Low Luminosity BHs

Prateek Sharma (Indian Institute of Science, Bangalore)

Outline

- LLAFs/RIAFs/ADAFs are very common
- at t_{cool}/t_{visc} ≤1 thin disk forms; q-plot and state transitions
- galactic AGN feedback: thermal instability & cold gas; AGN jet-ICM sims.; going from kpc to 10⁻³ pc

LLAFs are common

from Palomar nearby galaxies survey [Ho 2008]

LLAFs are common

RXTE light curve

q-plot or HID diagram

AGN fb

maintenance/radio-mode feedback in clusters & ellipticals

multiphase gas from 10s of K to 10⁷⁻⁸ K

condensation via local thermal instability & cold clouds feeding BHs

Cartoon picture

Radiatively inefficient accretion flow simulations with cooling: implications for black hole transients

Upasana Das* and Prateek Sharma*

Department of Physics and Joint Astronomy Programme, Indian Institute of Science, Bangalore 560012, India

Accepted 2013 August 2. Received 2013 August 2; in original form 2013 April 4

MNRAS, 2013

Numerical Sims.

$$\begin{aligned} \frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{v} &= 0, \\ \mathbf{w}. \text{ alpha-viscos} \\ \& \text{ ff cooling} \end{aligned}$$

$$\rho \frac{d\mathbf{v}}{dt} &= -\nabla P - \rho \nabla \phi + \nabla \cdot \sigma, \\ \rho \frac{d(e/\rho)}{dt} &= -P \nabla \cdot \mathbf{v} + \sigma^2 / \mu - n_e n_i \Lambda(T). \\ \phi &= -\frac{GM}{r - R_g} \\ \sigma_{r\phi} &= \sigma_{\phi r} = \mu r \frac{\partial}{\partial r} \left(\frac{v_{\phi}}{r}\right) \end{aligned}$$

caveats: actual transport is MHD; idealized cooling; 2D; no radiation transport

Effects of cooling

$t_{cool}/t_{visc} < 1 = > thin disk$

Thin disk to RIAF

stop adding mass

cold gas is viscously depleted at ~ viscous time of mass peak in reality outflows can also deplete thin AD

Transition radius vs mdot

q-plot hysteresis

our scenario

quite natural

AGN fb in clusters/EGs

kinetic/maintenance/radio-mode

cold filaments condense when $t_{cool}/t_{ff} \leq 10$

Perseus

bes offset (aresoc

condensation of cold gas fundamentally changes accretion onto SMBH; stochastic accretion instead of smooth accretion from hot phase

Bondi accretion can't work

cooling & AGN jet heating cycles in cool-core clusters

AGN jet-ICM sims.

Deovrat Prasad

AGN jet-ICM sims.

$$rac{\partial
ho}{\partial t} +
abla \cdot
ho \mathbf{v} = S_{
ho}$$
 ma

mass

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p - \rho \nabla \Phi + S_{\rho} v_{\text{jet}} \hat{\mathbf{r}} \quad \text{momentum}$$
$$\frac{p}{\gamma - 1} \frac{d}{dt} \ln(p/\rho^{\gamma}) = -n^2 \Lambda$$

2 kpc

source term applied in a small bipolar cone at the center: opening angle of 30°, size 2 kpc

$$\dot{M}_{\rm jet} v_{\rm jet}^2 = \epsilon \dot{M}_{\rm acc} c^2$$

 v_{jet} =0.1c, ϵ =6x10⁻⁵, $r_{in,out}$ =1, 200 kpc robust to variations

Density movie

DB: BCG_NFW_r500 Cycle: 0 Time:0

150 kpc

BCG+NFW in PLUTO 256x128x32 in (logr,θ,φ) r_{min}=0.5 kpc, r_{max}=0.5 Mpc evolution for ~2.8 Gyr made by Deovrat Prasad

user: deovrat Fri Feb 12 15:53:33 2016

0.051

Pseudocolor Var: rho

5.1e-4 0.0051

r-0 slices

Angular momentum problem

$$t_{\rm visc} \sim \frac{1}{lpha (H/R)^2 \Omega_K}$$

too long if H/R~10⁻³, of standard AGN thin disks moreover, star formation where M_d/M_{BH} exceeds H/R

$$t_{\rm visc} \sim 4.7 \; {
m Gyr} \; \left(rac{R}{1 {
m pc}}
ight)^{3/2} \left(rac{H/R}{0.001}
ight)^{-2} \left(rac{lpha}{0.01}
ight)^{-1} \; {
m must} \; {
m avoid} \; {
m a large thin disk} \ t_{
m visc} < {
m core} \; {
m cooling time}$$

Stochastic accretion

[Hobbs et al. 2011]

Stochastic accretion

 $\log \Sigma [g \text{ cm}^{-2}]$

[Hobbs et al. 2011]

ang mom cancellation in stochastic accretion

smaller disk with short enough acc time

Stochastic accretion

H/R large enough to prevent fragmentation; M_{dot} larger by 10³!

tic accretion

[Gaspari et al. 2013]

instantaneous M_{dot} can be up to 100 time the Bondi value based on sims with idealized turbulence, what abt with jets?

cold I-distr in jet sims

our jet-ICM simulations show that stochastic cold accretion may be realized

time variability of I

10⁴

10³

 ${\rm M_{mol}/10^8~(M_{\odot})}_1^1$

10⁰

 10^{-1}

10

10⁻¹

confirm

upper

= 0.01

low I gas angular momentum changes on < core cooling time

check these out!

COOL CORE CYCLES: COLD GAS AND AGN JET FEEDBACK IN CLUSTER CORES

DEOVRAT PRASAD¹, PRATEEK SHARMA¹, AND ARIF BABUL² Joint Astronomy Program and Department of Physics, Indian Institute of Science, Bangalore, 560012, India; deovrat@physics.iisc.ernet.in, prateek@physics.iisc.ernet.in

² Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1, Canada; babul@uvic.ca Received 2015 April 12; accepted 2015 July 28; published 2015 September 28

AGN jets driven stochastic cold accretion in cluster cores arXiv:1611.02710

Deovrat Prasad^{1*}, Prateek Sharma¹[†] and Arif Babul^{2,3}[‡]

¹Department of Physics & Joint Astronomy Programme, Indian Institute of Science, Bangalore, India -560012. ²Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1, Canada ³Institute of Computational Science, Center for Theoretical Astrophysics and Cosmology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland

Summary

- a scenario to explain q-plot: which process adds hot gas? predicts transition back to quiet state at constant L; much more to know: QPOs, jets, disk winds,...
- cold cloud feedback drives radio mode feedback; cool core cycles
- next frontier: feeding SMBH from ~1 kpc to 10⁻³ pc; angular momentum cancellation; H/R of turbulent disks; fragmentation/SF; state of multiphase inflow as it moves deeper in;...

Thank You