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Motivation and Outline
• Anisotropic transport for hot, dilute plasmas 

(Wc»nµnT-3/2).

• Thermal conduction along B

• Finite differencing anisotropic conduction

• Symmetric, Asymmetric methods

• Negative temperature: simple tests

• Basic review of slope limiters in CFD.

• Limiting temperature gradient: slope, entropy limiters

• Tests

• Applications



Anisotropic thermal conduction
T = e/n(g-1),  g=5/3 for ideal 
gas in 3-D

e : internal energy density
q : anisotropic heat flux
T : temperature
t : time
c^, c| : conduction coefficients

Finite difference equation in conservative form in 2-D:



Grid

Ti,j, ei,j
qxi+1/2,j

qy,I,j+1/2

Staggered grid with scalars
at zone centers, vectors at
zone faces. 

Natural location for 
conservative form



Asymmetric differencing

• Most natural differencing

Min used so that Courant stability condition is not severe. 



Negative temperature with 
asymmetric method

asymmetric

symmetric

slope-limited

entropy limited

Reflecting BC for temperature



Symmetric method

Primary heat fluxes at cell corners   
[Gunter et al., JCP, 2005]



Why Symmetric method?

• Numerical cross-field diffusion does not scale 
with c| /c^ ,Sovinec’s test

• Self-adjointness of                        , matrix is 
symmetric, good for Krylov methods

• Entropy condition satisfied at the cell corners,   
-q.Ñ T³ 0

• good when temperature gradients are not 
enormous 

• Less sensitive to angle between b and 
coordinate axes



Problems with symmetric method

• Small scale overshoots are not damped.

• Unable to diffuse away a chess-board pattern. 
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Negative temperature with 
symmetric method

Heat flows out of (i,j) despite it being a minimum.
Reflective BC. 
qx, qy at (i-1/2,j-1/2) <0

symmetric

entropy-limited

asymmetric

slope-limited

symmetric

entropy-limited

asymmetric

slope-limited



Why negative temperature?

qxx satisfies the entropy condition,
with heat flowing from higher to lower 
temp., but qxy can have any sign.

Need to limit transverse term qxy

Responsible for heat flowing in wrong 
direction

What is the best interpolation?

Arithmetic average for dT/dy?

Limiters for averaging?



Basic Eulerian/Continuum Advection Algorithms

Discrete grid, f(zj) = fj Conservative differencing:
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Std 2nd order centered differencing 
(okay for smooth regions, phase 
errors too large for sharp-gradient 
regions, gives unphysical 
oscillations):

1st order upwind (eliminates unphysical 
oscillations, but too dissipative):
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Higher-order upwind Methods with
clever monotonicity-preserving slope limiters

Reconstruct f(z) in each cell, extrapolate to bdys: )()( jjj zzsfzf -+=

Piecewise constant = 1st order upwind : 0=js
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1111van Leer’s (MC) limiter:

“Monotonized Central”

Simplest, minmod limiter:  minmod(a,b) = sign(a,b). min(|a|,|b|)

Higher order extensions, e.g., 2nd order PPM of Colella & Woodward 



Advection tests

2cd order Centered
Algorithm 
okay in smooth regions
Phase errors large 
for sharp gradients

1st Order upwind
Too dissipative

From R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press (2002).



Advection tests:   Higher order upwind w/ limiters 

1st Order upwind
Too dissipative

2cd order upwind
With MC limiter
Much better

From R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press (2002).



Lax-Wendroff equivalent to downwind
Slope. Can lead to overshoots in
reconstruction

Just going to higher order doesn’t 
help near sharp gradient regions 
(Gibb’s phenomena)

Top Fig. From  R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press (2002).
2cd Fig. From C.B. Laney, Computational Gasdynamics, Cambridge Univ. Press (1998).



Central differencing to determine
slopes can lead to overshoots in
reconstruction, Slope limiter uses
s=0 at extrema to avoid oscillations

MC limiter gives much more robust 
and accurate result.

From R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press (2002).



Limiting transverse gradient

We limit transverse temperature gradient to calculate qx

L is a limiter like: minmod, van Leer, monotonized central (MC)

Limiters return a zero if arguments are of opposite sign

Temperature extrema are not amplified

Only normal term remain nonzero at extrema

At extrema

dT/dx = 0
dT/dy = 0



Limiting symmetric method

a=0.75, L2 not symmetric in its arguments
Need to limit both normal and transverse gradients. 
Normal derivative limited so that qxx is always from higher to lower temp.
Chess-board pattern will not diffuse if normal derivative not limited!



Entropy limiting

• Using face pairs to satisfy entropy condition

qx

qy

If dT/dx=0, then an arbit. qx can give neg.
temp.

Not strictly monotonic, but overshoots
highly damped

Entropy condition satisfied at some point
is not a sufficient condition for heat flowing

in the right dirn.



Ring diffusion test
• Initial hot patch 

0.5<r<0.7, 
11p/12<q<13p/12

• Coefft. c| =0.01, 

• c^=0, tend=200

• Reflective BC

• Circular magnetic

field lines



Small temperature gradient

Asymmetric
MC

Symmetric
MC

400 X 400 box

Asymmetric and symmetric
methods non-monotonic
even late times 

Slope limited methods 
monotonic

Sharp boundaries even with 
limiting

For lower resln. slope lim.
methods are more diffusive. 



Ring diffusion with large temp. 
gradient

symmetric

asymmetric

Entropy limitedInitially Tmax=10, Tmin=0.1

Both symmetric and asymmetric
methods give negative temp.
at late times

Slope limited methods are
strictly monotonic with Tmin=0.1
at all times 

Entropy limiting damps the
undershoots.



Perpendicular numerical diffusion

• Test problem by Sovinec et al. 2005

• Solve anisotropic diffusion with source term 
to get steady state, circular field lines

• Lx=Ly=1, in SS heat diffusion balances Q

• Q = 

• An explicit c^, Tanal(0,0)=1/ c^

• c^num = 1/T(0,0)-1, correct defn. is 

• c^num = 1/T(0,0)-1/Tiso(0,0)



c||/c^=10

c||/c^=100

Symmetric method is least diffusive
(also entropy limited)
c^num independent of c||/c^

Asymmetric method & MC limiter
close, c^num scales with  c||/c^

Second order convergence for all
except minmod

Correct defn. for c^num implies even 
tinier diffusion

c||/c^num = few 103 for N=100

symm.

minmod

van Leer

MC asymm.

entropy



Applications

• Problems with large temperature gradients 
where negative temperature cause 
numerical problems (spurious instabilities)

• Astrophysical systems e.g., Disk-corona 
interface, warm-hot phase interface in ISM

• Systems where a huge c||/c^is not reqd., or 
where c^ need not be resolved.



Future Directions

• Methods that are both monotonic and less 
diffusive, higher order reconstructions

• Faster implicit methods for anisotropic 
conduction 

• Applications to problems with large 
temperature gradients and anisotropic 
thermal conduction, e.g., global models of 
RIAFs



Conclusions

-Non-monotonic behavior of centered differencing 
in presence of large temp. gradients

-simple test problems for negative temp.

-slope limited methods are monotonic, second 
order convergence

-test problem to measure c^num

- Astrophysical applications, ISM, disk-corona 
interface

Thank you for your attention!
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