeV Fermi-LAT 1.6 yr map, same as the lower left
panel of Figure 3 with north and south bubble edges marked with green dashed line, and north arc in blue dashed line. The approximate edge of the Loop I feature
is plotted in red dotted line, and the “donut” in purple dot-dashed line. Top right: the Haslam 408 MHz map overplotted with the same red dotted line as the top left
panel. The red dotted line remarkably traces the edge of the bright Loop I feature in the Haslam soft synchrotron map. Bottom left: the ROSAT 1.5 keV X-ray map is
shown together with the same color lines marking the prominent Fermi bubble features. Bottom right: WMAP haze at K-band 23 GHz overplotted with Fermi bubble
edges. The ROSAT X-ray features and the WMAP haze trace the Fermi bubbles well, suggesting a common origin for these features.
(A color version of this figure is available in the online journal.)

E2dN/dE = 3 × 10−7 GeV cm−2 s−1 sr−1 from 1–100 GeV,
integrating to 1.4 × 10−6 GeV cm−2 s−1 sr−1. The bubble tem-
plate used in our analysis (Figure 3) subtends 0.808 sr, yielding
a total bubble flux of 1.13 × 10−6 GeV cm−2 s−1. To obtain an
average distance for the emission, we approximate the bubbles
as two spheres centered at b = ±28◦, and directly above and
below the GC. For a Sun–GC distance of 8.5 kpc, this implies
a distance of 9.6 kpc, and a total power (both bubbles) in the
1–100 GeV band of 2.5 × 1040 GeV s−1 or 4.0 × 1037 erg s−1,
which is ∼5% of the total Galactic gamma-ray luminosity be-
tween 0.1 and 100 GeV (Strong et al. 2010). The electron CR
density in the bubbles required to generate the observed gamma
rays, at any given energy, depends strongly on the assumed elec-
tron spectrum. However, typically the required values are com-
parable to the locally measured electron CR density. For exam-
ple, for the model in the first panel of Figure 24 (dN/dE ∝ E−2

for 500 GeV ! E ! 700 GeV), the inferred bubble electron den-
sity is ∼10× greater than the local electron density (as measured

by Fermi) at an energy of 500 GeV. For a representative model
from the first panel of Figure 23 (dN/dE ∝ E−2.3 for 0.1 GeV
! E ! 1000 GeV, with a 10 µG magnetic field generating the
WMAP Haze via synchrotron), at 500 GeV the bubble electron
density is a factor ∼2× greater than the local density.

5. INTERPRETATION

As discussed in Dobler et al. (2010), the Fermi bubbles
seem most likely to originate from IC scattering, since the
required electron CR population can also naturally generate
the WMAP haze as a synchrotron signal. The ROSAT X-ray
measurements suggest that the bubbles are hot and hence
underdense regions, and thus argue against the gamma rays
originating from bremsstrahlung or π0 decay.

Even though the material in the bubbles is likely high
pressure, it is also probably very hot (∼107 K) and has lower
gas density than the ambient ISM. This would explain why the

[Su et al. 2010]
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projection effects accurately (see Appendix A for details). In
projection from the Solar system position, the bubble appears
bigger in angular size. Note that we have used the axisymme-
try property of our 2D simulations to get the projected maps
presented in this paper.

The difference between the left and right panels of Figure
2 highlights the importance of taking projection effects into
account when comparing the morphology of the simulated
bubble with the observed FBs. With the projected column
density map at hand, we can discuss the logic behind fixing
the epoch of the phenomenon at 27 Myr.

As explained below, the X-ray emission expected from
the outer shock (shocked circumgalactic medium, CGM) is
likely associated with the observed Loop-I feature in X-rays.
This feature is also observed in soft γ-rays. The location of the
outer shock depends strongly on the time elapsed, and helps
us to fix the time at 27 Myr. The radius of the outer shock
in a constant luminosity-driven wind, according to Weaver et
al. (1977), is given by R ≈ (Lt3/ρ)1/5

≈ 10 kpc

(

L
5× 1040erg s−1

0.001mp

ρ

[

t
27Myr

]3
)1/5

, (9)

matching the outer shock location in Figure 1. Moreover, with
this choice, we find that the location of the contact discon-
tinuity matches the edge of the FBs. This indicates that the
emission in different bands coming from the FBs is created
within the the contact discontinuity. In addition, as shown
below, the morphology of emission in different wavebands re-
markably matches the predictions based on this choice of time
elapsed (namely, 27 Myr) and therefore, in turn, supports the
idea that some part of the Loop-I feature is likely associated
with the FBs. A point to note in Eq. 9 is that the outer shock
radius depends more sensitively on time rather than SFR or
the CGM density.

While Eq. 9 is strictly valid only for an homogeneous
and isotropic medium, and with isotropic energy injection,
we expect it to be roughly valid, even with anisotropic AGN
jets. Most AGN-based models consider a shorter age (∼ 1
Myr), which comes at the expense of a much larger mechanical
power (up to 1044 erg s−1, Guo & Mathews 2012; Yang et al.
2012). The velocity of the outer shock is given as V ≈ 3R/5t

≈ 200 km s−1

(

L
5× 1040erg s−1

0.001mp

ρ

[

10kpc
R

]2
)1/3

,

(10)
comparable to the sound speed in the hot CGM (∼ 180 km
s−1), implying a weak shock in case of L = 5×1040 erg s−1 as
seen in Figure 1. A more powerful AGN jet acting for 1 Myr
with L ∼ 1044 erg s−1 will result in a very strong shock, ruled
out by X-ray observations that show only a slight enhance-
ment temperature and density at the location of Loop-I.

4 RESULTS: EMISSION IN DIFFERENT
WAVEBANDS

We discuss the results of our calculation for the emission in
different bands in this section, and compare with the observed
features. Various emission mechanisms have been discussed in
the literature for different bands – gamma-rays, X-rays, mi-
crowave and radio, and most of the debate so far has centred
around the γ-ray radiation mechanism (hadronic or leptonic),
whether or not particles are being advected from the disc or
accelerated in situ. However, among the emission in differ-
ent bands, the X-ray emission from thermal gas suffers the
least from any assumptions regarding accelerated particles
and magnetic fields. We, therefore, discuss the X-ray emis-
sion first.

Since we have estimated the age of the Fermi bubbles to
be 27 Myr (as discussed in the previous section), we perform
detailed analysis for the fiducial run (S10; see Table 2), at
t = 27 Myr in this as well as in all the following sections.

4.1 X-ray

Observationally, two limb-brightened X-ray arcs, called
‘northern arcs’, are seen in the north-east quadrant adjacent
to the FB. In the southern hemisphere, a ‘donut’ feature is
observed. Then there is the Loop-I feature extending up to
b ∼ 80◦ and from 50◦ to −70◦ in longitude. The diffuse X-ray
emission also shows a dip in intensity in the FB region (Su
et al. 2010). Recently Kataoka et al. (2013) have scanned the
FB edge to look for differences in the X-ray brightness. They
found that the temperature does not vary across the edge but
there is a 50% decrease of the emission measure (EM) when
moving from outside to inside of the bubble.

We show the surface brightness of X-ray emission from
the simulated bubble in Figure 3, in the 0.7–2.0 keV band
(ROSAT R6R7 band) considering the Mekal plasma model
(from XPEC) for emission. While calculating the X-ray sur-
face brightness, we also consider the contribution from an
extended CGM where the hydrostatic state has been extrap-
olated to 100 kpc. From Fig 3, we find that (1) the diffuse
emission has a dip at FB and extends to the Loop-I feature
in the form of a parachute (this fixes the age of FBs in our
model, as mentioned earlier), and roughly delineates the fea-
ture leaving aside the slight asymmetry. (2) The location of
the two arcs roughly matches the enhanced brightness (be-
tween 60◦ < b < 50◦, at l ∼ 0). (3) The surface brightness
is ≈ 6 × 10−9 erg s−1 cm−2 sr−1, also consistent with ob-
servations Su et al. (2010) who found ∼ 2 × 10−8 erg s−1

cm−2 sr−1. Although the contrast of the X-ray dip in the fig-
ure shown here is a bit less than observed, we note that the
final observed counts through an instrument will depend on
the details of spectral modelling. It is clear from figure 1 that
the gas inside the bubble has a temperature (∼ 2 × 106 K),
lower than the shell temperature (∼ 3.5 × 106). Therefore,
the intensity when folded through an instrument to estimate
counts will show a higher contrast. These simulated features
reasonably match the observed structure in X-ray images.
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projection effects accurately (see Appendix A for details). In
projection from the Solar system position, the bubble appears
bigger in angular size. Note that we have used the axisymme-
try property of our 2D simulations to get the projected maps
presented in this paper.

The difference between the left and right panels of Figure
2 highlights the importance of taking projection effects into
account when comparing the morphology of the simulated
bubble with the observed FBs. With the projected column
density map at hand, we can discuss the logic behind fixing
the epoch of the phenomenon at 27 Myr.

As explained below, the X-ray emission expected from
the outer shock (shocked circumgalactic medium, CGM) is
likely associated with the observed Loop-I feature in X-rays.
This feature is also observed in soft γ-rays. The location of the
outer shock depends strongly on the time elapsed, and helps
us to fix the time at 27 Myr. The radius of the outer shock
in a constant luminosity-driven wind, according to Weaver et
al. (1977), is given by R ≈ (Lt3/ρ)1/5

≈ 10 kpc

(

L
5× 1040erg s−1

0.001mp

ρ

[

t
27Myr

]3
)1/5

, (9)

matching the outer shock location in Figure 1. Moreover, with
this choice, we find that the location of the contact discon-
tinuity matches the edge of the FBs. This indicates that the
emission in different bands coming from the FBs is created
within the the contact discontinuity. In addition, as shown
below, the morphology of emission in different wavebands re-
markably matches the predictions based on this choice of time
elapsed (namely, 27 Myr) and therefore, in turn, supports the
idea that some part of the Loop-I feature is likely associated
with the FBs. A point to note in Eq. 9 is that the outer shock
radius depends more sensitively on time rather than SFR or
the CGM density.

While Eq. 9 is strictly valid only for an homogeneous
and isotropic medium, and with isotropic energy injection,
we expect it to be roughly valid, even with anisotropic AGN
jets. Most AGN-based models consider a shorter age (∼ 1
Myr), which comes at the expense of a much larger mechanical
power (up to 1044 erg s−1, Guo & Mathews 2012; Yang et al.
2012). The velocity of the outer shock is given as V ≈ 3R/5t

≈ 200 km s−1

(

L
5× 1040erg s−1

0.001mp

ρ

[

10kpc
R

]2
)1/3

,

(10)
comparable to the sound speed in the hot CGM (∼ 180 km
s−1), implying a weak shock in case of L = 5×1040 erg s−1 as
seen in Figure 1. A more powerful AGN jet acting for 1 Myr
with L ∼ 1044 erg s−1 will result in a very strong shock, ruled
out by X-ray observations that show only a slight enhance-
ment temperature and density at the location of Loop-I.

4 RESULTS: EMISSION IN DIFFERENT
WAVEBANDS

We discuss the results of our calculation for the emission in
different bands in this section, and compare with the observed
features. Various emission mechanisms have been discussed in
the literature for different bands – gamma-rays, X-rays, mi-
crowave and radio, and most of the debate so far has centred
around the γ-ray radiation mechanism (hadronic or leptonic),
whether or not particles are being advected from the disc or
accelerated in situ. However, among the emission in differ-
ent bands, the X-ray emission from thermal gas suffers the
least from any assumptions regarding accelerated particles
and magnetic fields. We, therefore, discuss the X-ray emis-
sion first.

Since we have estimated the age of the Fermi bubbles to
be 27 Myr (as discussed in the previous section), we perform
detailed analysis for the fiducial run (S10; see Table 2), at
t = 27 Myr in this as well as in all the following sections.

4.1 X-ray

Observationally, two limb-brightened X-ray arcs, called
‘northern arcs’, are seen in the north-east quadrant adjacent
to the FB. In the southern hemisphere, a ‘donut’ feature is
observed. Then there is the Loop-I feature extending up to
b ∼ 80◦ and from 50◦ to −70◦ in longitude. The diffuse X-ray
emission also shows a dip in intensity in the FB region (Su
et al. 2010). Recently Kataoka et al. (2013) have scanned the
FB edge to look for differences in the X-ray brightness. They
found that the temperature does not vary across the edge but
there is a 50% decrease of the emission measure (EM) when
moving from outside to inside of the bubble.

We show the surface brightness of X-ray emission from
the simulated bubble in Figure 3, in the 0.7–2.0 keV band
(ROSAT R6R7 band) considering the Mekal plasma model
(from XPEC) for emission. While calculating the X-ray sur-
face brightness, we also consider the contribution from an
extended CGM where the hydrostatic state has been extrap-
olated to 100 kpc. From Fig 3, we find that (1) the diffuse
emission has a dip at FB and extends to the Loop-I feature
in the form of a parachute (this fixes the age of FBs in our
model, as mentioned earlier), and roughly delineates the fea-
ture leaving aside the slight asymmetry. (2) The location of
the two arcs roughly matches the enhanced brightness (be-
tween 60◦ < b < 50◦, at l ∼ 0). (3) The surface brightness
is ≈ 6 × 10−9 erg s−1 cm−2 sr−1, also consistent with ob-
servations Su et al. (2010) who found ∼ 2 × 10−8 erg s−1

cm−2 sr−1. Although the contrast of the X-ray dip in the fig-
ure shown here is a bit less than observed, we note that the
final observed counts through an instrument will depend on
the details of spectral modelling. It is clear from figure 1 that
the gas inside the bubble has a temperature (∼ 2 × 106 K),
lower than the shell temperature (∼ 3.5 × 106). Therefore,
the intensity when folded through an instrument to estimate
counts will show a higher contrast. These simulated features
reasonably match the observed structure in X-ray images.
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projection effects accurately (see Appendix A for details). In
projection from the Solar system position, the bubble appears
bigger in angular size. Note that we have used the axisymme-
try property of our 2D simulations to get the projected maps
presented in this paper.

The difference between the left and right panels of Figure
2 highlights the importance of taking projection effects into
account when comparing the morphology of the simulated
bubble with the observed FBs. With the projected column
density map at hand, we can discuss the logic behind fixing
the epoch of the phenomenon at 27 Myr.

As explained below, the X-ray emission expected from
the outer shock (shocked circumgalactic medium, CGM) is
likely associated with the observed Loop-I feature in X-rays.
This feature is also observed in soft γ-rays. The location of the
outer shock depends strongly on the time elapsed, and helps
us to fix the time at 27 Myr. The radius of the outer shock
in a constant luminosity-driven wind, according to Weaver et
al. (1977), is given by R ≈ (Lt3/ρ)1/5

≈ 10 kpc

(

L
5× 1040erg s−1

0.001mp

ρ

[

t
27Myr

]3
)1/5

, (9)

matching the outer shock location in Figure 1. Moreover, with
this choice, we find that the location of the contact discon-
tinuity matches the edge of the FBs. This indicates that the
emission in different bands coming from the FBs is created
within the the contact discontinuity. In addition, as shown
below, the morphology of emission in different wavebands re-
markably matches the predictions based on this choice of time
elapsed (namely, 27 Myr) and therefore, in turn, supports the
idea that some part of the Loop-I feature is likely associated
with the FBs. A point to note in Eq. 9 is that the outer shock
radius depends more sensitively on time rather than SFR or
the CGM density.

While Eq. 9 is strictly valid only for an homogeneous
and isotropic medium, and with isotropic energy injection,
we expect it to be roughly valid, even with anisotropic AGN
jets. Most AGN-based models consider a shorter age (∼ 1
Myr), which comes at the expense of a much larger mechanical
power (up to 1044 erg s−1, Guo & Mathews 2012; Yang et al.
2012). The velocity of the outer shock is given as V ≈ 3R/5t

≈ 200 km s−1

(
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5× 1040erg s−1

0.001mp

ρ
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10kpc
R

]2
)1/3

,

(10)
comparable to the sound speed in the hot CGM (∼ 180 km
s−1), implying a weak shock in case of L = 5×1040 erg s−1 as
seen in Figure 1. A more powerful AGN jet acting for 1 Myr
with L ∼ 1044 erg s−1 will result in a very strong shock, ruled
out by X-ray observations that show only a slight enhance-
ment temperature and density at the location of Loop-I.

4 RESULTS: EMISSION IN DIFFERENT
WAVEBANDS

We discuss the results of our calculation for the emission in
different bands in this section, and compare with the observed
features. Various emission mechanisms have been discussed in
the literature for different bands – gamma-rays, X-rays, mi-
crowave and radio, and most of the debate so far has centred
around the γ-ray radiation mechanism (hadronic or leptonic),
whether or not particles are being advected from the disc or
accelerated in situ. However, among the emission in differ-
ent bands, the X-ray emission from thermal gas suffers the
least from any assumptions regarding accelerated particles
and magnetic fields. We, therefore, discuss the X-ray emis-
sion first.

Since we have estimated the age of the Fermi bubbles to
be 27 Myr (as discussed in the previous section), we perform
detailed analysis for the fiducial run (S10; see Table 2), at
t = 27 Myr in this as well as in all the following sections.

4.1 X-ray

Observationally, two limb-brightened X-ray arcs, called
‘northern arcs’, are seen in the north-east quadrant adjacent
to the FB. In the southern hemisphere, a ‘donut’ feature is
observed. Then there is the Loop-I feature extending up to
b ∼ 80◦ and from 50◦ to −70◦ in longitude. The diffuse X-ray
emission also shows a dip in intensity in the FB region (Su
et al. 2010). Recently Kataoka et al. (2013) have scanned the
FB edge to look for differences in the X-ray brightness. They
found that the temperature does not vary across the edge but
there is a 50% decrease of the emission measure (EM) when
moving from outside to inside of the bubble.

We show the surface brightness of X-ray emission from
the simulated bubble in Figure 3, in the 0.7–2.0 keV band
(ROSAT R6R7 band) considering the Mekal plasma model
(from XPEC) for emission. While calculating the X-ray sur-
face brightness, we also consider the contribution from an
extended CGM where the hydrostatic state has been extrap-
olated to 100 kpc. From Fig 3, we find that (1) the diffuse
emission has a dip at FB and extends to the Loop-I feature
in the form of a parachute (this fixes the age of FBs in our
model, as mentioned earlier), and roughly delineates the fea-
ture leaving aside the slight asymmetry. (2) The location of
the two arcs roughly matches the enhanced brightness (be-
tween 60◦ < b < 50◦, at l ∼ 0). (3) The surface brightness
is ≈ 6 × 10−9 erg s−1 cm−2 sr−1, also consistent with ob-
servations Su et al. (2010) who found ∼ 2 × 10−8 erg s−1

cm−2 sr−1. Although the contrast of the X-ray dip in the fig-
ure shown here is a bit less than observed, we note that the
final observed counts through an instrument will depend on
the details of spectral modelling. It is clear from figure 1 that
the gas inside the bubble has a temperature (∼ 2 × 106 K),
lower than the shell temperature (∼ 3.5 × 106). Therefore,
the intensity when folded through an instrument to estimate
counts will show a higher contrast. These simulated features
reasonably match the observed structure in X-ray images.
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projection effects accurately (see Appendix A for details). In
projection from the Solar system position, the bubble appears
bigger in angular size. Note that we have used the axisymme-
try property of our 2D simulations to get the projected maps
presented in this paper.

The difference between the left and right panels of Figure
2 highlights the importance of taking projection effects into
account when comparing the morphology of the simulated
bubble with the observed FBs. With the projected column
density map at hand, we can discuss the logic behind fixing
the epoch of the phenomenon at 27 Myr.

As explained below, the X-ray emission expected from
the outer shock (shocked circumgalactic medium, CGM) is
likely associated with the observed Loop-I feature in X-rays.
This feature is also observed in soft γ-rays. The location of the
outer shock depends strongly on the time elapsed, and helps
us to fix the time at 27 Myr. The radius of the outer shock
in a constant luminosity-driven wind, according to Weaver et
al. (1977), is given by R ≈ (Lt3/ρ)1/5

≈ 10 kpc
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matching the outer shock location in Figure 1. Moreover, with
this choice, we find that the location of the contact discon-
tinuity matches the edge of the FBs. This indicates that the
emission in different bands coming from the FBs is created
within the the contact discontinuity. In addition, as shown
below, the morphology of emission in different wavebands re-
markably matches the predictions based on this choice of time
elapsed (namely, 27 Myr) and therefore, in turn, supports the
idea that some part of the Loop-I feature is likely associated
with the FBs. A point to note in Eq. 9 is that the outer shock
radius depends more sensitively on time rather than SFR or
the CGM density.

While Eq. 9 is strictly valid only for an homogeneous
and isotropic medium, and with isotropic energy injection,
we expect it to be roughly valid, even with anisotropic AGN
jets. Most AGN-based models consider a shorter age (∼ 1
Myr), which comes at the expense of a much larger mechanical
power (up to 1044 erg s−1, Guo & Mathews 2012; Yang et al.
2012). The velocity of the outer shock is given as V ≈ 3R/5t

≈ 200 km s−1
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comparable to the sound speed in the hot CGM (∼ 180 km
s−1), implying a weak shock in case of L = 5×1040 erg s−1 as
seen in Figure 1. A more powerful AGN jet acting for 1 Myr
with L ∼ 1044 erg s−1 will result in a very strong shock, ruled
out by X-ray observations that show only a slight enhance-
ment temperature and density at the location of Loop-I.

4 RESULTS: EMISSION IN DIFFERENT
WAVEBANDS

We discuss the results of our calculation for the emission in
different bands in this section, and compare with the observed
features. Various emission mechanisms have been discussed in
the literature for different bands – gamma-rays, X-rays, mi-
crowave and radio, and most of the debate so far has centred
around the γ-ray radiation mechanism (hadronic or leptonic),
whether or not particles are being advected from the disc or
accelerated in situ. However, among the emission in differ-
ent bands, the X-ray emission from thermal gas suffers the
least from any assumptions regarding accelerated particles
and magnetic fields. We, therefore, discuss the X-ray emis-
sion first.

Since we have estimated the age of the Fermi bubbles to
be 27 Myr (as discussed in the previous section), we perform
detailed analysis for the fiducial run (S10; see Table 2), at
t = 27 Myr in this as well as in all the following sections.

4.1 X-ray

Observationally, two limb-brightened X-ray arcs, called
‘northern arcs’, are seen in the north-east quadrant adjacent
to the FB. In the southern hemisphere, a ‘donut’ feature is
observed. Then there is the Loop-I feature extending up to
b ∼ 80◦ and from 50◦ to −70◦ in longitude. The diffuse X-ray
emission also shows a dip in intensity in the FB region (Su
et al. 2010). Recently Kataoka et al. (2013) have scanned the
FB edge to look for differences in the X-ray brightness. They
found that the temperature does not vary across the edge but
there is a 50% decrease of the emission measure (EM) when
moving from outside to inside of the bubble.

We show the surface brightness of X-ray emission from
the simulated bubble in Figure 3, in the 0.7–2.0 keV band
(ROSAT R6R7 band) considering the Mekal plasma model
(from XPEC) for emission. While calculating the X-ray sur-
face brightness, we also consider the contribution from an
extended CGM where the hydrostatic state has been extrap-
olated to 100 kpc. From Fig 3, we find that (1) the diffuse
emission has a dip at FB and extends to the Loop-I feature
in the form of a parachute (this fixes the age of FBs in our
model, as mentioned earlier), and roughly delineates the fea-
ture leaving aside the slight asymmetry. (2) The location of
the two arcs roughly matches the enhanced brightness (be-
tween 60◦ < b < 50◦, at l ∼ 0). (3) The surface brightness
is ≈ 6 × 10−9 erg s−1 cm−2 sr−1, also consistent with ob-
servations Su et al. (2010) who found ∼ 2 × 10−8 erg s−1

cm−2 sr−1. Although the contrast of the X-ray dip in the fig-
ure shown here is a bit less than observed, we note that the
final observed counts through an instrument will depend on
the details of spectral modelling. It is clear from figure 1 that
the gas inside the bubble has a temperature (∼ 2 × 106 K),
lower than the shell temperature (∼ 3.5 × 106). Therefore,
the intensity when folded through an instrument to estimate
counts will show a higher contrast. These simulated features
reasonably match the observed structure in X-ray images.
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X-ray modeling least uncertain

γ-ray, radio non-thermal: Qs such as 
leptonic/hadronic, B-field, etc.

AGN jet models require younger
FBs as vjet~c (~1-10 Myr)

SB model fixes t~20-30 Myr, less 
sensitive to SFR and halo density

slower outer shock consistent w. 
X-ray obs.

4 Sarkar, Nath and Sharma

Name L (erg s−1) ρh0 (mp cm−3)

S1 1.0× 1040 0.5× 10−3

S2 1.0× 1040 1.0× 10−3

S3 1.0× 1040 3.0× 10−3

S4 2.0× 1040 0.5× 10−3

S5 2.0× 1040 1.0× 10−3

S6 2.0× 1040 2.0× 10−3

S7 2.0× 1040 3.0× 10−3

S8 4.0× 1040 0.7× 10−3

S9 5.0× 1040 1.1× 10−3

S10∗ 5.0× 1040 2.2× 10−3

S11 6.0× 1040 3.0× 10−3

S12 1.0× 1041 1.1× 10−3

S13 1.0× 1041 2.2× 10−3

Table 2. The list of runs showing the injected mechanical lumi-
nosity and the central density in column 2 and 3, respectively. The
fiducial run (S10) has been pointed out by an asterisk in the list.

Figure 1. Snapshot of density (right panel) and temperature (left
panel) contours at 27 Myr for our fiducial run (L = 5 × 1040 erg
s−1). The wind structure has been pointed out by different labels,
from outside to inside as, CGM: circumgalactic medium, FS: for-
ward shock, CD: contact discontinuity, SW: shocked wind and FW:
free wind.

and

ρ̇ =
Ṁinj

(4π/3) r3inj
, (8)

where, p is the pressure. A full list of all the runs is given in
Table 2.

3 RESULTS: WIND & BUBBLE MORPHOLOGY

The result of an episodic explosive event at the centre of Milky
Way would depend mainly on the rate of energy and mass in-
put (and therefore on the SFR), the distribution of density
through which the bubble ploughs its way (the disc and CGM
gas density profile) and the epoch under consideration. We

Figure 2. Snapshots of column density from edge-on position but
without the projection effects (left panel) and Solar vantage point
with projection effects (right panel), for the same physical param-
eters as in Figure 1. The boundary of our simulation box (15 kpc)
corresponds to an angle ∼ 60◦ from a distance of 8.5 kpc, and
shows up in the left panel.

fix these parameters based on the morphology of the result-
ing bubble, in light of the observed morphology of the FBs,
and the emission properties. Therefore, we first discuss the
morphology.

Figure 1 shows the colour-coded contours of density and
temperature for our fiducial run, L = 5× 1040 erg s−1 at t =
27 Myr (corresponding to ≈ 105 supernovae over this time).
The snapshot clearly shows the structure of a standard stellar
wind scenario (Weaver et al. 1977). There is an outer shock (at
a vertical distance of ≈ 10 kpc), an enhancement of density
in the shocked CGM/ISM and shocked wind region, near the
contact discontinuity (at a vertical distance of 6–8 kpc), as
well as the inner free wind region (below a vertical distance
of ∼ 6 kpc). The figure also shows a second reverse shock
at height of ∼ 2 kpc which arises because of the presence of
two component density structure related to the CGM and the
disc.

Since we are at a distance of 8.5 kpc from the centre of
the Galaxy, and the wind-cone extends ∼ 4 kpc at a height
of 5 − 6 kpc, much of the observed structure is influenced
by geometrical projection effects. Figure 2 illustrates the idea
by showing the map of column density as viewed from an
edge-on vantage point from infinity, as well as its appear-
ance from the point of view of the solar system. In order for
the column density not to be dominated by the disc mate-
rial, we have considered only the gas for which the total non-

azimuthal speed
(√

v2 − v2φ

)

is larger than 20 km s−1. From

the edge-on position, the Galactic coordinates are computed
as l = tan−1(R/8.5 kpc), b = tan−1(z/8.5 kpc),1 whereas,
from Solar view point (right panel), we have considered the

1 These formulae are valid only for R, z ≪ 8.5 kpc , or equivalently
l, b ≪ 45◦.
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parameters values

Mvir(M⊙) 1012

Mdisc(M⊙) 5× 1010

Thalo (K) 2.5× 106

rvir (kpc) 258
c 12
a (kpc) 4.0
b (kpc) 0.4
d (kpc) 6.0
Zdisc (Z⊙) 1.0
Zhalo (Z⊙) 0.1
ρd(0, 0) (mpcm−3) 3.0

ρh(0, 0) (mpcm−3) 2.2× 10−3

Table 1. Parameters used in our simulations. Hot gas central den-
sity ρh(0, 0) is obtained after normalising the total baryonic content
(stellar plus gaseous) to 0.16 of Mvir, consistent with the cosmic
baryonic fraction. While exploring the parameter space, we make
this assumption flexible.

gives a finite DM density at the center. rvir and rs are, re-
spectively, the virial radius and scale radius for a DM halo of
mass Mvir.

The steady state density distribution in a combined po-
tential Φ(R, z) = Φdisc(R, z) + ΦDM(R, z) for the warm gas
can be written as

ρd(R, z) = ρd(0, 0) exp
(

− 1
c2sd

[

Φ(R, z)− Φ(0, 0)

−f2(Φ(R, 0)− Φ(0, 0))
]

)

, (3)

and for the hot CGM,

ρh(R, z) = ρh(0, 0) exp

(

− 1
c2sh

[

Φ(R, z)−Φ(0, 0)
]

)

, (4)

where, ρd(0, 0) and ρh(0, 0) are the warm and hot gas central
densities and csd and csh are the isothermal sound speeds of
the warm disc and the hot CGM, respectively. Here, f is the
ratio of the disc gas rotation velocity and the stellar rotation
velocity at any R and taken to be a constant (= 0.95). A full
list of model parameters is given in Table 1.

2.2 Code settings

We use the publicly available code PLUTO (Mignone et al.
2007) for our hydrodynamic simulations. We perform the sim-
ulations in 2D spherical coordinates assuming axi-symmetry
around θ = 0. The simulation box extends from rmin = 20 pc
to rmax = 15 kpc in radial direction using logarithmic grids
and from θ = 0 to θ = π/2 in theta direction using uniform
grids. This implies that the disc lies on the θ = π/2 plane and
our simulation box includes the first quadrant of the 2D slice
taken along the θ plane of our Galaxy.

In our simulation, we express the temperature as T ∼ p/ρ
which includes the hot gas pressure in addition to the 4×104 K
gas pressure inside the disc, the effective temperature of the
disc becomes large enough to induce strong cooling unlike

the warm gas at T = 104 K gas. In reality the disc gas is
always being heated by the supernovae and other processes.
Therefore, to stop this cooling, we constrain the cooling of
the disc material (but not the injected material) to be zero
for a height less than 1.2 kpc above the disc plane. A more
detailed description about the code implementation can be
found in Sarkar et al. (2015).

2.3 Injection parameters

The mechanical luminosity of a starburst activity can be writ-
ten as

L ≈ 1040 erg s−1 ϵ0.3
( SFR
0.1M⊙ yr−1

)

, (5)

where, ϵ0.3 is the thermalisation efficiency in units of 0.3
and SFR is the star formation rate. Here we have consid-
ered Kroupa/Chabrier mass function, for which there is ∼ 1
SN for every 100 M⊙ of stars formed.

As we show later, the morphology and X-ray emission
properties of FBs depend mostly on the combination of L
and the CGM gas density. After scanning through various
combinations of these two parameters, we show later (in §4.1,
Figure 4) that a fiducial combination of L = 5 × 1040 erg
s−1 and ρh0 = 2.2 × 10−3 cm−3 best matches the observa-
tions. The implied star formation rate, according to eqn 5, is
∼ 0.5 M⊙ yr−1 (considering ϵ0.3 = 1). The current rate of
star formation in the central molecular zone of Milky Way
is of order 0.1 M⊙ yr−1. Mid-infrared observations by Yusuf-
Zadeh et al. (2009) have led to an estimate of SFR ranging
between 0.007–0.14 M⊙ yr−1, over the last 10 Gyr. Observa-
tions of young stellar objects in the central molecular zone
(CMZ) in the 5-38 µm band with Spitzer allowed Immer et
al. (2011) to estimate a SFR of ∼ 0.08 M⊙ yr−1. The diffuse
hard X-ray emission in the Galactic centre region was used
by Muno et al. (2004) to estimate an energy input of ∼ 1040

erg s−1. However, the star formation activity in the central
region of the Galaxy is likely to be episodic. Recently Pfuhl
et al. (2011) found that the star formation rate in the nuclear
star cluster (within a length scale of 1 pc) has increased in the
last hundred Myr. Our fiducial SFR, averaged over the last
several tens of Myr, is therefore not unreasonable although it
is a few times larger than the current SFR.

The mass injection rate has been taken as (Leitherer et
al. 1999)

Ṁinj = 0.3 SFR . (6)

In our fiducial simulation, the considered mechanical lumi-
nosity, L = 5 × 1040 erg s−1, corresponds to SFR = 0.5 M⊙

yr−1 and therefore Ṁinj = 0.15 M⊙ yr−1.
We inject this mass and energy in density and energy

equations inside a region of r ! rinj (60 pc). The injection
rates can then be written as

ṗ =
2
3

L
(4π/3) r3inj

(7)
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parameters values

Mvir(M⊙) 1012

Mdisc(M⊙) 5× 1010

Thalo (K) 2.5× 106

rvir (kpc) 258
c 12
a (kpc) 4.0
b (kpc) 0.4
d (kpc) 6.0
Zdisc (Z⊙) 1.0
Zhalo (Z⊙) 0.1
ρd(0, 0) (mpcm−3) 3.0

ρh(0, 0) (mpcm−3) 2.2× 10−3

Table 1. Parameters used in our simulations. Hot gas central den-
sity ρh(0, 0) is obtained after normalising the total baryonic content
(stellar plus gaseous) to 0.16 of Mvir, consistent with the cosmic
baryonic fraction. While exploring the parameter space, we make
this assumption flexible.

gives a finite DM density at the center. rvir and rs are, re-
spectively, the virial radius and scale radius for a DM halo of
mass Mvir.

The steady state density distribution in a combined po-
tential Φ(R, z) = Φdisc(R, z) + ΦDM(R, z) for the warm gas
can be written as

ρd(R, z) = ρd(0, 0) exp
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− 1
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, (3)
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, (4)

where, ρd(0, 0) and ρh(0, 0) are the warm and hot gas central
densities and csd and csh are the isothermal sound speeds of
the warm disc and the hot CGM, respectively. Here, f is the
ratio of the disc gas rotation velocity and the stellar rotation
velocity at any R and taken to be a constant (= 0.95). A full
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which includes the hot gas pressure in addition to the 4×104 K
gas pressure inside the disc, the effective temperature of the
disc becomes large enough to induce strong cooling unlike

the warm gas at T = 104 K gas. In reality the disc gas is
always being heated by the supernovae and other processes.
Therefore, to stop this cooling, we constrain the cooling of
the disc material (but not the injected material) to be zero
for a height less than 1.2 kpc above the disc plane. A more
detailed description about the code implementation can be
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ten as

L ≈ 1040 erg s−1 ϵ0.3
( SFR
0.1M⊙ yr−1

)

, (5)

where, ϵ0.3 is the thermalisation efficiency in units of 0.3
and SFR is the star formation rate. Here we have consid-
ered Kroupa/Chabrier mass function, for which there is ∼ 1
SN for every 100 M⊙ of stars formed.

As we show later, the morphology and X-ray emission
properties of FBs depend mostly on the combination of L
and the CGM gas density. After scanning through various
combinations of these two parameters, we show later (in §4.1,
Figure 4) that a fiducial combination of L = 5 × 1040 erg
s−1 and ρh0 = 2.2 × 10−3 cm−3 best matches the observa-
tions. The implied star formation rate, according to eqn 5, is
∼ 0.5 M⊙ yr−1 (considering ϵ0.3 = 1). The current rate of
star formation in the central molecular zone of Milky Way
is of order 0.1 M⊙ yr−1. Mid-infrared observations by Yusuf-
Zadeh et al. (2009) have led to an estimate of SFR ranging
between 0.007–0.14 M⊙ yr−1, over the last 10 Gyr. Observa-
tions of young stellar objects in the central molecular zone
(CMZ) in the 5-38 µm band with Spitzer allowed Immer et
al. (2011) to estimate a SFR of ∼ 0.08 M⊙ yr−1. The diffuse
hard X-ray emission in the Galactic centre region was used
by Muno et al. (2004) to estimate an energy input of ∼ 1040

erg s−1. However, the star formation activity in the central
region of the Galaxy is likely to be episodic. Recently Pfuhl
et al. (2011) found that the star formation rate in the nuclear
star cluster (within a length scale of 1 pc) has increased in the
last hundred Myr. Our fiducial SFR, averaged over the last
several tens of Myr, is therefore not unreasonable although it
is a few times larger than the current SFR.

The mass injection rate has been taken as (Leitherer et
al. 1999)

Ṁinj = 0.3 SFR . (6)

In our fiducial simulation, the considered mechanical lumi-
nosity, L = 5 × 1040 erg s−1, corresponds to SFR = 0.5 M⊙

yr−1 and therefore Ṁinj = 0.15 M⊙ yr−1.
We inject this mass and energy in density and energy

equations inside a region of r ! rinj (60 pc). The injection
rates can then be written as
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densities and csd and csh are the isothermal sound speeds of
the warm disc and the hot CGM, respectively. Here, f is the
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velocity at any R and taken to be a constant (= 0.95). A full
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gas pressure inside the disc, the effective temperature of the
disc becomes large enough to induce strong cooling unlike

the warm gas at T = 104 K gas. In reality the disc gas is
always being heated by the supernovae and other processes.
Therefore, to stop this cooling, we constrain the cooling of
the disc material (but not the injected material) to be zero
for a height less than 1.2 kpc above the disc plane. A more
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where, ϵ0.3 is the thermalisation efficiency in units of 0.3
and SFR is the star formation rate. Here we have consid-
ered Kroupa/Chabrier mass function, for which there is ∼ 1
SN for every 100 M⊙ of stars formed.

As we show later, the morphology and X-ray emission
properties of FBs depend mostly on the combination of L
and the CGM gas density. After scanning through various
combinations of these two parameters, we show later (in §4.1,
Figure 4) that a fiducial combination of L = 5 × 1040 erg
s−1 and ρh0 = 2.2 × 10−3 cm−3 best matches the observa-
tions. The implied star formation rate, according to eqn 5, is
∼ 0.5 M⊙ yr−1 (considering ϵ0.3 = 1). The current rate of
star formation in the central molecular zone of Milky Way
is of order 0.1 M⊙ yr−1. Mid-infrared observations by Yusuf-
Zadeh et al. (2009) have led to an estimate of SFR ranging
between 0.007–0.14 M⊙ yr−1, over the last 10 Gyr. Observa-
tions of young stellar objects in the central molecular zone
(CMZ) in the 5-38 µm band with Spitzer allowed Immer et
al. (2011) to estimate a SFR of ∼ 0.08 M⊙ yr−1. The diffuse
hard X-ray emission in the Galactic centre region was used
by Muno et al. (2004) to estimate an energy input of ∼ 1040

erg s−1. However, the star formation activity in the central
region of the Galaxy is likely to be episodic. Recently Pfuhl
et al. (2011) found that the star formation rate in the nuclear
star cluster (within a length scale of 1 pc) has increased in the
last hundred Myr. Our fiducial SFR, averaged over the last
several tens of Myr, is therefore not unreasonable although it
is a few times larger than the current SFR.

The mass injection rate has been taken as (Leitherer et
al. 1999)

Ṁinj = 0.3 SFR . (6)

In our fiducial simulation, the considered mechanical lumi-
nosity, L = 5 × 1040 erg s−1, corresponds to SFR = 0.5 M⊙

yr−1 and therefore Ṁinj = 0.15 M⊙ yr−1.
We inject this mass and energy in density and energy

equations inside a region of r ! rinj (60 pc). The injection
rates can then be written as

ṗ =
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Name L (erg s−1) ρh0 (mp cm−3)

S1 1.0× 1040 0.5× 10−3

S2 1.0× 1040 1.0× 10−3

S3 1.0× 1040 3.0× 10−3

S4 2.0× 1040 0.5× 10−3

S5 2.0× 1040 1.0× 10−3

S6 2.0× 1040 2.0× 10−3

S7 2.0× 1040 3.0× 10−3

S8 4.0× 1040 0.7× 10−3

S9 5.0× 1040 1.1× 10−3

S10∗ 5.0× 1040 2.2× 10−3

S11 6.0× 1040 3.0× 10−3

S12 1.0× 1041 1.1× 10−3

S13 1.0× 1041 2.2× 10−3

Table 2. The list of runs showing the injected mechanical lumi-
nosity and the central density in column 2 and 3, respectively. The
fiducial run (S10) has been pointed out by an asterisk in the list.

Figure 1. Snapshot of density (right panel) and temperature (left
panel) contours at 27 Myr for our fiducial run (L = 5 × 1040 erg
s−1). The wind structure has been pointed out by different labels,
from outside to inside as, CGM: circumgalactic medium, FS: for-
ward shock, CD: contact discontinuity, SW: shocked wind and FW:
free wind.

and

ρ̇ =
Ṁinj

(4π/3) r3inj
, (8)

where, p is the pressure. A full list of all the runs is given in
Table 2.

3 RESULTS: WIND & BUBBLE MORPHOLOGY

The result of an episodic explosive event at the centre of Milky
Way would depend mainly on the rate of energy and mass in-
put (and therefore on the SFR), the distribution of density
through which the bubble ploughs its way (the disc and CGM
gas density profile) and the epoch under consideration. We

Figure 2. Snapshots of column density from edge-on position but
without the projection effects (left panel) and Solar vantage point
with projection effects (right panel), for the same physical param-
eters as in Figure 1. The boundary of our simulation box (15 kpc)
corresponds to an angle ∼ 60◦ from a distance of 8.5 kpc, and
shows up in the left panel.

fix these parameters based on the morphology of the result-
ing bubble, in light of the observed morphology of the FBs,
and the emission properties. Therefore, we first discuss the
morphology.

Figure 1 shows the colour-coded contours of density and
temperature for our fiducial run, L = 5× 1040 erg s−1 at t =
27 Myr (corresponding to ≈ 105 supernovae over this time).
The snapshot clearly shows the structure of a standard stellar
wind scenario (Weaver et al. 1977). There is an outer shock (at
a vertical distance of ≈ 10 kpc), an enhancement of density
in the shocked CGM/ISM and shocked wind region, near the
contact discontinuity (at a vertical distance of 6–8 kpc), as
well as the inner free wind region (below a vertical distance
of ∼ 6 kpc). The figure also shows a second reverse shock
at height of ∼ 2 kpc which arises because of the presence of
two component density structure related to the CGM and the
disc.

Since we are at a distance of 8.5 kpc from the centre of
the Galaxy, and the wind-cone extends ∼ 4 kpc at a height
of 5 − 6 kpc, much of the observed structure is influenced
by geometrical projection effects. Figure 2 illustrates the idea
by showing the map of column density as viewed from an
edge-on vantage point from infinity, as well as its appear-
ance from the point of view of the solar system. In order for
the column density not to be dominated by the disc mate-
rial, we have considered only the gas for which the total non-

azimuthal speed
(√

v2 − v2φ

)

is larger than 20 km s−1. From

the edge-on position, the Galactic coordinates are computed
as l = tan−1(R/8.5 kpc), b = tan−1(z/8.5 kpc),1 whereas,
from Solar view point (right panel), we have considered the

1 These formulae are valid only for R, z ≪ 8.5 kpc , or equivalently
l, b ≪ 45◦.
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Figure 3. Simulated X-ray emission map in 0.7–2.0 keV band for
the fiducial run (S10), overplotted with the observed edges of the
Loop-I, northern arcs and the FB. The white circle represents the
region where we have compared the estimated emission measure
with the observations mentioned in the text .
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Figure 4. Comparison of the estimated emission measure (EM) of
the ’X-ray parachute’ with the observed value 0.05 cm−6 pc. The
filled circles represent the position of individual runs in parame-
ter space (as mentioned in Table 2) and the colour of each point
represents the value of EM/0.05. Different values of L/ρh0 in 1040

erg s−1 m−1
p cm3 have been shown by different straight lines. The

fiducial run has been shown by ’S10’ in this Figure.

Since the intensity of the ‘X-ray parachute’ mainly de-
pends on the background CGM density, we use the emission
measure (EM) of the parachute at (l, b) ≈ (10, 55)◦ to match
the EM of N1 point as observed by Kataoka et al. (2013)
(shown by the white circle in Figure 3). Figure 4 shows the
estimated values of the emission measure (EM ≡

∫

n2dl) for
0.24–0.38 keV gas compared to the observed value of 0.05
cm−6 pc for different runs (see Table 2). The figure shows
that only for the central densities of 2–3.5 × 10−3 mp cm−3,
the estimated EM is close to the observed value. This, along

with the surface brightness of the ‘X-ray parachute’ sets a
constrain on the allowed background density of the CGM.

The different straight lines in figure 4 represent differ-
ent values of L/ρh0 (this ratio determines the radius of the
outer shock for a given time; see Eq. 9). These lines of con-
stant L/ρh0 are also found to be crucial in determining the
shape of the wind, and hence the projected shape within the
contact discontinuity. For lower values of L/ρh0, the opening
angle of the wind is much smaller than observed in FB (we
assume that the gamma-rays of FBs come from the free and
the shocked wind, as we discuss later). For larger values of
L/ρh0, though the opening angle matches with the base of
the FB, the extent of the wind (in l) at high latitudes exceed
the observed width of the bubble. However, the shapes aris-
ing from the runs lying on L/ρh0 = 2 × 103 × 1040 erg s−1

m−1
p cm3 line have maximum similarity with the observed FB

shape.
Therefore, the constraint on ρh0

(

≈ 2− 3.5 × 10−3
)

from
X-rays and the requirement for the FB shape leave us with a
small parameter space in figure 4 which implies L ≈ 5–7×1040

erg s−1. Since modelling of thermal X-rays is least uncertain
as compared to the non-thermal radio and gamma-ray emis-
sion, we consider L = 5× 1040 erg s−1 and ρh0 = 2.2× 10−3

mp cm−3 for our Galactic wind model parameters to calculate
microwave and γ-ray emission.

4.2 Microwave Haze

Microwave observations (23 GHz, with WMAP and Planck;
Dobler & Finkbeiner 2008; Planck Collaboration 2013) show
emission from |b| ! 35◦ region on either side of the plane,
termed the ‘microwave haze’. Diffuse radio emission is also
seen in the 408 MHz map (Haslam et al. 1982) where the
emission traces the Loop-I feature. The 23-70 GHz emission
spectrum shows a spectral index β = 2.56 (brightness temper-
ature Tb ∝ ν−β) which indicates the presence of an electron
spectrum of spectral index x = 2.2 (Planck Collaboration
2013). The 2.3 GHz observation also reveals polarised lobes
and ridges in both hemispheres. The polarisation level in the
ridges is 25–31%. The ridges in the north-east quadrant co-
incides with the FB edge and the x-ray shells, and it is found
that the magnetic field is aligned with the ridges (Carretti et
al. 2013). The low-frequency emission extends westward be-
yond the FBs in both hemispheres and the spectrum 2.3-23
GHz spectrum becomes softer as we go away from the Galac-
tic center.

In order to estimate the emission from relativistic parti-
cles, we assume that the particle (either hadrons or leptons)
energy density is a fraction of the total energy density of the
gas (internal or thermal energy as well as the energy density
due to fluid motion) . This is expected in the case of internal
shocks and turbulence in the gas, and due to in situ acceler-
ation of particles from these shocks. As Figure 1 shows, the
strong shocks that are likely to accelerate particles are traced
by the shocked wind material which is the region inside the
contact discontinuity (CD). Therefore, in order to trace the
freshly produced accelerated particles, we use a tracer in the
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Figure 5. 23 GHz synchrotron emission (surface brightness) map
for L = 5 × 1040 erg s−1 and ρh0 = 2.2 × 10−3 mp cm−3 with
ϵcr = 0.15 and ϵB = 0.4. The upper colourbar shows the brightness
temperature in mK and the lower colourbar shows the brightness
in units of Jy sr−1.

simulation that tracks the injected wind material from where
most of the microwave/gamma-rays are emitted. Also, in or-
der to avoid the disc material along the line of sight, we dis-
card from our analysis the gas with a non-azimuthal velocity
less than 20 km s−1.

We can estimate the microwave emission in our model
assuming synchrotron emission and that the cosmic ray en-
ergy density is given by ucr = ϵcr ugas, where ugas = uth+ukin

is the total energy density of the gas as discussed above. The
CR electron energy density is assumed to be ucr,e = 0.05 ucr

as expected from the ratio (me/mp)
(3−x)/2 for x = 2.2 (see,

e.g., Persic & Rephaeli (2014)). This fixes the electron spec-
trum, n(E)dE = κE−xdE, where the normalisation constant
κ is given by κ = ucr,e(x − 2)/(mec

2)2−x (assuming a lower
cutoff of Lorentz factor ∼ 1). The synchrotron emissivity, in
the presence of a magnetic field B in the optically-thin limit,
is (Eq. 18.18 in Longair (1981)).

εsynν

erg s−1cm−3Hz−1 = 1.7× 10−21a(x)κB
x+1
2

×
(

6.26 × 1018 Hz
ν

)

x−1
2

, (11)

where, a(2.2) ≈ 0.1. For the magnetic field, we assume that
the magnetic energy is also a fraction of the thermal energy
and is given as uB = ϵB ugas.

We therefore have the volume emissivity per unit solid
angle as

Jsyn
ν

erg s−1cm−3Hz−1sr−1
= 2.6× 10−20 ϵcrϵ

0.8
B p1.8

×
(

23GHz
ν

)0.6

. (12)

where, we have taken ugas = (3/2) p, and p = pth +1/3 ρv2 is
the total pressure (thermal plus kinetic).

Figure 6. Hadronic γ-ray emission map (surface brightness) as
seen from the solar system location. Overplotted are the edges of
the observed emission maps.

After calculating the surface brightness at 23 GHz from
the FBs with ϵcr = ϵB = 1.0, we found it to be approximately
15 times larger than the observed value of 800 Jy sr−1. This
implies that

ϵcr ϵ
0.8
B ≈ 1/15 . (13)

Note that we have an independent constrain on ϵcr because
these same particles will also emit γ-rays. Assuming ϵcr =
0.15, we get a constrain on the magnetic energy density that
ϵB = 0.4. This gives a magnetic field of strength B = 3–5µG
considering ugas ≈ 0.7–3.0×10−12 erg cm−3 inside the bubble;
thus, 23 GHz emission comes from electrons with γ ≈ 2 ×
104. Notice that our estimate of magnetic field is somewhat
lower than but consistent with other estimates (Su et al. 2010;
Carretti et al. 2013; Crocker et al. 2014b).

The surface brightness of the 23 GHz emission is shown
in Figure 5 and is consistent with observations. We also notice
that the emission fills up the whole bubble volume which is
consistent with recent observation. Planck has detected mi-
crowave emission from the whole FB region, although the
intensity is rather small above ∼ b ! 40◦ ( see fig 9 of Planck
Collaboration (2013)), consistent with our results, given the
uncertainties.

4.3 γ-ray

Observations show two γ-ray bubbles (1.0–50.0 GeV) on ei-
ther side of the Galactic plane, being roughly symmetric
about the plane. The northern bubble extends up to b < 50◦

and |l| " 25◦, which is almost same for the southern bubble.
Another limb-brightened γ-ray feature extends up to 80◦ in b
and ±70◦ in l in northern hemisphere and is known as Loop-I
feature. The FB surface brightness is fairly uniform over the
bubble and shows no limb brightening. The γ-ray spectrum of
the FB is also flat (dN/dE ∼ E−2) and shows almost no soft-
ening with increasing height. The Loop-I feature, however,
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Figure 7. Output spectra for leptonic γ-ray emission (green
dashed line). The blue empty squares and the magenta filled
squares show the observed data points (Su et al. 2010; Ackermann
et al. 2014), and the green (dashed) line shows the spectra calcu-
lated by us for γb = 106. The plot also shows the spectrum for
γb = 5×105 (blue dotted line) and γb = 2×106 (red solid line) for
comparison. Notice that we do not consider a high energy cutoff for
the electron distribution, which can account for the lack of gamma
ray emission beyond few 100 GeV.

Figure 8. Leptonic γ-ray emission map at 10 GeV as seen from
the solar system location. The red and black circles represent the
regions for which the velocity histograms have been been shown in
Figure 10. The white circle is the one where Fox et al. (2014) have
UV absorption data.

speed of gas inside and around the bubbles. Recently, Fox et
al. (2014) have detected ultraviolet absorption features in cold
(∼ 5×104 K) and warm gas (∼ 105 K) phases at line of sight
velocities of −200, +130 and +250 km s−1 towards quasar
PDS 456 (10.4◦, 11.2◦). Using a simple model of biconical nu-
clear outflow, to obtain a line-of-sight velocity of ∼ −200 km
s−1, they needed a cold/warm radial Galacto-centric outflow
with velocity (vgsr) ! 900 km s−1. This is essentially because

Figure 9. Position-Velocity diagram of the gas parcels with T <
2× 105 K. The colourbar represents the density of the gas parcels.

of the radial outflow assumption and the low inclination of
the quasar sightline.

The velocity structure in our simulated FBs has a more
complicated structure than the simple models studied by Fox
et al. (2014). In our simulation, the cold/warm clouds are
formed by thermal and Rayleigh-Taylor instabilities at the
interface of the injected gas with the CGM (the contact dis-
continuity). The clouds formed at the conical surface of the
contact discontinuity sometimes fall back due to the gravity
(essentially a fountain flow; Shapiro & Field 1976). However,
the clouds at the top of the cone keep moving away from
the centre because of the wind ram pressure. The low lati-
tude cold/warm gas can have a wide angle and a large (∼ 100
km s−1) line-of-sight velocity because the clouds are following
non-radial trajectories (e.g., see the S2 sequence of clouds in
Fig. 12 of Sarkar et al. 2015).

Figure 9 shows the position-velocity diagram as seen from
the Galactic centre. It shows that along with the positive
velocity components of the warm gas, there are gas parcels
which have negative velocities extending up to −100 km s−1.
This infalling gas can contribute to the negative velocities as
observed by Fox et al. (2014).

In figure 10, we show the line-of-sight velocity (vlos) his-
tograms of the cold, warm and hot gas along two different
lines-of-sights (shown by the black and red circles in Figure
8) that pass through the FB. We take into account the solar
rotation velocity of vφ,⊙ = 220 km s−1 for this calculation
(see Appendix A for more details). The central peak in all
the histograms represent the stationary disc and halo gas.
The upper panels clearly show that the vlos for the cold and
warm gas can reach up to −150 km s−1 and +200 km s−1. We
also show the velocity-histogram of the hot (T > 106 K) gas
in the lower panel of Figure 10. Though the hot gas velocities
extend all the way from −200 to +600 km s1 for these two
line of sights (LOS), the other LOSs show hot gas velocities
extending from -500 to 700 km s−1. Notice that though the
hot gas in our simulation has high velocity (∼ 1000 km s−1)
within the free wind region, the shape of the histograms dif-
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Figure 1. Density contour plot of the superbubble at di↵erent
times (0.5, 4.0, 9.5 Myr) for n0 = 0.5 cm�3, z0 = 300 pc and NO =
104. Early, intermediate and late stages of superbubble evolution
are shown. Notice the low density cone through which photons
should escape at late times.

Meynet & Maeder 2003; Weidner et al. 2010), the least mas-
sive O stars of mass 20.8M� (Vacca et al. 1996), since O stars
are thought to produce most of the ionizing photons (Dove &
Shull 1994). The mechanical luminosity produced by O-stars
in the association is,

L = NOEej/tO = 3.16⇥ 1036 NO erg s�1 , (8)

where Eej = 1051 erg is the explosion energy of one SN (1051

erg).
The escape fraction, which we describe shortly in the next

section, depends very crucially on the structure of the ISM, in
particular to the low density channels opened by the expand-
ing superbubble. As studied in detail in Roy et al. (2013), the
evolution of a superbubble for a su�ciently strong starburst
shows two stages: first, the Sedov-Taylor stage when the outer
shock radius is smaller than the scale height; and second, the
fast breakout of the superbubble due to thermal and Rayleigh-
Taylor instabilities after it crosses a few scale-heights. The
escape fraction for a density-bounded (Strömgren radius >
disk scale height) disk is expected to decrease with time in
the first stage as photons are absorbed in the dense shell. Af-
ter breakout, the escape fraction increases with time because
of opening of low density channels in the ISM. We see this
e↵ect in the time evolution of the escape fraction described
later. Figure 1 shows the density contour plots of our fiducial
run (n0 = 0.5 cm�3, z0 = 300 pc, NO = 104) at early, inter-
mediate and late times. As the escape fraction is intimately
connected to the ISM porosity, it is useful to remember these
various stages of superbubble evolution in order to interpret
our results.

3 CALCULATION OF ESCAPE FRACTION

In this section we describe the formalism to calculate the es-
cape fraction assuming photoionization equilibrium (ioniza-
tion rate equals recombination rate). We can calculate the
number of photons absorbed per unit time, and hence the
number of photons escaping along di↵erent directions and at
di↵erent times. Thus, the escape fraction is a function of an-
gle (✓), time (t) and disk/starburst parameters (n0, z0, NO).
Since the distribution of OB associations is similar in di↵er-
ent regions, we average our escape fraction in time, angle, and
the number distribution of OB associations.

3.1 Assumptions

In order to calculate the fraction of ionizing photons that
escapes the disk, consider the ionizing photons emitted within
a solid angle d⌦ within angles ✓ and ✓ + d✓. First consider
the case of ionization equilibrium in the disk gas, and assume
that all ionizing photons are absorbed in the medium, so that
the escape fraction is zero. If S denotes the time-dependent
luminosity of ionizing photons (number of ionizing photons
produced per unit time / NO; discussed in section 3.2), and

↵(2)
H denotes the recombination coe�cient for case B (‘on the

spot’ ionization case), then we have in the case of ionization
equilibrium in a solid angle d⌦,

S
d⌦
4⇡

=

Z
↵(2)
H n2

H(r)r2drd⌦ , (9)

where nH(r) is the number density of hydrogen (which is
equal to the electron/proton density within the ionized bub-
ble). In general, however, all the ionizing photons will not
get absorbed; some will escape and thus Eq. 9 will not hold.
Therefore, the escape fraction of ionizing photons in an angle
between ✓ and ✓ + d✓ can then be written as,

fesc(✓, t, NO;n0, z0) =
Sd⌦/4⇡ �

R1
0

↵(2)
H n2

H(r)r2dr d⌦

Sd⌦/4⇡

= 1�
4⇡↵(2)

H

S

Z 1

0

n2
H(r)r2dr, (10)

where we have indicated the dependence of the escape fraction
on various parameters in parentheses. Later we will average
the escape fraction over time, angle and number of O stars.
The averaged escape fraction is denoted as hfesci where the
parameters over which averaging is done denoted in subscript;
e.g., hfesci✓,t denotes the time- and angle-averaged escape
fraction as a function of NO for a fixed n0 and z0. Note that
the photon luminosity (S / NO) is time dependent, and for
a given OB association S decreases abruptly after the most
massive stars die o↵ (c. f. Fig. 2).

We only consider the warm neutral medium (⇠ 104 K)
and not the cold neutral medium (⇠ 100 K) in our calcula-
tions because the second term on the right hand side of Eq.
10 is smaller for a self-gravitating molecular disk at the same
pressure (/ n2

0z
3
0 / T ; see Eq. 5).

The expression in Eq. 10 is valid when the recombination
time scale is shorter than other time scales in the problem,
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Table 1. Parameters for various runs

n0 (cm�3) NO Resolution rmin (pc) rin (pc)

0.15, 1, 1.5 100 –105 256⇥ 128 1 2
5, 15 100 – 300 512⇥ 512 1 2
5, 15 600 –105 256⇥ 128 1 2
50 100 –105 256⇥ 128 0.5 1

in some higher NO runs (NO > 104, NO being the number
of O stars) the outer boundary extends up to rmax = 3 kpc.
In the highest density cases (n0 = 50 cm�3) the inner radial
boundary is rmin = 0.5 pc, maintaining the strong shock con-
dition (see Eq. 4 in Sharma et al. 2014). The angle ✓ runs
from 0 to ⇡ and � runs from 0 to 2⇡. In the radial direction
we use logarithmically spaced grid points to better resolve
the smaller scales. The inner boundary is at rmin < rin (en-
ergy injection radius; see section 2.2), such that there are
equal number of grid points between rmin and (rminrmax)

1/2,
as there are between (rminrmax)

1/2 and rmax. We use uni-
formly spaced grid points in ✓. We use outflow boundary con-
dition at the outer radial boundary. We adopt inflow-outflow
boundary condition at the inner radial boundary. We apply
reflective boundary condition in the ✓-direction.

Our runs with various parameters use di↵erent resolu-
tions. Specifically, high density disks (higher n0) with lower
energy injection (smaller NO, the number of O stars) result
in extensive formation of multiphase gas, and the number of
dense clumps increases with an increasing resolution (this is
true in all simulations which do not resolve the transition
layers between hotter and cooler phases; e.g., see Koyama &
Inutsuka 2004). The low density and higher NO runs do not
show much multiphase gas and are less sensitive to resolu-
tion. Detailed resolution studies are discussed in Appendix
A. Various parameters for our di↵erent runs, including reso-
lution, are mentioned in Table 1.

The CFL number is the standard value 0.5, but in high
density ( n0 > 1.5 cm�3) and low NO cases ( NO < 104) we
use the CFL number of 0.2 as it is found to be more robust.
We have carried out a large number of runs to cover a range
of values in n0, z0 and NO. This was necessary to obtain the
key result of our paper discussed in section 4.3.

2.1 The warm neutral disk

The vertical structure of the thin disk is determined by self-
gravity and gas temperature. Hydrostatic equilibrium for the
gas in z-direction is given by,

dp(z)
dz

= �⇢(z)g(z) (4)

where p is the thermal pressure of the gas, ⇢(z) is the density
and g(z) is the vertical disk gravity, the z� component of g.
Using Poisson’s equation along with Eq. 4 leads to the vertical
density distribution of the disk gas (Spitzer 1942),

n(z) = n0 sech
2

✓
z

p

2z0

◆
, z0 =

csp
4⇡Gµmpn0

. (5)

Here, n0 is the mid-plane density of the disk (z = 0) and z0 is
the scale height of the gas in the disk, and cs =

p
kbT/µmp

is the isothermal sound speed of the gas. The corresponding
value of g(z) is,

g(z) =

p

2kbT
µmpz0

tanh

✓
z

p

2z0

◆
. (6)

The equilibrium value of n0, z0 and T are related as (Eq.
5)

z0 = 257 pc

✓
T

104K

◆1/2 ⇣ n0

0.5 cm�3

⌘�1/2
, (7)

where we have used µ = 1.33. Later we vary n0 and z0 inde-
pendently to study the variation of escape fraction as a func-
tion of these disk parameters (c.f. Fig. 10). We note that cs
needs to be adjusted with (n0, z0) to obtain a self-consistent
hydrostatic equilibrium (Eqs. 5 & 6). We use the initial disk
temperature of 104 K, corresponding to the thermally stable
warn neutral phase (Wolfire et al. 2003). We, therefore, keep
the initial temperature fixed at 104 K, even when we vary
n0 and z0 independently of each other. This means that our
disks with general n0, z0 parameters are not in perfect hy-
drostatic balance, except when they satisfy Eq. 7. However,
we note that for all the cases considered here, the dynamical
time scale of superbubbles breaking through the disk (eqn 12),
which is important for the determination of escape fraction,
is always shorter than the gravitational time scale (free-fall)
for the disk to evolve. Therefore, the disks are stable for the
time scale of importance in our calculation of escape fraction.
Most of our runs highlighted in various figures correspond
to a self-consistent hydrostatic equilibrium for 104 K (closely
satisfying Eq. 7).

2.2 Superbubble implementation

The mass and energy source functions in Eqs. 1 & 3 are ap-
plied in a small enough volume such that radiative losses do
not quench the formation of a superbubble (Sharma et al.
2014). The mass source function S⇢ = Ṁin/(4⇡r

3
in), where

Ṁin = NOMej/tO = 6.33 ⇥ 1018NO g s�1, Mej is the ejected
mass in a single supernova explosion (chosen as 1M�), tO
is 10 Myr (the lifetime of O stars), NO is the number of O
stars present initially, or equivalently, the total number of
supernova explosions within time tO. We note that the final
results in our simulations are insensitive to our choice of Mej,
which only a↵ects the structure of the hot/dilute gas within
the superbubble. The energy source function, which mimics
the energy input by supernova explosions within rin, is given
by Se = L/(4⇡r3in) , where L is the mechanical luminosity
of supernovae. We consider rin = 2 pc in all our simulations
except for runs with n0 = 50 cm�3, for which we take rin = 1
pc to prevent artificial cooling losses.

We run our simulations for a period of 10 Myr, the aver-
age lifetime of O9.5 stars (Chiosi, Nasi & Sreenivasan 1978;

c� 0000 RAS, MNRAS 000, 000–000

4 Arpita Roy, Biman B. Nath, Prateek Sharma

Table 1. Parameters for various runs
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in some higher NO runs (NO > 104, NO being the number
of O stars) the outer boundary extends up to rmax = 3 kpc.
In the highest density cases (n0 = 50 cm�3) the inner radial
boundary is rmin = 0.5 pc, maintaining the strong shock con-
dition (see Eq. 4 in Sharma et al. 2014). The angle ✓ runs
from 0 to ⇡ and � runs from 0 to 2⇡. In the radial direction
we use logarithmically spaced grid points to better resolve
the smaller scales. The inner boundary is at rmin < rin (en-
ergy injection radius; see section 2.2), such that there are
equal number of grid points between rmin and (rminrmax)

1/2,
as there are between (rminrmax)

1/2 and rmax. We use uni-
formly spaced grid points in ✓. We use outflow boundary con-
dition at the outer radial boundary. We adopt inflow-outflow
boundary condition at the inner radial boundary. We apply
reflective boundary condition in the ✓-direction.

Our runs with various parameters use di↵erent resolu-
tions. Specifically, high density disks (higher n0) with lower
energy injection (smaller NO, the number of O stars) result
in extensive formation of multiphase gas, and the number of
dense clumps increases with an increasing resolution (this is
true in all simulations which do not resolve the transition
layers between hotter and cooler phases; e.g., see Koyama &
Inutsuka 2004). The low density and higher NO runs do not
show much multiphase gas and are less sensitive to resolu-
tion. Detailed resolution studies are discussed in Appendix
A. Various parameters for our di↵erent runs, including reso-
lution, are mentioned in Table 1.

The CFL number is the standard value 0.5, but in high
density ( n0 > 1.5 cm�3) and low NO cases ( NO < 104) we
use the CFL number of 0.2 as it is found to be more robust.
We have carried out a large number of runs to cover a range
of values in n0, z0 and NO. This was necessary to obtain the
key result of our paper discussed in section 4.3.

2.1 The warm neutral disk

The vertical structure of the thin disk is determined by self-
gravity and gas temperature. Hydrostatic equilibrium for the
gas in z-direction is given by,

dp(z)
dz

= �⇢(z)g(z) (4)

where p is the thermal pressure of the gas, ⇢(z) is the density
and g(z) is the vertical disk gravity, the z� component of g.
Using Poisson’s equation along with Eq. 4 leads to the vertical
density distribution of the disk gas (Spitzer 1942),

n(z) = n0 sech
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, z0 =

csp
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Here, n0 is the mid-plane density of the disk (z = 0) and z0 is
the scale height of the gas in the disk, and cs =
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kbT/µmp

is the isothermal sound speed of the gas. The corresponding
value of g(z) is,
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The equilibrium value of n0, z0 and T are related as (Eq.
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where we have used µ = 1.33. Later we vary n0 and z0 inde-
pendently to study the variation of escape fraction as a func-
tion of these disk parameters (c.f. Fig. 10). We note that cs
needs to be adjusted with (n0, z0) to obtain a self-consistent
hydrostatic equilibrium (Eqs. 5 & 6). We use the initial disk
temperature of 104 K, corresponding to the thermally stable
warn neutral phase (Wolfire et al. 2003). We, therefore, keep
the initial temperature fixed at 104 K, even when we vary
n0 and z0 independently of each other. This means that our
disks with general n0, z0 parameters are not in perfect hy-
drostatic balance, except when they satisfy Eq. 7. However,
we note that for all the cases considered here, the dynamical
time scale of superbubbles breaking through the disk (eqn 12),
which is important for the determination of escape fraction,
is always shorter than the gravitational time scale (free-fall)
for the disk to evolve. Therefore, the disks are stable for the
time scale of importance in our calculation of escape fraction.
Most of our runs highlighted in various figures correspond
to a self-consistent hydrostatic equilibrium for 104 K (closely
satisfying Eq. 7).

2.2 Superbubble implementation

The mass and energy source functions in Eqs. 1 & 3 are ap-
plied in a small enough volume such that radiative losses do
not quench the formation of a superbubble (Sharma et al.
2014). The mass source function S⇢ = Ṁin/(4⇡r

3
in), where

Ṁin = NOMej/tO = 6.33 ⇥ 1018NO g s�1, Mej is the ejected
mass in a single supernova explosion (chosen as 1M�), tO
is 10 Myr (the lifetime of O stars), NO is the number of O
stars present initially, or equivalently, the total number of
supernova explosions within time tO. We note that the final
results in our simulations are insensitive to our choice of Mej,
which only a↵ects the structure of the hot/dilute gas within
the superbubble. The energy source function, which mimics
the energy input by supernova explosions within rin, is given
by Se = L/(4⇡r3in) , where L is the mechanical luminosity
of supernovae. We consider rin = 2 pc in all our simulations
except for runs with n0 = 50 cm�3, for which we take rin = 1
pc to prevent artificial cooling losses.

We run our simulations for a period of 10 Myr, the aver-
age lifetime of O9.5 stars (Chiosi, Nasi & Sreenivasan 1978;
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Figure 1. Density contour plot of the superbubble at di↵erent
times (0.5, 4.0, 9.5 Myr) for n0 = 0.5 cm�3, z0 = 300 pc and NO =
104. Early, intermediate and late stages of superbubble evolution
are shown. Notice the low density cone through which photons
should escape at late times.

Meynet & Maeder 2003; Weidner et al. 2010), the least mas-
sive O stars of mass 20.8M� (Vacca et al. 1996), since O stars
are thought to produce most of the ionizing photons (Dove &
Shull 1994). The mechanical luminosity produced by O-stars
in the association is,

L = NOEej/tO = 3.16⇥ 1036 NO erg s�1 , (8)

where Eej = 1051 erg is the explosion energy of one SN (1051

erg).
The escape fraction, which we describe shortly in the next

section, depends very crucially on the structure of the ISM, in
particular to the low density channels opened by the expand-
ing superbubble. As studied in detail in Roy et al. (2013), the
evolution of a superbubble for a su�ciently strong starburst
shows two stages: first, the Sedov-Taylor stage when the outer
shock radius is smaller than the scale height; and second, the
fast breakout of the superbubble due to thermal and Rayleigh-
Taylor instabilities after it crosses a few scale-heights. The
escape fraction for a density-bounded (Strömgren radius >
disk scale height) disk is expected to decrease with time in
the first stage as photons are absorbed in the dense shell. Af-
ter breakout, the escape fraction increases with time because
of opening of low density channels in the ISM. We see this
e↵ect in the time evolution of the escape fraction described
later. Figure 1 shows the density contour plots of our fiducial
run (n0 = 0.5 cm�3, z0 = 300 pc, NO = 104) at early, inter-
mediate and late times. As the escape fraction is intimately
connected to the ISM porosity, it is useful to remember these
various stages of superbubble evolution in order to interpret
our results.

3 CALCULATION OF ESCAPE FRACTION

In this section we describe the formalism to calculate the es-
cape fraction assuming photoionization equilibrium (ioniza-
tion rate equals recombination rate). We can calculate the
number of photons absorbed per unit time, and hence the
number of photons escaping along di↵erent directions and at
di↵erent times. Thus, the escape fraction is a function of an-
gle (✓), time (t) and disk/starburst parameters (n0, z0, NO).
Since the distribution of OB associations is similar in di↵er-
ent regions, we average our escape fraction in time, angle, and
the number distribution of OB associations.

3.1 Assumptions

In order to calculate the fraction of ionizing photons that
escapes the disk, consider the ionizing photons emitted within
a solid angle d⌦ within angles ✓ and ✓ + d✓. First consider
the case of ionization equilibrium in the disk gas, and assume
that all ionizing photons are absorbed in the medium, so that
the escape fraction is zero. If S denotes the time-dependent
luminosity of ionizing photons (number of ionizing photons
produced per unit time / NO; discussed in section 3.2), and

↵(2)
H denotes the recombination coe�cient for case B (‘on the

spot’ ionization case), then we have in the case of ionization
equilibrium in a solid angle d⌦,

S
d⌦
4⇡

=

Z
↵(2)
H n2

H(r)r2drd⌦ , (9)

where nH(r) is the number density of hydrogen (which is
equal to the electron/proton density within the ionized bub-
ble). In general, however, all the ionizing photons will not
get absorbed; some will escape and thus Eq. 9 will not hold.
Therefore, the escape fraction of ionizing photons in an angle
between ✓ and ✓ + d✓ can then be written as,

fesc(✓, t, NO;n0, z0) =
Sd⌦/4⇡ �

R1
0

↵(2)
H n2

H(r)r2dr d⌦

Sd⌦/4⇡

= 1�
4⇡↵(2)

H

S

Z 1

0

n2
H(r)r2dr, (10)

where we have indicated the dependence of the escape fraction
on various parameters in parentheses. Later we will average
the escape fraction over time, angle and number of O stars.
The averaged escape fraction is denoted as hfesci where the
parameters over which averaging is done denoted in subscript;
e.g., hfesci✓,t denotes the time- and angle-averaged escape
fraction as a function of NO for a fixed n0 and z0. Note that
the photon luminosity (S / NO) is time dependent, and for
a given OB association S decreases abruptly after the most
massive stars die o↵ (c. f. Fig. 2).

We only consider the warm neutral medium (⇠ 104 K)
and not the cold neutral medium (⇠ 100 K) in our calcula-
tions because the second term on the right hand side of Eq.
10 is smaller for a self-gravitating molecular disk at the same
pressure (/ n2

0z
3
0 / T ; see Eq. 5).

The expression in Eq. 10 is valid when the recombination
time scale is shorter than other time scales in the problem,
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e.g., the dynamical time scale. This puts a condition on n0

and z0 (mid-plane density and scale height respectively) for
which we can calculate the escape fraction using Eq. 10. The
recombination time scale is given by,

treco ⌘

1

n↵(2)
H (T )

=
1

4nH↵(2)
H (T )

, (11)

where we have written n = 4nH , since most of the recombina-
tions occur in the dense shell and ↵(2)

H (T ) = 2⇥ 10�13T�3/4
4

cm�3 s�1 (Dyson & Williams 1997).
For a scale height z0 of the gas distribution in the disk,

the dynamical time is given by (the time taken by the super-
bubble to reach the scale height),

td =

✓
⇢0z

5
0

L

◆ 1
3

= 5.82⇥ 1010n1/3
H z5/30,pc N

�1/3
O s, (12)

where L is the mechanical luminosity (eqn 8), nH is hydrogen
number density in cm�3 and z0,pc = z0/(1 pc), and we have
assumed µ = 1.33. The condition treco < td implies,

n4
Hz50,pc
NO

> 9.9⇥ 103 . (13)

This implies that for superbubbles with large NO, disks with
small density and scale height cannot be treated under the
above mentioned formalism for the calculation of escape frac-
tion. If recombination time is longer than the dynamical time,
the gas will expand before it recombines, and thus will be
over-ionized. In this case recombination will be smaller than
expected and the escape fraction is higher than what is pre-
dicted by Eq. 10. We discuss the implication of this condition
later in section 5.

3.2 Stellar ionizing luminosity

The escape fraction of ionizing photons depends on the to-
tal ionizing luminosity S (eqn 10), which in turn depends
on the size of the OB association, characterised by NO, the
total number of O stars. The time evolution of the ionizing
luminosity depends on the initial mass function (IMF) of the
OB association and how the ionizing luminosity and main
sequence life time of stars depend on their masses. We use
Starburst99 (Leitherer et al. 1999) to calculate the evolution
of the ionising luminosity S(t) for an OB association. The
time dependence of LyC luminosity, S(t), is assumed to be
the same for all OB associations, but S(t) scales linearly with
the number of O-stars (NO). We have used the case of an
instantaneous starburst and assumed Salpeter IMF between
0.1 and 100 M�. Note that we have only considered O stars in
our calculation as these stars contribute the most towards the
total ionizing luminosity of an OB association. Since the least
massive O stars with ⇠ 20 M� have a life time of ⇠ 10 Myr
(see the discussion before Eq. 8), we have used a lower mass
cuto↵ for supernovae at 20 M� to calculate the value of NO

for a given cluster mass. This is also consistent with the rela-
tion of mechanical luminosity with NO in Eq. 8. The ionizing
photon luminosity is initially constant when all the O-stars
are present in the main sequence, and it decreases abruptly

Figure 2. Normalized LyC photon luminosity as a function of time
for a starburst calculated using Starburst 99. The dynamical time
scale (of superbubble shells reaching the scale height) for n0 = 0.5
cm�3, z0 = 300 pc ranges between 0.4–4.2 Myr for di↵erent NO.
For these values, we also sketch the superbubble shells vis-a-vis
the disk, beginning from the left with a small spherical shell, then
with an elliptical shell slowly breaking out and finally ending with
a shell whose top has been blown o↵ by instabilities. The short
vertical line at 0.4 Myr corresponds to the dynamical time (td) for
NO = 105.

after 3 Myr as the sources of ionizing photons (O-stars) start
to die o↵. We plot a representative sketch of ionising lumi-
nosity as a function of time in Figure 2. We also sketch the
di↵erent evolution stages of the superbubble. Initially the su-
perbubble shell is completely buried inside the disk, and then
it takes an elliptical shape. After that, the shell breaks out of
the disk, and in the final stages the superbubble ends up with
a shell whose top has been blown o↵ by thermal instabilities
and RTI.

3.3 Escape fraction

We calculate the escape fraction along di↵erent lines of sight
varying the angle from 0 to ⇡/2 (where we measure ✓ from the
perpendicular to the disk), using Eq. 10 at a given time and
for a particular NO. Then we average it over 4⇡ steradian to
get the ✓-averaged escape fraction as a function of time and
NO:

hfesci✓(t,NO) =
1
4⇡

"
2

Z ⇡/2

0

fesc(✓) sin(✓)d✓

Z 2⇡

0

d�

#
. (14)

The time-averaged escape fraction for a given NO is then,

hfesci✓,t(NO) =

R tO
0

hfesci✓(t,NO)S(t)dtR tO
0

S(t)dt
, (15)

where tO = 10 Myr.
We plot this hfesci✓,t(NO) (eqn 15) as a function of NO

for n0 = 0.5 cm�3 and for two values of z0 = 10 and 300

c� 0000 RAS, MNRAS 000, 000–000

UV luminosity falls after few Myr as 
O-stars start dying

[Roy et al. 2015]
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Figure 3. Time- and angle-averaged escape fraction as a function
of the number of O stars for two scale heights, including a smaller
one for which the recombination time is longer than the dynamical
time.

pc in Figure 3. For z0 = 10 pc, the dynamical time td <
treco, the recombination time scale, and the escape fraction is
independent of NO (blue dashed line), whereas for z0 = 300
pc, it increases with NO (black solid line). In the first case,
the superbubble reaches the scale height before substantial
recombination takes place in the shell, and the escape fraction
is dominated by the dynamics of the superbubble than by the
recombination rate. Our formalism is not valid in the first
case, as explained in section 3.1.

Next we convolve hfesci✓(t,NO) with the luminosity func-
tion of OB associations, as given by McKee & Williams
(1997),

dn
dNO

dNO /

1
N2

O

dNO , (16)

where the LHS denotes the number of OB associations with
the initial number of O stars in the range NO and NO +
dNO. The NO-averaged escape fraction as a function of time
is defined as

hfesci✓,NO (t) =

R NO2
NO1

hfesci✓(t,NO)S(t) dn
dNO

dNO

R NO2
NO1

S(t) dn
dNO

dNO

. (17)

For Salpeter IMF, the number of O stars NO = 0.3NOB,
the total number of OB stars. We use a lower limit NO1 =
100, corresponding to the smallest star clusters observed by
Zinnecker et al. (1993), and an upper limit of 105, for the
largest clusters (Ho 1997; Mart́ın et al. 2005; Walcher et al.
2005).

The angle and time dependence of the escape fraction
from all the OB associations, averaging over only the lumi-
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Figure 4. Escape fraction as a function of angle (✓) at di↵erent
times (0.5, 4.0, 9.5 Myr) for n0 = 0.5 cm�3, z0 = 300 pc, and
NO = 104. The corresponding dynamical time td ⇠ 1 Myr. The
blue dotted line represents the escape fraction at 0.5 Myr (at t ⌧
td, when the superbubble is deeply buried in the disk), the black
solid line at 4 Myr (t ⇡ 4td, when the superbubble shell begins to
fragment, making the line zigzag), and the green dashed line at 9.5
Myr, when the shell opens up completely at small angles.

nosity function, is another important quantity. We define the
luminosity-function-averaged escape fraction as:

hfesciNO (✓, t) =

R NO2
NO1

fesc(✓, t, NO)S(t) dn
dNO

dNO

R NO2
NO1

S(t) dn
dNO

dNO

. (18)

We use this definition in Figure 5.
Finally, the average escape fraction takes the form,

hfesci✓,t,NO =

R NO2
NO1

hfesci✓,t(NO) dn
dNO

dNO

R NO2
NO1

dn
dNO

dNO

, (19)

which is equivalent to
R
hfesci✓,NO (t)dt/tO.

4 RESULTS

In this section we present our results, beginning with the angle
and time dependence of the escape fraction. Then show the
the escaping LyC luminosity as a function of time. Later we
show the most interesting result of our study, namely, that
the escape fraction increases slightly with a decreasing halo
mass and a decreasing redshift. Finally we discuss the e↵ects
of clumpiness as applied to high redshift galaxies.

c� 0000 RAS, MNRAS 000, 000–000

UV photons escape close to poles
essentially through low density pathways

angle, time, stellar population averaged escape 
fraction as a function of WNM disk parameters

our results match MW value 5-10%
slightly higher for lower mass galaxies

weak galaxy mass dependence 
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Figure 10. Contour plot of time-averaged luminosity-function-
averaged and ✓-averaged escape fraction as a function of n0 and
z0. The regions below the black dashed-dotted line is for td < treco
for NO = 100. The magenta solid thick and thin lines represent
the n0, z0 values for two di↵erent ISM temperatures 104K, 8000
K respectively of the warm neutral medium (WNM). The yellow
circular scatterers represent the n0–z0 values corresponding to the
density and scale height calculated from Wood & Loeb (2000) for
the halo masses of Mh ⇠ 1012M� (the lower circle) and Mh ⇠
1011M� (the upper circle) respectively at present redshift (z =
0). The grey dashed thick, thinner and thinnest lines represent
constant HI-column density of NHI ⇠ 1022 cm�2, 1021 cm�2 and
5⇥ 1020 respectively.

combination of disk density and scale height. We have found
that this problem arises for small values of NO, especially
at the bottom-left corner of Figure 10 for small n0 and z0.
In this region, the dominant NO = 100 and treco > td. We
show with a black dashed-dotted line the locus of points with
treco = td for NO = 100. The results for escape fraction for
the region on the left of this line are not strictly valid. On
the right hand side of this line, the dominant NO is such that
treco < td, and our results are valid. We note that photoion-
ization/recombination equilibrium holds for most n0 and z0
considered here. Also, equilibrium disks with these combina-
tions of density and scale height correspond to very low ISM
temperatures (in the range of 150–4000 K, see Eq. 5), and
should not be considered realistic.

The grey dashed thick, thinner and thinnest lines in Fig-
ure 10 represent constant column densities of 1022, 1021 and
5 ⇥ 1020 cm�2, respectively, for a vertical line-of-sight. The
column density is given by,

NH = n0

Z 1

�1
sech2

⇣ z
p

2z0

⌘
dz = 2

p

2n0z0.

(22)

We note that at redshift z ⇠ 0, disks with NHI ⇠ 1021 cm�2

dominate the mass density of HI (Zwaan et al. 2005), and pos-
sibly also at high redshifts. Prochaska et al. (2005) however
suggests that disks with NHI ⇠ 1020.3 and 1021.3 contribute
more or less similarly in the overall mass-density of HI. It has
been pointed out by several authors (Cen 2012; Schaye 2001;
Zwaan & Prochaska 2006; Hirashita & Ferrara 2005) that at
z ⇠ 0 the systems above NHI ⇠ 1022 are very di�cult to
find due to HI-H2 coversion. In general, the escape fraction is
lower for low column density systems, as expected.

The magenta solid thick and thin lines in Figure 10 cor-
respond to the ISM temperatures of 104 K and 8000 K re-
spectively. Wolfire et al. (2003) considered the thermal and
ionization balance in the Milky Way ISM, and inferred a range
in the disk temperature in which two phases can coexist to
be T ⇠ 7000–8500 K. We show the lines for disks with ISM
temperatures of 8000 K and 104 K according to Eq. 7 The
escape fraction from disks at higher temperature (T ⇠ 104

K) is lower than that at lower temperature (8000 K). As we
see from Eq. 7, higher temperature corresponds to a larger
scale height (for a given density) due to the pu�ng up of the
disk. In that case, it becomes di�cult for ionizing photons to
escape the disk, and thus explains the behaviour of fesc with
the disk temperature.

It is important to note that this density-height relation is
roughly independent of the disk (galaxy) mass and redshift.
The WNM disk column increases with the galaxy mass and
redshift, but the relation between the mid-plane density and
the scale height satisfies Eq. 7, as long as the disk temperature
remains the same and the disk is in hydrostatic equilibrium.

Finally we come to the main result of our paper. The

contours of equal values of escape fraction roughly obey the

relation n2
0 / z�3

0 . In other words, disks in which the mid-
plane density and scale height are related such that n2

0z
3
0 is

constant, would have similar escape fractions. Note that in the
case of a constant ionizing luminosity, the Strömgren sphere
has a radius Rs / n�2/3

0 . This means that, the disks in which
the Strömgren radius for a constant ionizing luminosity is
a fixed ratio of the scale height, would have similar values
of escape fraction. In hindsight, one could argue that this is
expected from a simple theoretical argument, because the es-
cape fraction must depend on the amount of ionizing photons
absorbed by the disk gas, and so the ratio of the Strömgren
radius to the scale height must be a relevant parameter. But
without the aid of detailed calculation such as presented here,
one could not have drawn such a conclusion with confidence,
since there are a large number of competing factors (such as
opening up of low density channels) at play.

Note that lines of isothermal disks (n0 / z�2
0 ; Eq. 7) and

those of constant column density (n0 / z�1
0 ; Eq. 22) straddle

the iso-fesc contours from two sides in Figure 10. In other
words, fesc of disks with constant WNM temperatures or disks
with a given column densities would di↵er slightly. Consider
disks with similar WNM temperatures that lie on the solid
thick line in Figure 10. Disks of galaxies with di↵erent masses
would be separated on this line, given by Eq. 25 (explained
later in §4.5). We show two such points corresponding to halo
masses 1011 and 1012 M� at the present epoch. The escape
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Conclusions
• galactic outflows common

• isolated SN can’t power them 

• need overlapping SNe => superbubbles

• SBs can retain substantial fraction of energy

• SB breakout & halo metal pollution

• Fermi bubble as a starburst-driven outflow

• crucial role in escape of ionizing photons

Thank you!


