

Black Holes

Prateek Sharma
(University of California, Berkeley)

What is a BH?

- gravity so strong that even light can't escape
- can we make BHs in the lab?
- do BHs exist in nature? **YES!**
- how do we find them?
- how do they look like?

Escaping gravity's pull

escape velocity: minimum speed needed to escape an object's gravity

$$v_{\text{esc}} = (2GM/r)^{1/2}, M: \text{mass}, r: \text{radius}$$

earth: 11 km/s

sun: 1000 km/s (more difficult to launch rocket from the sun!)

Size of a BH

Rev. John Michell (1783) & Pierre-Simon Laplace (1796)
thought of dark stars!

- what if $v_{esc} > c$? even light can't escape
- requirement? $c^2 < 2GM/r$
- or, radius < event horizon $\equiv r_s = 2GM/c^2$
- examples:
 - ▶ solar mass BH : $r_s = 3\text{ km}$
 - ▶ earth mass BH : $r_s = 1\text{ cm}$
 - ▶ 1 kg BH : $r_s = 1.5 \times 10^{-25}\text{ cm}$ **quantum effects important at small scales!**

QM affects even BHs!

- QM allows for light to escape from BH!
- the almighty uncertainty principle: $xp \sim \hbar/2\pi$
- uncertainty in photon position $x \sim r_s \sim 2GM/c^2$
- $p (= \hbar/\lambda) \sim \hbar/2\pi r_s \sim hc^2/4\pi GM$
- for a BB: $kT \sim h\nu = hc/\lambda \Rightarrow T \sim hc^3/8\pi kGM$
- $T = 6 \times 10^{-8} K (M/M_\odot)^{-1}$ Hawking radiation!
- $L = 4\pi r_s^2 \sigma T^4 \propto M^{-2}$
- lighter BHs evaporate quickly due to energy loss via radiation (thus, stable BHs can't be formed in lab)

Do BHs exist in nature?

- Stellar mass BHs:

- ▶ stars w. $M > 3M_{\odot}$ form BH in the end
- ▶ \sim million such BHs in our Galaxy
- ▶ detected in binaries

- Supermassive BHs:

- ▶ 10^6 - $10^9 M_{\odot}$ BH at centers of galaxies
- ▶ $4 \times 10^6 M_{\odot}$ BH in center of our Galaxy
- ▶ formation not understood

Stars: Pressure balances gravity

- normal stars: gas pressure balances gravity
- death of stars: nuclear fuel exhausted in center
=>gravitational collapse

- Chandrasekhar's limit

- ▶ $M < 1.4M_{\odot}$ white dwarfs, e^- degeneracy pressure
- ▶ $1.4M_{\odot} < M < 3M_{\odot}$ neutron star, neutron degeneracy pressure
- ▶ $M > 3M_{\odot}$ BH, gravity wins

1915: General Relativity, Einstein's Theory of Gravity
1916: Schwarzschild's Discovery of BHs in GR
BHs only understood & accepted in the 1960s
(Term "Black Hole" coined by John Wheeler in 1967)

Albert Einstein

Karl Schwarzschild

BHs in GR

If an object is small enough, gravity overwhelms pressure and the object collapses. Gravity is so strong that nothing, not even light, can escape.

“Radius” of a BH

3 km for a solar mass
1 cm for an Earth mass

NOT a solid surface

All Mass at the Center
(GR not valid there; no complete theory of quantum gravity)

Uncovering BH myths

BHs are **not** cosmic vacuum

cleaners: only inside the horizon (r_s)
is matter pulled inward

Far away from a BH, gravity
is **no different** than for any
other object with the same mass

If a BH were to replace the sun, the orbits of planets, asteroids, moons, etc., would be
unchanged
(though it would get really really cold).

How to find BHs?

If two stars orbit close enough to each other, mass gets pulled from one and falls (accretes) onto the other. The smaller the target object, the faster the gas moves and the hotter it gets.

measure mass by the motion of companion to verify its a BH

Gas falling into a BH gets *very hot* and emits lots of radiation in X-rays

Accretion is how we “see” a black hole

BH in center of Galaxy

Chandra X-ray image

BHs makes its
surroundings hot and hot
gas radiates

Variety of massive BHs

increasing brightness

Normal spiral galaxy with an inactive supermassive black hole in the nucleus.

our Galaxy

A galaxy with a bright active galactic nucleus (AGN) produced by accretion of matter by the supermassive black hole.

A quasar, with an AGN that is so bright that it drowns out the light from the host galaxy.

Energy from Accretion

nuclear fusion: $4^1\text{H} \rightarrow ^4\text{He} + \text{energy}$; $m_{\text{He}} < 4m_{\text{H}}$
efficiency ~ 0.007 ; burning 1g of H gives $0.007 m_{\text{H}}c^2$ energy

accretion: gravitational energy source; much more efficient

mass far away from BH: energy = zero
close to the BH: energy = $-GMm/2r$; $r \sim \text{few } r_s \Rightarrow E = mc^2/(4 \cdot \text{few})$
energy is conserved \Rightarrow energy $\sim GM/2r$ is emitted as radiation
efficiency of accretion $\sim 0.1 >> 0.007$, efficiency of fusion

Manifestations of energy

radio jets & lobes

The BH ejects beams (“jets”) of matter & energy far outside its host galaxy into the surrounding universe

Quasar PKS 2349 HST · WFPC2
ST Scl OPO · January 1995 · J. Bahcall (Princeton), NASA

The BH can outshine all of the stars in its host galaxy!

To conclude:

- BHs: **gravity** wins over other forces
- **QM** plays a role in BH thermodynamics; evaporation of smaller BHs
- **1 massive BH** per galaxy; millions **stellar BHs** in galaxy
- **accretion** responsible for most energetic phenomena in universe: AGN, jets; more efficient than fusion
- BHs “seen” via light (mostly **X-rays**) produced by infalling gas or by its gravitational pull on nearby objects