
1

CONTENTS

1 Outline 2

2 Installation and prerequisites 5

3 Model calculations 6

3.1 3D, bulk systems . 8
3.2 2D systems . 8
3.3 1D systems . 9

4 Potential Alignment 11

5 Examples 12

5.1 Diamond . 12
5.2 Monolayer MoS2 . 16
5.3 BN nanoribbon . 21

6 Additional references 25

1 OUTLINE

CoFFEE is a complete electrostatic corrections package, applicable to charged defects in
materials ranging bulk solids, interfaces, surfaces/slabs, two-dimensional (2D) materials,
nanowires and nanoribbons. We implement a generalized Poisson solver based on the FNV
correction scheme with a gaussian model charge distribution. The code is written entirely in
Python. We use Message Passing Interface (MPI) to parallelize the code and Cython to accel-
erate slow steps. Our implementation can be used alongside any DFT package to obtain an a
posteriori correction for the formation energy and the defect level position in the gap, for the
charged defect being simulated. The code is released under the BSD licence.

For more details on the theory and the equations being solved, please refer to our paper:
https://arxiv.org/abs/1705.01491

The formation energy of a defect in charge state q is given by:

E f
q [~Rq](εF) = {Etot

q [~Rq]+Ecorr
q }−Epristine +q{εpristine

vbm +εF −∆V0/p }−nxµx (1.1)

The formation energy is a function of the Fermi level in the system, εF , with respect to the
pristine valence band maximum (VBM), εpristine

vbm . The first term on the right hand side is the
total energy of a system containing a defect in charge state q. Epristine represents the total en-
ergy of a pristine super cell of the same size. nx refers to the number of atoms of type x added
(positive) or removed (negative) from the pristine system, and µx is the atom’s chemical po-
tential. Ecorr

q is the finite-size electrostatic correction term. In the FNV scheme, this term is

2

given by:
Ecorr

q = Elat
q −q∆Vq−0/m (1.2)

where Elat
q is obtained from a model calculation.

Elat
q = Eiso,m

q −Eper,m
q (1.3)

∆Vq−0/m is a potential alignment term found by comparing the model potential to the DFT
difference potential:

∆Vq−0/m = (V DFT
q −V DFT

0)|far −V per,m
q |far (1.4)

∆V0/p is another potential alignment term, found by comparing the electrostatic potentials
from a pristine calculation and far from the defect in a neutral defect calculation:

∆V0/p =V0|far −Vp (1.5)

The general steps involved in computing corrections for the formation energy of a charged
defect are the following (Fig. 1.1):

1. Compute the total energy of the pristine super cell of the same size. Save the DFT po-
tential in cube/xsf format.

2. Compute the total energy of the super cell (say n×n×n) containing the neutral defect.
Save the DFT potential in cube/xsf format.

3. Compute the total energy of the super cell containing the charged defect. Save the DFT
potential in cube/xsf format.

4. Compute Elat
q term: Compute the model energy for various super cell sizes and extrap-

olate to obtain Eiso,m
q . Elat

q is then given by: Eiso,m
q −Eper,m

q (n×n×n).

5. Compute the potential alignment term ∆V0/p , Eqn. 1.5. The utility script dV_0p.py can
be used to compute this.

6. Compute the potential alignment term ∆Vq−0/m , Eqn. 1.4. The utility dV_mD.py can
be used to compute this.

The first three steps are performed by the user with the DFT electronic structure code of
his/her choice. The xsf/cube file formats are commonly used to visualize data. Most elec-
tronic structure codes provide utilities to convert the DFT potential after a self consistent
calculation into these formats. These formats act as an interface between the DFT calcula-
tion and the CoFFEE code. The CoFFEE code aids in computing steps 4, 5 and 6. The model

3

Potential alignment
term using dV_mD.py

Potential alignment
term using dV_0p.py

Pristine DFT
calculation
(n x n x n)

Neutral defect
DFT calculation

(n x n x n)

Model calculation
using coffee.py

Charged defect
DFT calculation

(n x n x n)

1. 2. 3. 4.

5. 6.

(cube/xsf)(cube/xsf) (cube/xsf) (numpy)

Figure 1.1: (Color online) The workflow involved in computing the formation energy of a
charged defect. The blue boxed are performed using a DFT electronic structure
code. CoFFEE aids in computing the corrections, the red boxes. (n×n×n) refers to
the super cell size.

4

calculations are performed by solving the Poisson equation, as detailed in the CoFFEE pa-
per. The next section describes the installation procedure. Sections 3, 4 and 5 describe the
workflow involved in computing the model energy, potential alignment terms and running
the examples.

2 INSTALLATION AND PREREQUISITES

The code is obtainable for download from:
http://www.physics.iisc.ernet.in/~mjain/pages/software.html

The code requires python with the following libraries installed:

1. SciPy, NumPy, Matplotlib
In Linux and Mac, run the following command:

$pip install numpy scipy matplotlib ipython jupyter pandas sympy nose

2. mpi4py
In Linux and Mac, run the following command:

$pip install mpi4py

or for Linux OS:

$apt-get install python-mpi4py

For Anaconda users on either OS:

$conda install -c anaconda mpi4py

To install the code in Linux or Mac operating system, first download the tar zip file and extract
using (xxx refers to the version):

$tar -zxvf coffee_xxx.tar.gz

Enter the CoFFEE_xxx folder created and run the following command:

5

$cd CoFFEE_xxx

$python setup.py build_ext -b PoissonSolver/

This checks for the dependencies and compiles the C routines in the folders:
PoissonSolver/MV_2D_cy/,
PoissonSolver/MV_1D_cy/ and
PoissonSolver/PS_3D_cy/

If you have Cython intalled, this command will first Cythonize the .pyx files present in these
directories, and then compile the .c file generated.

On compiling the C code, this creates the following .so files in the PoissonSolver/ folder:
matvec1D.so
matvec2D.so
ps3D.so
(In case these file names have changed for some reason, you would have to rename them to
the above.)

If you wish to recompile, first run clean.py to remove the .so files.

3 MODEL CALCULATIONS

Once installed, the coffee.py file in the CoFFEE/ directory acts as your main executable. The
type of system and other input parameters are supplied via an input file.
This section describes the input files and available options for 3D (bulk), 2D (slab/2D mate-
rial) and 1D (nanowires/nanoribbons) systems. The input file is divided into three sections
designated with
&CELL_PARAMETERS
&DIELECTRIC_PARAMETERS
&GAUSSIAN_PARAMETERS
Each section is ended with a "/".

The CELL_PARAMETERS and GAUSSIAN_PARAMETERS are common to all the systems.

The CELL_PARAMETERS section contains the normalized lattice vectors, the cell dimensions
and the plane wave cut off for the model calculation (generally much smaller than the DFT
wavefunction cut off)
Example:

&CELL_PARAMETERS

#Normalized lattice vectors: a1, a2 and a3

Lattice_Vectors(normalized):

6

1.000000000 0.000000000 0.000000000 # a1

0.000000000 1.000000000 0.000000000 # a2

0.000000000 0.000000000 1.000000000 # a3

Cell dimensions. Provide "angstrom" if you wish to provide

these values in angstrom units.

These are multiplied to a1, a2 and a3 respectively.

Cell_dimensions bohr

26.594331775231996 26.594331775231996 26.594331775231996

G-vectors will be used upto this kinetic energy cut off.

Provide "Rydberg" if you wish to specify the cut off in Rydberg

atomic units.

Ecut=20.0 Hartree

/

The GAUSSIAN_PARAMETERS section contains parameters for the model Gaussian charge.
It contains the Total_charge (-1 if an electron has been added to the system), Sigma (Gaus-
sian width), Centre of the Gaussian in crystal units. We provide a script g_fit.py in the folder
GaussianFit/ to fit the Sigma to the wavefunction charge denity. See Examples/Fit_gaussian/
for an example.

&GAUSSIAN_PARAMETERS:

The charge state of the defect being simulated.

Total_charge = -2

The width of the model Gaussian charge being used.

(default: bohr units)

Sigma = 2.614

These set the center of the Gaussian in crystal units.

Centre_a1 = 0.5

Centre_a2 = 0.5

Centre_a3 = 0.5

/

The DIELECTRIC_PARAMETERS section contains parameters for the dielectric profile. The
general form is set by the string following &DIELECTRIC_PARAMETERS, which could be
Bulk/Slab/Gaussian/Ribbon/Wire. Bulk is for bulk solids. Slab is for a slab of material or
for more than one atom thick 2D materials (like MoS2/phosphorene). Gaussian is for one
atom thick 2D materials (like BN/graphene) Ribbon is for nanoribbon system. Periodicity
assumed in the z-direction. (see Examples/1D/) Wire is for a nanowire like system (period-
icity assumed in the z-direction). Please refer to the following subsections for the &DIELEC-
TRIC_PARAMETERS for the various profiles.

7

3.1 3D, BULK SYSTEMS

Set "Bulk" for 3D, bulk systems.

&DIELECTRIC_PARAMETERS Bulk

Sets the value of the dielectric constant along a1, a2, a3.

Epsilon1_a1 = 5.76

Epsilon1_a2 = 5.76

Epsilon1_a3 = 5.76

/

3.2 2D SYSTEMS

For slab systems and 2D materials with more than one atom thickness:

&DIELECTRIC_PARAMETERS Slab

Epsilon1 is the value of dielectric constant inside the

material, and Epsilon2 is the value outside (1.0 if vacuum).

These values are provided for the profile

along every lattice vector.

Epsilon1_a1 = 15.0

Epsilon2_a1 = 1.0

Epsilon1_a2 = 15.0

Epsilon2_a2 = 1.0

Epsilon1_a3 = 2.0

Epsilon2_a3 = 1.0

The width of the slab-like dielectric profile.

Width = 11.40454 bohr

The center of the profile.

Centre = 5.70226 bohr

The smoothness parameter for the edges of the slab-like profile.

Smoothness = 0.37807 bohr

To write the epsilon profile to file.

The array is written as a numpy save array.

Plot_eps = True

/

For one-atom thick 2D materials like BN, the profile used is like a Gaussian inside the mate-
rial. The Gaussian does not go to zero in the vacuum however, it is shifted so that it goes to
1.0 (dielectric constant in vacuum).

&DIELECTRIC_PARAMETERS Gaussian

Gauss_amp parameters specify the value of dielectric constant

inside the material. The value outside the material is assumed to be 1.0.

These values are provided for the profile

along every lattice vector.

8

Gauss_amp_a1 = 11

Gauss_amp_a2 = 11

Gauss_amp_a3 = 2

The center of the profile.

Centre = 5.70226 bohr

Width of the Gaussian (default: bohr units)

Sigma = 0.85868842

To write the dielectric profile to file.

The array is written as a numpy save array.

Plot_eps = True

/

3.3 1D SYSTEMS

For 1D systems, we assume periodicity in the z direction. We also assume the angle between
the lattice vectors is 90 degrees. (This is not a bad assumption since the a1, a2 directions are
aperiodic, hence it is always possible to construct orthogonal lattice vectors, perpendicular
to the periodic direction.)

The Ribbon profile for BN is a combination of a Gaussian profile along x and slab-like profile
along the y direction. Sample input for the dielectric parameters:

Defines a Ribbon profile.

&DIELECTRIC_PARAMETERS Ribbon

Sets a Gaussian profile along x

Gauss_along_x = True

Assumes slab-like profile along y.

For a slab-like profile along x and y,

set both to be False.

Gauss_along_y = False

Center of the Gaussian

C_x = 14.1728712347 bohr

Dielectric constant along a1, a2 and a3

for a Gaussian profile along either direction.

Can be left unspecified if this is not the

case.

Gauss_amp_a1 = 2.94

Gauss_amp_a2 = 12.0

Gauss_amp_a3 = 12.0

Width of the Gaussian profile.

Sigma = 0.85868842

Center of the slab, along the y direction.

C_y = 17.96054782

Width of the slab. Provide W_x

9

for slab along x direction.

W_y = 26.0150 bohr

Smoothness parameter for edges of the slab.

Smoothness = 0.37 bohr

The 2D epsilon array for each direction are written

to files. The files are numpy save files,

which can be loaded into a different script to

visualize

Plot_eps = True

To construct a wire with a particular cross-section, like hexagonal, the vertices of the cross-
section can be provided in a file. See Examples/1D/Wire_samples/ Hexagonal_cross-section/
for an example. The dielectric parameters are provided in the following manner for this case:

&DIELECTRIC_PARAMETERS Wire

Epsilon1 is the value of dielectric constant inside the

material, and Epsilon2 is the value outside (1.0 if vacuum).

These values are provided for the profile

along every lattice vector.

Epsilon1_a1 = 7.34

Epsilon2_a1 = 1.0

Epsilon1_a2 = 7.34

Epsilon2_a2 = 1.0

Epsilon1_a3 = 8.73

Epsilon2_a3 = 1.0

The vertices of the cross-sectional polygon

are provided using a file. See

Examples/1D/Wire_samples/Hexagonal_cross-section/

for an example

Vertices_file = vertices

/

A wire with a circular cross-section with a smoothening of the edges can also be constructed.
See Examples/1D/Wire_samples/ Circular_cross-section/ for an example. The dielectric pa-
rameters for this case:

&DIELECTRIC_PARAMETERS Wire

Epsilon1 is the value of dielectric constant inside the

material, and Epsilon2 is the value outside (1.0 if vacuum).

These values are provided for the profile

along every lattice vector.

Epsilon1_a1 = 7.34

Epsilon2_a1 = 1.0

Epsilon1_a2 = 7.34

10

Epsilon2_a2 = 1.0

Epsilon1_a3 = 8.73

Epsilon2_a3 = 1.0

Defines a circular cross-section

Circle = True

Radius of the disk/circle

Radius = 8.0

Center in crystal units

c_a1 = 0.5

c_a2 = 0.5

Smoothening parameter for the edges

of the circle.

Smoothness = 2.0

/

4 POTENTIAL ALIGNMENT

The scripts in the PotentialAlignment folder can be used to obtain the two potential align-
ment terms, Eqn. 1.4 and Eqn. 1.5.
dV_0p.py is used to compute V0−Vp and plots the planar averaged potential along the desired
direction.
dV_mD.py plots the planar averaged DFT difference potential and the model potential along
the desired direction.
The input parameters for dV_0p.py and dV_mD.py are read from an input file.
Format of the input files:

&dV_0p

file_type = cube # No quotes. Takes cube/xsf

file_neutral = # No quotes. Path to the neutral DFT potential file

file_pristine = # No quotes. Path to the pristine DFT potential file

plt_dir = a1 # No quotes. Takes a1/a2/a3. If a1

is specified, the data is averaged along a2

and a3 directions and the planar averaged data is plotted

along a1 in a file pa_dv0p_a1.plot

factor = Ryd # factor to be multiplied to the cube/xsf data. If the data is in

rydberg and the plot is needed in eV, specify

factor = Ryd. If the data is in Hartree units,

specify factor = Hartree

/

Output: pa_dv0p_a1.plot (for plt_dir = a1)

&dV_mD

file_type = cube # No quotes. Format of the DFT potential files: cube/xsf

11

file_model = # No quotes. Path to the model potential file (.pysave)

file_charged = # No quotes. Path to the charged DFT potential file

file_neutral = # No quotes. Path to the neutral DFT potential file

plt_dir = a1 # No quotes. Takes a1/a2/a3. If a1

is specified, the data is averaged along a2

and a3 directions and the planar averaged data is plotted

along a1 in files DFTdiff_a1.plot, model_a1.plot

factor = Ryd # factor to be multiplied to the cube/xsf data. If the data is in

rydberg and the plot is needed in eV, specify

factor = Ryd. If the data is in Hartree units,

specify factor = Hartree

/

Output: DFTdiff_a1.plot, model_a1.plot (for plt_dir = a1)

5 EXAMPLES

We provide examples for bulk (Diamond), 2D (monolayer MoS2) and 1D (BN nanoribbon)
systems.

5.1 DIAMOND

The Diamond example is located in Examples/3D/Diamond folder. This example studies a C
vacancy in Diamond in the -2 charge state. This example will compute the complete correc-
tions for this system (steps 4, 5 and 6 in the Outline) for a 4×4×4 super cell simulation of this
defect.

The E l at
q term is computed in the Model_Scaling/ directory.

Go to the Model_Scaling/ directory.

$cd Examples/3D/Diamond/Model_Scaling

The lattice correction term, E l at
q , is given by Eqn. 1.3. To obtain the isolated model energy, the

model periodic energy is computed for three supercell sizes, say 4x4x4, 5x5x5 and 6x6x6 for
this case. These energies are fitted with a polynomial, of the form Eqn. 13 in CoFFEE paper,

p(Ω) = f1 + f2/Ω1/3 + f3/Ω (5.1)

and extrapolated to infinity to obtain Eiso,m
q . Ω here is the volume of the super cell. See also

Fig 4 (a) in the paper for the fit.

Note: Extrapolation is dependent on the Gaussian width used in the calculation! See Table 5.1

To run this example, perform the following steps (replace path_to_coffee_folder with your
path to the CoFFEE_xxx/ folder):

12

Figure 5.1: Extrapolation of model energies in Diamond for Gaussian width of 2.614 bohr

1. $cd 4x4x4/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

2. $cd ../5x5x5/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

3. $cd ../6x6x6/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

$cd ../

The model total energy is printed in the out files. The following command will show this
energy (while you are in the right folder):

$grep ! out

For this example, the model energies should be:
4×4×4: 1.0744 eV
5×5×5: 1.2549 eV
6×6×6: 1.3800 eV

Use plot_fit.py in the same Model_Scaling/ directory to compute the polynomial fit and ex-
trapolation to obtain Eiso,m

q for these values. See Fig. 5.1

$python plot_fit.py

Eiso,m
q is computed to be 2.04 eV.

The lattice corrections, for these super cells then are: (Eiso,m
q −Eper,m

q (n×n×n))
4×4×4: 0.97

13

σ= 2.61 bohr σ= 1.61 bohr
Eper,m

q (4×4×4) (eV) 1.07 2.31
Eper,m

q (5×5×5) (eV) 1.25 2.50
Eper,m

q (6×6×6) (eV) 1.38 2.64

Eiso,m
q (eV) 2.04 3.30

Correction (4×4×4) (eV) 0.97 0.98
Correction (5×5×5) (eV) 0.79 0.79
Correction (6×6×6) (eV) 0.66 0.66

Table 5.1: Model calculations for the -2 vacancy in Diamond computed for two widths of the
model Gaussian,σ= 2.61 bohr andσ= 1.61 bohr. The first three rows are the model
energies for the 4×4×4, 5×5×5 and 6×6×6 super cell sizes. These are extrapolated
to infinity to find Eiso,m

q . The corrections ((Eiso,m
q −Eper,m

q (n×n×n)) are independent

of the width of the model Gaussian.

5×5×5: 0.785
6×6×6: 0.66

The model potential and charge density can be plotted from the Plot/ directory inside the
super cell directories.

Plot the model potential for the 4x4x4/ model calculation:

$cd 4x4x4/Plot/

$ln -s ../V_r.npy .

$path_to_coffee_folder/PotentialAlignment/Utilities/plavg.py in_V

$cd ../../../

This will create a file plavg_a1.plot which we will use for computing the potential alignment
term.

Next, we compute the ∆Vq−0/m term. (Eqn. 1.4) This is done from the PA_q0/ folder in the
Diamond/ folder.

$cd PA_q0

We provide the planar averaged V DF T
q and V DF T

0 potentials computed using Quantum Espresso
for the 4x4x4 super cell in the files: plavg_q_a1.plot and plavg_0_a1.plot. These can be gen-
erated from your DFT calculation by writing the DFT potentials into a cube/xsf format. The
cube/xsf file can then be planar averaged using the utility plavg.py, located in the path:
path_to_CoFFEE_folder/PotentialAlignment/Utilities/. The details on how to run this script
is provided in the same folder.

14

Figure 5.2: Plot of the planar averaged DFT difference potential: Vq −V0, compared to the
model potential.

We compare the DFT difference potential with the model potential (far from the defect) com-
puted in the folder: ../Model_Scaling/4x4x4/Plot/ using the script plot_DVq0.py. Run this
script to obtain the plot:

$python plot_DVq0.py

You will find that the difference between the potentials, far from the defect is negligibly small.
See Fig. 5.2 There is hence no contribution from this term to the correction. It is however nec-
essary to always check if this is true. This term being small indicates that the charged defect
has been modelled well.

Next, we compute the∆V0/p term (Eqn. 1.5). Go back to the Diamond folder and move to the
PA_0p/ folder.

$cd ../PA_0p/

We provide the planar averaged V_p and V_0 potentials computed using Quantum Espresso
for the 4×4×4 super cell in the files: plavg_p_a1.plot and plavg_0_a1.plot These can be gen-
erated from your DFT calculation by writing the DFT potentials into a cube/xsf format as
discussed above.

Use the script plot_DV0p.py to plot this difference and find the value far from the defect site:

$python plot_DV0p.py

This term is about 0.1 eV. See Fig. 5.3

The correction for the 4×4×4 super cell is then given by:

15

Figure 5.3: Plot of the planar averaged difference potential: V0 −Vp .

Elat
q + (−∆Vq−0/m)+ (−q∆V0/p) = 0.97 + 0.0 + 0.1 eV = 1.07 eV

Uncorrected formation energy: 13.189 eV
Corrected formation energy: 14.259 eV

5.2 MONOLAYER MOS2

This example studies a S vacancy in monolayer MoS2 in the -1 charge state. It is located in
Examples/2D/MoS2 folder. This example will compute the complete corrections for this sys-
tem, steps 4, 5 and 6 in the Outline, for a 6×6×6 super cell simulation of this defect.

The E l at
q term , given by Eqn. 1.3, is computed in the Model_Scaling/ directory.

Go to the Model_Scaling/ directory.

$cd Examples/2D/MoS2/Model_Scaling/

To obtain the isolated model energy for this system, the model periodic energy is computed
for several supercell sizes. These values are then fit with a fifth order polynomial as shown in
Fig. 6 (c) in the CoFFEE paper. This polynomial has the form:

p(α) = f0 + f1/α+ f2/α2 + f3/α3 + f4/α4 + f5/α5 (5.2)

where α denotes the supercell dimension: α×α×α. We uniformly scale the vacuum with
the in-plane super cell. The third α refers to the scaling of the cell dimension in the out-of-
plane direction. For α= 6, the vacuum thickness is ∼ 16Å and thickness of MoS2 is 3.2Å. The
polynomial extrapolation, 1/α -> 0, gives the Eiso,m

q .
Note that computing this term for large supercell sizes can be time consuming. The users can
make use of the MPI parallelization of this code.

We provide the input files for the various supercell sizes in folders alpha.*. To understand
how this example works, the model energy can be computed for a few small supercell sizes.

16

We provide the results for the larger supercell sizes and a script to plot the polynomial.

To run this example, perform the following steps:

1. $cd alpha.4/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

2. $cd ../alpha.5/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

3. $cd ../alpha.7/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

4. $cd ../alpha.8/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

$cd ../

(Feel free to run the other supercell sizes as well)

The model total energy is printed in the out files. The following command will show this
energy (while in the right folder):

$grep ! out

The dielectric profile, model potential and model charge density are written out in numpy
save files. Instructions on how to plot the model charge density and potential are provided in
the Plot folder within the alpha.* folders
The script plot_eps.py in alpha.6/ folder can be used to visualize the epsilon profile:

$cd alpha.6/

$python plot_eps.py

$cd ../

See Fig. 5.4.

Go to alpha.6 and plot the model potential:

$cd alpha.6/Plot

$ln -s ../V_r.npy .

$path_to_coffee_folder/PotentialAlignment/Utilities/plavg.py in_V

$cd ../../

17

Figure 5.4: Epsilon profile along the in-plane a1, a2 directions and the out-of-plane a3
direction.

This produces a file plavg_a3.plot. We will use this later to compute the potential alignment
term.

For this example, the model energies should be:
4x4x4: 0.421 eV
5x5x5: 0.463 eV
6x6x6: 0.488 eV
8x8x8: 0.516 eV

10x10x10: 0.529 eV
20x20x20: 0.558 eV
40x40x40: 0.588 eV
80x80x80: 0.618 eV

Use plot_fit.py in the Model_Scaling/ folder to compute the fifth order polynomial fit and
extrapolation to obtain Eiso,m

q for these values.

$python plot_fit.py

Eiso,m
q is computed to be 0.66 eV. See Fig. 5.5.

The corrections, are then given by: (Eiso,m
q −Eper,m

q (n×n×n))
4x4x4: 0.239 eV
5x5x5: 0.197 eV
6x6x6: 0.172 eV
8x8x8: 0.144 eV

Next, we compute the∆Vq−0/m term (Eqn. 1.4). Go back to the MoS2/ folder and move to the
PA_q0/ folder.

18

Figure 5.5: Scaling of the model energy for a -1 charged sulfur vacancy in MoS2.

$cd ../PA_q0/

We provide the planar averaged V DF T
q and V DF T

0 potentials computed using Quantum Espresso
for the 6x6x6 super cell in the files: plavg_q_a3.plot and plavg_0_a3.plot These can be gen-
erated from your DFT calculation by writing the DFT potentials into a cube/xsf format. The
cube/xsf file can then be planar averaged using the utility plavg.py, located in the path:
path_to_CoFFEE_folder/PotentialAlignment/Utilities/ The details on how to run this script
is provided in the same folder.

We compare the DFT difference potential with the model potential (far from the defect) com-
puted in the folder: ../Model_Scaling/alpha.6/Plot/ using the script plot_DVq0.py.

$python plot_DVq0.py

See Fig. 5.6. You will find that the difference between the potentials, far from the defect is
negligibly small. There is hence no contribution from this term to the correction. It is how-
ever necessary to always check if this is true. This term being small indicates that the charged
defect has been modelled well.

Next, we compute the ∆V0/p term (Eqn. 1.5). Go back to the MoS2/ folder and move to the
PA_0p/ folder.

$cd ../PA_0p/

We provide the planar averaged Vp and V0 potentials computed using Quantum Espresso for
the 6x6x6 super cell in the files: plavg_p_a3.plot and plavg_0_a3.plot These can be generated
from your DFT calculation by writing the DFT potentials into a cube/xsf format as discussed
above.

Use the script plot_DV0p.py to plot this difference and find the value far from the defect site.

19

Figure 5.6: Plot to compare the DFT difference potential, V DF T
q −V DF T

0 , with the model

potential.

Figure 5.7: Plot of the difference potential, −1(V0 −Vp), for ∆V0/p term

20

$python plot_DV0p.py

This term is small as well, about 0.04 eV. See Fig. 5.11.

The correction for the 6×6×6 super cell is then given by:

Elat
q + (−∆Vq−0/m)+ (−q∆V0/p) = 0.172 + 0.0 + 0.04 eV = 0.212 eV

Uncorrected formation energy: 4.438 eV
Corrected formation energy: 4.650 eV

5.3 BN NANORIBBON

This example studies a B vacancy in a BN nanoribbon in the -1 charge state. It is located in
Examples/1D/NanoRibbon_BN/ folder. This example will compute the complete corrections
for this system, steps 4, 5 and 6 in the Outline, for a 6×14×6 super cell simulation of this de-
fect.

The E l at
q term , given by Eqn. 1.3, is computed in the Model_Scaling/ directory.

Go to the Model_Scaling/ directory.

$cd Examples/1D/NanoRibbon_BN/Model_Scaling/

To obtain the isolated model energy for this system, the model periodic energy is computed
for several supercell sizes. These values are then fit with a third order polynomial as shown in
Fig. 8 (e) in the CoFFEE paper. This polynomial has the form:

p(α) = f0 + f1α
−1 + f2α

−2 + f3α
−3 (5.3)

f0 then corresponds to the isolated model energy, Eiso,m
−1 . α denotes the supercell dimension:

α (1×2.31×1).

For α = 6, the simulation cell dimensions are 15Å, 35Å and 15Å, in the x, y and z directions
repectively. The z direction is the periodic direction. A vacuum of 15Å and 22Å has been in-
troduced in the out-of-plane x direction and lateral y direction. The thickness of the ribbon
is fixed in these cell sizes, with the number of atoms in the periodic direction and the vacuum
padding scaling with α. The polynomial extrapolation, 1/α -> 0, gives the Eiso,m

q .

Note that computing this term for large supercell sizes can be time consuming. The users can
make use of the MPI parallelization of this code.

We provide the input files for the various supercell sizes in folders alpha.*. To understand
how this example works, the model energy can be computed for a few small supercell sizes.
We provide the results for the larger supercell sizes and a script to plot the polynomial.

To run this example, perform the following steps:

21

1. $cd alpha.6/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

2. $cd ../alpha.8/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

3. $cd ../alpha.10/

$path_to_coffee_folder/coffee.py in > out

$grep ! out

$cd ../

(Feel free to run the other supercell sizes as well)

The model total energy is printed in the out files. The following command will show this
energy (while in the right folder):

$grep ! out

The dielectric profile, model potential and model charge density are written out in numpy
save files. Instructions on how to plot the model charge density and potential are provided in
the Plot folder within the alpha.* folders

To plot the dielectric profile, run the plot_eps.py script from alpha.6/ folder.

$cd alpha.6/

$python plot_eps.py

#cd ../

See Fig. 5.8.

Go to alpha.6 and plot the model potential:

$cd alpha.6/Plot

$ln -s ../V_r.npy .

$path_to_coffee_folder/PotentialAlignment/Utilities/plavg.py in_V

$cd ../../

This produces a file plavg_a3.plot. We will use this to compute the potential alignment term.
For this example, the model energies should be:
6x14x6: 1.457 eV
8x18.66x8: 1.589 eV
10x23.33x10: 1.651 eV

15x34.99x15: 0.529 eV
20x46.66x20: 0.588 eV

22

Figure 5.8: Dielectric profile constructed for the BN nanoribbon for α = 6. The periodic di-
rection of the ribbon is along the z/a3 direction. The x direction is perpendicular
to the plane of the ribbon, the dielectric constant in the material along that direc-
tion is thus lower than the in-plane directions (y and z).

Figure 5.9: Scaling of the model energy for a -1 charged B vacancy in a BN nanoribbon.

30x69.99x30: 0.618 eV

Use plot_fit.py in the Model_Scaling/ folder to compute the third order polynomial fit and
extrapolation to obtain Eiso,m

q for these values.

$python plot_fit.py

Eiso,m
q is computed to be 1.88 eV. See Fig. 5.9.

The corrections, are then given by: (Eiso,m
q −Eper,m

q (n×n×n))
6x14x6: 0.423 eV
8x18.66x8: 0.291 eV
10x23.33x10: 0.229 eV

23

Figure 5.10: Plot to compare the DFT difference potential, V DF T
q −V DF T

0 , with the model

potential.

Next, we compute the ∆Vq−0/m term (Eqn. 1.4). Go back to the NanoRibbon_BN/ folder and
move to the PA_q0/ folder.

$cd ../PA_q0/

We provide the planar averaged V DF T
q and V DF T

0 potentials computed using Quantum Espresso
for the 6x14x6 super cell in the files: plavg_q_a3.plot and plavg_0_a3.plot These can be gen-
erated from your DFT calculation by writing the DFT potentials into a cube/xsf format. The
cube/xsf file can then be planar averaged using the utility plavg.py, located in the path:
path_to_CoFFEE_folder/PotentialAlignment/Utilities/ The details on how to run this script
is provided in the same folder.

We compare the DFT difference potential with the model potential (far from the defect) com-
puted in the folder: ../Model_Scaling/alpha.6/Plot/ using the script plot_DVq0.py.

$python plot_DVq0.py

See Fig. 5.10. Note that in the DFT calculations, the nanoribbon was placed at the bottom of
the simulation cell and in the model, it was placed in the middle. We have hence shifted the
DFT difference potential to compare the two. The difference between the potentials, far from
the defect is negligibly small. There is hence no contribution from this term to the correction.
It is however necessary to always check if this is true. This term being small indicates that the
charged defect has been modelled well.

Next, we compute the ∆V0/p term (Eqn. 1.5). Go back to the NanoRibbon_BN/ folder and
move to the PA_0p/ folder.

$cd ../PA_0p/

24

Figure 5.11: Plot of the difference potential, −1(V0 −Vp), for ∆V0/p term

We provide the planar averaged Vp and V0 potentials computed using Quantum Espresso for
the 6x14x6 super cell in the files: plavg_p_a3.plot and plavg_0_a3.plot These can be generated
from your DFT calculation by writing the DFT potentials into a cube/xsf format as discussed
above.

Use the script plot_DV0p.py to plot this difference and find the value far from the defect site.

$python plot_DV0p.py

This term is small as well, about 0.01 eV. See Fig. 5.11.

The correction for the 6×14×6 super cell is then given by:

Elat
q + (−∆Vq−0/m)+ (−q∆V0/p) = 0.423 + 0.0 + 0.01 eV = 0.433 eV

Uncorrected formation energy: 8.94 eV
Corrected formation energy: 9.373 eV

6 ADDITIONAL REFERENCES

Here are some additions references relevant to computing electrostatic corrections in 2D and
1D systems:

2D systems:

1. http://link.aps.org/doi/10.1103/PhysRevLett.110.095505

2. http://link.aps.org/doi/10.1103/PhysRevB.89.205417

3. http://link.aps.org/doi/10.1103/PhysRevX.4.031044

25

1D systems:

1. http://link.aps.org/doi/10.1103/PhysRevB.90.085435

26

