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Outline

| LAFs/RIAFs/ADAFs are very common

o at teool/tvisc=1 thin disk forms; g-plot and state
transitions

» galactic AGN feedback: thermal instability & cold
gas; AGN jet-ICM sims.; going from kpc to 103 pc



| LAFS are common

from Palomar nearby galaxies survey [Ho 2008]
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Sgr A* most nearby SMBHS are accreting at
Looi~5x10% erg/s very sub-Eddington rates

in sub-mm; very well diagnosed,;
plasma physics; e- htg.; Mdot<<Mdotsondi
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X-ray with radio contours

1 arcmin = 21.4 kKpc
—_—

X-ray

Perseus

AGN b

maintenance/radio-mode
feedback in clusters
& ellipticals

multiphase gas from
10s of Kto 1078 K

condensation via local
thermal instability &
cold clouds feeding BHs
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Numerical S|ms.,c

initial eqU|I|br|um den5|ty

dp Euler’s egs.
At +pV v =0, w. alpha-viscosity 300
& ff cooling
dv ,. 200
P = —VP —-—pVop+V -0,
at
o 100
I(e
p( (¢/p) = —PV - v+ 0'2/,u. —nen; A(T).
dt =
O = — Gﬂé 100
r— R,
~200
s, Ug
Or¢ = O¢r = HT or ( r ) ~-300
400 ' ,
caveats: actual transport is MHD; 00 92';0 300 400
idealized cooling; 2D; no radiation . ;
transport vary torus density to change Mdot

without cooling egs. scale simply with M, Mdot



Numerical Slms .

initial eqU|I|br|um denS|ty

l
L4 pV - v =0, 300
dt
dv | 200
pgg = VP —pVO+ V-0, 2D sims.
d(e/p) r-0: 512x512 '°
p— .dt = —PV -v + 0'2/;1. — neni A(T). =
100
b= _ GM pseudo-Newtonian
| r— R,  potential; Sgr A*, 4e6 Msun =
=300
0 (z(p) viscous stress required
Ordp = Ogr = UT , _ _400 : .
or for accretion in hydro 0 100 200 300 400
R/R

we choose v«r’2independent of H/R



torb Without cooling 24 orbs
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tcoo\/tviSC< 1=>thin disk

pO/mp=109 cm™, 19 orbs pO/mp=1O10 cm™2, 19 orbs po/mp=1011 cm™3, 19 orbs
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higher density for larger a
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RIAF to thin disk

0.08 orbs 3.5 orbs
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mass continuously added
at local density/velocity; i.e.,
In hot phase




I'hin disk to RIAF
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stop adding mass
cold gas is viscously depleted at ~ viscous time of mass peak
in reality outflows can also deplete thin AD



Transition radius vs maot
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g-plot hysteresis
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mass addn. in 50

Iong
hot phase 12
cold gas ok as
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ot remains to bg explainea!
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AGN fb in clusters/EGs

kinetic/maintenance/radio-mode

cold filaments condense when teool/tis = 10

140
120

100

Darsels condensation of cold gas fundamentally changes
accretion onto SMBH; stochastic accretion
instead of smooth accretion from hot phase



Bond| accretion can't work

Chandra PSF lo.é” FWHM
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AGN feedback cyc\es

core cooling

l

large cold accretion onto SMBH

l

negative FB, heating wins over cooling, energy
oumped back in ICM

l

after few cooling times avg. thermal balance in core

l

cold, multiphase gas condenses if tcool/tiri=10

cooling & AGN jet heating cycles in cool-core clusters



AGN |et-ICM sims.
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source term applied in a small
bipolar cone at the center:

. g
2 kpe opening angle of 309, size 2 kpc

Viet=0.1¢C, €=6X10, rinout=1, 200 kpc
robust to variations
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DB: BCG_NFW r500
Cycle: 0 Time:0

150 kpc

BCG
200X 1
rmin:O. ‘
evol

Pseudocolor
Var: rho made —

H.le4 0.0051 0.051 0.51
| I I

_ ]

Lsar deavrar
Fr Feb "2 16:52:33 2074




40 F

-0 slices

0.29 Gvr

sound/weak
shock waves

— —_—
Il

1.7 Gyr [ {

p (erg cm™")

A

pressure |

—
R

=

B

E

e

-

!13

' buoyant |
bubbles |

i buBbIe mixing

with ICM

A

M




infalling cold gas condenses
when the jets are weak!

10

bble mixing-

with ICM .




Angular momentum problem

too long it H/R~1073,

of standard AGN t
moreover, star fo

NN disks

rmation

where Mq/MgH exceeds H/R

3/2 —2
b o d7 Gy [ H/R (&)
Ipc 0.001 0.01

g Must avoid a large thin disk
tvisc < core cooling time



Stochastic accretion

[Hobbs et al. 2011]
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astic accretion

[Hobbs et al. 2011]
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Stochastic accretion

[Hobbs et al. 2011]
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H/R large enough to prevent fragmentation; Maot larger by 103!




Stochastic accretion

log p [gcm ]
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iInstantaneous Mgot can be up to 100 time the Bondi value
based on sims with idealized turbulence, what abt with jets?




cold I-aistr in jet sims

NEFW: r;, =1 kpc

time avg ang mom pdf
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counter-clockwise; [,
clockwise; [,
= = = counter-clockwise; [,
- = = clockwise; [,
counter-clockwise; [,

clockwise; [,

our jet-ICM simulations show that stochastic
cold accretion may be realized



time variability of |

low | gas angular momentum changes on < core cooling time



check these out!
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summary

e a scenario to explain g-plot: which process adds hot
gas”? predicts transition back to quiet state at constant
L; much more to know: QPQOs, jets, disk winds,...

e cold cloud feedback drives radio mode feedback;
cool core cycles

* next frontier: feeding SMBH from ~1 kpc to 10-3 pc;
angular momentum cancellation; H/R of turbulent
disks; fragmentation/SF; state of multiphase inflow as
it moves deeper In;...

Thank You



