

Low Luminosity BHs

Prateek Sharma (Indian Institute of Science, Bangalore)

Outline

- LLAFs/RIAFs/ADAFs are very common
- at $t_{\text{cool}}/t_{\text{visc}} \lesssim 1$ thin disk forms; q-plot and state transitions
- galactic AGN feedback: thermal instability & cold gas; AGN jet-ICM sims.; going from kpc to 10^{-3} pc

LLAFs are common

from Palomar nearby galaxies survey [Ho 2008]

Sgr A*
 $L_{\text{bol}} \sim 5 \times 10^{35} \text{ erg/s}$

most nearby SMBHs are accreting at
very sub-Eddington rates

in sub-mm; very well diagnosed;
plasma physics; e^- htg.; $\dot{M} \ll \dot{M}_{\text{Bondi}}$

LLAFs are common

GX-339-4

RXTE light curve

[Corbel et al. 2013]

q-plot or HID diagram

AGN fb

maintenance/radio-mode
feedback in clusters
& ellipticals

multiphase gas from
10s of K to 10^{7-8} K

condensation via local
thermal instability &
cold clouds feeding BHs

Cartoon picture

Radiatively inefficient accretion flow simulations with cooling: implications for black hole transients

Upasana Das[★] and Prateek Sharma[★]

Department of Physics and Joint Astronomy Programme, Indian Institute of Science, Bangalore 560012, India

Accepted 2013 August 2. Received 2013 August 2; in original form 2013 April 4

MNRAS, 2013

Numerical Sims.

$$\frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{v} = 0,$$

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla P - \rho \nabla \phi + \nabla \cdot \boldsymbol{\sigma},$$

$$\rho \frac{d(e/\rho)}{dt} = -P \nabla \cdot \mathbf{v} + \boldsymbol{\sigma}^2/\mu - n_e n_i \Lambda(T).$$

$$\phi = -\frac{GM}{r - R_g}$$

$$\sigma_{r\phi} = \sigma_{\phi r} = \mu r \frac{\partial}{\partial r} \left(\frac{v_\phi}{r} \right)$$

caveats: actual transport is MHD;
idealized cooling; 2D; no radiation
transport

Euler's eqs.
w. alpha-viscosity
& ff cooling

vary torus density to change Mdot
without cooling eqs. scale simply with M, Mdot

Numerical Sims.

$$\frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{v} = 0,$$

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla P - \rho \nabla \phi + \nabla \cdot \boldsymbol{\sigma},$$

$$\rho \frac{d(e/\rho)}{dt} = -P \nabla \cdot \mathbf{v} + \boldsymbol{\sigma}^2 / \mu - n_e n_i \Lambda(T).$$

$$\phi = -\frac{GM}{r - R_g}$$

pseudo-Newtonian
potential; Sgr A*, 4e6 Msun

$$\sigma_{r\phi} = \sigma_{\phi r} = \mu r \frac{\partial}{\partial r} \left(\frac{v_\phi}{r} \right)$$

viscous stress required
for accretion in hydro

we choose $v_\phi \propto r^{1/2}$ independent of H/R

2D sims.
r-θ: 512x512

1 orb without cooling 24 orbs

no viscosity

geometrically-thick optically-thin accretion flow with viscosity

Effects of cooling

$t_{\text{cool}}/t_{\text{visc}} < 1 \Rightarrow \text{thin disk}$

higher density for larger a

higher density required
for thin disk to form at high a
as expected from $t_{\text{cool}}/t_{\text{visc}}$

RIAF to thin disk

Thin disk to RIAF

stop adding mass
cold gas is viscously depleted at \sim viscous time of mass peak
in reality outflows can also deplete thin AD

Transition radius vs mdot

q-plot hysteresis

our scenario

quite natural

mass addn. in
hot phase
cold gas ok as
long as its not
too luminous

$$\dot{m}_{\text{hot}} = 0.02$$

$$\dot{m}_{\text{cold}} = 0.09$$

variable
companion,
H ionization
TI, infalling cold
clouds

timescales
depend on r_{circ}

$$\dot{m}_{\text{hot}} = 8.2 \times 10^{-4}$$

$$\dot{m}_{\text{cold}} = 5.5 \times 10^{-3}$$

predicts return
at constant L

lot remains to be explained!

magnetic/thermal/viscous instabilities at high L/L_{Edd} ?

AGN fb in clusters/EGs

kinetic/maintenance/radio-mode

cold filaments condense when $t_{\text{cool}}/t_{\text{ff}} \lesssim 10$

Perseus

condensation of cold gas fundamentally changes accretion onto SMBH; stochastic accretion instead of smooth accretion from hot phase

Bondi accretion can't work

AGN feedback cycles

AGN jet-ICM sims.

Deovrat Prasad

AGN jet-ICM sims.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = S_\rho \quad \text{mass}$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p - \rho \nabla \Phi + S_\rho v_{\text{jet}} \hat{\mathbf{r}} \quad \text{momentum}$$

$$\frac{p}{\gamma - 1} \frac{d}{dt} \ln(p/\rho^\gamma) = -n^2 \Lambda$$

source term applied in a small
bipolar cone at the center:
opening angle of 30°, size 2 kpc

$$\dot{M}_{\text{jet}} v_{\text{jet}}^2 = \epsilon \dot{M}_{\text{acc}} c^2$$

$v_{\text{jet}} = 0.1c$, $\epsilon = 6 \times 10^{-5}$, $r_{\text{in,out}} = 1$, 200 kpc
robust to variations

Density movie

r - θ slices

Angular momentum problem

$$t_{\text{visc}} \sim \frac{1}{\alpha (H/R)^2 \Omega_K}$$

too long if $H/R \sim 10^{-3}$,
of standard AGN thin disks
moreover, star formation
where M_d/M_{BH} exceeds H/R

$$t_{\text{visc}} \sim 4.7 \text{ Gyr} \left(\frac{R}{1\text{pc}} \right)^{3/2} \left(\frac{H/R}{0.001} \right)^{-2} \left(\frac{\alpha}{0.01} \right)^{-1}$$

must avoid a large thin disk
 $t_{\text{visc}} <$ core cooling time

Stochastic accretion

large, laminar disk

turbulent flow ($\sigma \approx v_\phi$) extending
down to small r

Stochastic accretion

[Hobbs et al. 2011]

ang mom cancellation
in stochastic accretion

smaller disk with short
enough acc time

Stochastic accretion

[Hobbs et al. 2011]

H/R large enough to prevent fragmentation; M_{dot} larger by 10^3 !

Stochastic accretion

[Gaspari et al. 2013]

instantaneous \dot{M}_{dot} can be up to 100 time the Bondi value
based on sims with idealized turbulence, what abt with jets?

cold \mathbf{l} -distr in jet sims

our jet-ICM simulations show that stochastic cold accretion may be realized

time variability of $|\vec{l}|$

low $|\vec{l}|$ gas angular momentum changes on $<$ core cooling time

check these out!

COOL CORE CYCLES: COLD GAS AND AGN JET FEEDBACK IN CLUSTER CORES

DEOVRAT PRASAD¹, PRATEEK SHARMA¹, AND ARIF BABUL²

¹ Joint Astronomy Program and Department of Physics, Indian Institute of Science, Bangalore, 560012, India;
deovrat@physics.iisc.ernet.in, prateek@physics.iisc.ernet.in

² Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1, Canada; babul@uvic.ca

Received 2015 April 12; accepted 2015 July 28; published 2015 September 28

AGN jets driven stochastic cold accretion in cluster cores

arXiv:1611.02710

Deovrat Prasad^{1*}, Prateek Sharma^{1†} and Arif Babul^{2,3‡}

¹Department of Physics & Joint Astronomy Programme, Indian Institute of Science, Bangalore, India -560012.

²Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1, Canada

³Institute of Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich,
Winterthurerstrasse 190, 8057, Zurich, Switzerland

Summary

- a scenario to explain q-plot: which process adds hot gas? predicts transition back to quiet state at constant L ; much more to know: QPOs, jets, disk winds,...
- cold cloud feedback drives radio mode feedback; cool core cycles
- next frontier: feeding SMBH from ~ 1 kpc to 10^{-3} pc; angular momentum cancellation; H/R of turbulent disks; fragmentation/SF; state of multiphase inflow as it moves deeper in;...

Thank You