
PHYSICAL REVIEW RESEARCH 2, 013335 (2020)

Phonons in twisted transition-metal dichalcogenide bilayers:
Ultrasoft phasons and a transition from a superlubric to a pinned phase
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The tunability of the interlayer coupling by twisting one layer with respect to another layer of two-dimensional
materials provides a unique way to manipulate the phonons and related properties. We refer to this engineering
of phononic properties as twistnonics. We study the effects of twisting on low-frequency shear modes (SMs) and
layer breathing modes in a transition-metal dichalcogenide (TMD) bilayer using atomistic classical simulations.
We show that these low-frequency modes are extremely sensitive to twisting and can be used to infer the twist
angle. We find ultrasoft phason modes (frequency �1 cm−1, comparable to acoustic modes) for any nonzero
twist, corresponding to an effective translation of the moiré lattice by relative displacement of the constituent
layers in a nontrivial way. Unlike the acoustic modes, the velocity of the phason modes are quite sensitive to the
twist angle. Also, high-frequency SMs appear for small twist angles, identical to those in stable bilayer TMD
(θ = 0◦ or 60◦), due to the overwhelming growth of stable stacking regions in relaxed twisted structures. Our
study reveals the possibility of an intriguing θ -dependent superlubric to pinning behavior and of the existence of
ultrasoft modes in all two-dimensional materials.
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I. INTRODUCTION

Twisting one layer of a bilayer system with respect to
another provides a unique degree of freedom for tuning the
properties of two-dimensional (2D) materials. For example,
in the case of bilayer graphene, twisting leads to (a) structural
changes, such as the observation of topological point defects,
domain walls, and layer buckling [1–8], (b) significant change
in electronic properties including superconductivity at magic
twist angles [9–23], and (c) superlubricity, a state of ultralow
friction [24–26]. An important facet of twisting is the evolu-
tion of low-frequency vibrational modes, which has largely
remained unexplored. Since the low-frequency modes are
solely determined by interlayer coupling and are accessible
in Raman measurements, they provide a direct nondestruc-
tive probe of the interlayer interaction [27–30]. The existing
theoretical reports on the evolution of vibrational modes in
twisted structures are restricted to large twist angles and use
the Lennard-Jones potential [31] to describe the interlayer
interaction, which is insufficient for capturing the stacking-
dependent energetics [32]. Although existing experimental
studies [29,30,33] have explored small twist angles, they can
only probe Raman active modes with frequencies greater than
10 cm−1.
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In this work we computationally investigate the effects
of twisting on low-frequency shear modes (SMs) and layer
breathing modes (LBMs) in bilayer MoS2, a prototypical
transition-metal dichalcogenide (TMD). Relative in-plane and
out-of-plane displacements of the constituent layers give rise
to SMs and LBMs, respectively. The coexistence of several
stackings in the moiré superlattice (MSL) that results from
the twist leads to inhomogeneous interlayer coupling. As a
consequence, the low-frequency modes mix and become quite
sensitive to twisting. Our calculations show the existence of
ultrasoft phason modes and large variation in LBM frequen-
cies and the appearance of multiple LBMs and high-frequency
SMs in twisted bilayer (TBL) MoS2. Moreover, we find that
the velocity of the phason modes is quite sensitive to the
twist angle. These observations are generic to TMDs and we
confirm our results for MoSe2 as well. The domain walls and
point defects present in twisted structures that are inevitable
consequences of structural relaxation are likely to influence
the electronic properties [34–37].

The paper is organized in the following manner. In Sec. II
we detail the methods used to perform molecular dynam-
ics simulations and computation of phonon frequencies. In
Sec. III A we show the effects of relaxation on the rigidly
twisted structures using an interlayer separation landscape.
In Sec. III B we discuss mode mixing due to the existence
of multiple coexistent stackings. In Sec. III C we show the
twist angle dependence of shear and layer breathing modes.
In Sec. III D we discuss the origin of phason modes in twisted
structures and its role in determining frictional properties of
the system. In Sec. IV we show the twist angle dependence
of phonon frequencies of twisted bilayer MoSe2 and discuss
experiments that can be used to test our predictions. We

2643-1564/2020/2(1)/013335(11) 013335-1 Published by the American Physical Society

https://orcid.org/0000-0001-9329-6434
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013335&domain=pdf&date_stamp=2020-03-18
https://doi.org/10.1103/PhysRevResearch.2.013335
https://creativecommons.org/licenses/by/4.0/


INDRAJIT MAITY et al. PHYSICAL REVIEW RESEARCH 2, 013335 (2020)

FIG. 1. Relaxed twisted bilayer of MoS2 and the coexistence of multiple high-symmetry stacking regions for (a) θ = 2.9◦ and (b) θ =
57.1◦. The high-symmetry stacking regions are marked with solid and dashed circles. Mo atoms of bottom (top) layer are depicted as large
(small) in size and with faded (dark) red color. Similarly, we use blue for S atoms.

also discuss the effects of manipulation of phonons on other
properties such as specific heat. In Sec. V we summarize our
results.

II. SIMULATION DETAILS

We use the TWISTER code [34] to create the MSL of
bilayer MoS2 with several commensurate twist angles 1◦ <

θ < 59◦. The rigidly twisted structures are relaxed using
LAMMPS [38–40] with the Stillinger-Weber and Kolmogorov-
Crespi potentials to capture the intralayer [41,42] and inter-
layer interactions of TBL MoS2 [32,43], respectively. The
Kolmogorov-Crespi parameters used in our calculations cor-
rectly reproduce the interlayer binding energy landscape,
obtained using density functional theory. The atomic relax-
ations produced using these parameters are in excellent agree-
ment with relaxations performed using density functional
theory. Moreover, the computed SM and LBM frequencies
of the most stable stacking of bilayer of TMDs are in good
agreement with experiments. The interlayer potential consists
of two types of interaction: (i) nearest-neighbor S-S inter-
action and (ii) next-nearest-neighbor Mo-S interaction. All
the parameters reported in Ref. [32] should produce similar
results. We use modified PHONOPY [44,45] code to com-
pute the zero-temperature vibrational spectra of the relaxed
TBL MoS2. While relaxing the rigidly twisted structures, the
force tolerance for any atom along any direction was set to
be 10−6 eV/Å.

Independently, we also compute the low-frequency modes
from the power spectra of mode-projected velocity auto-
correlation function (MVACF) from classical molecular dy-
namics simulations with periodic boundary conditions in the
canonical ensemble using the Nosé-Hoover thermostat in
LAMMPS. We equilibrate the system in the canonical ensemble
for ∼150–300 ps at T = 300 K. The supercell contains 32
MSLs in order to correctly capture all the anharmonic effects.

Typically, we collect velocities of all atoms in the production
run (480 ps, in NV E ensemble) every 20 time steps (one time
step equals 1 fs). For computational efficiency, the 480-ps
trajectory is divided into six parts, each containing 80 ps. The
power spectra of the MVACF projects the full phonon spectra
to a particular branch for any �q. The time-averaged MVACF
at momentum �q and polarization s is defined as [46]

〈V�q,s(0)V ∗
�q,s(t )〉 = lim

τ→∞
1

τ

∫ τ

0
V�q,s(t

′)V ∗
�q,s(t + t ′)dt ′, (1)

with

V�q,s(t ) =
Nt∑
j=1

�v j
�q (t ) · ê j

�q,s, (2)

where j denotes the atom type in the unit cell and ê�q,s denotes
the eigenvector. The mass-weighted momentum-projected ve-
locities are defined as

�v j
�q (t ) = √

mj

∑
k

e−i �q·�r jk (t )�vk, (3)

where �r jk are the atomic coordinates, k denotes atoms be-
longing to particle type j, and mj denotes atomic mass. To
compute the MVACF, we use the definition of an unbiased
estimator [47]. Finally, we use a fast Fourier transform to
compute the power spectra. Instead of computing the MVACF
for each eigenmode in the MSL, we use bilayer (BL) MoS2

SMs and LBM eigenvectors to compute the MVACF of the
superlattice.

III. RESULTS

A TBL MoS2 is composed of different high-symmetry
stacking regions, which are different as θ → 0◦ and θ → 60◦
due to sublattice symmetry breaking (Fig. 1). For θ → 0◦
there are two unique high-symmetry stacking regions AA
(Mo and S of the top layer are directly above Mo and S of
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the bottom layer, respectively) and AB (Bernal stacking with
Mo of the top layer directly above S of the bottom layer,
equivalent to BA, also referred to as 3R). For θ → 60◦ there
are three unique high-symmetry stacking regions AA′ (Mo
and S of the top layer are directly above S and Mo of the
bottom layer, or 2H), AB′ (Bernal stacking with Mo of the top
layer directly above Mo of the bottom layer), and A′B (Bernal
stacking with S of the top layer directly above S of the bottom
layer) [29]. Among these high-symmetry stackings AB (AA′)
is the most stable with SM frequency ∼21 cm−1, whereas AA
(A′B) is unstable with strong imaginary SM frequency. Due
to the difference in binding energies of different stackings
[consequently, stability and interlayer separation (ILS)], upon
relaxing the MSL the more stable stacking regions increase
in area. The signatures of the growth of the stable stacking
regions with θ are inherently embedded in the ILS landscape.

A. Relaxation: Interlayer separation landscape

For the calculation of vibrational properties, i.e., pertur-
bation with respect to the ground state, the relaxation of the
twisted structure is necessary to obtain a suitable ground
state. The incorporation of relaxation effects are essential to
compute any phonon frequencies. In order to illustrate this,
we have computed the phonon frequencies of the unrelaxed
twisted bilayer of MoS2 for θ = 1.9◦. We find large imaginary
frequencies at the � point in the phonon dispersion (23
unstable phonon modes with imaginary frequencies ranging in
magnitude from 10 cm−1 to 45 cm−1). Most of these phonon
modes also have imaginary frequencies along high-symmetry
directions of the Brillouin zone. These imaginary frequencies
denote structural instability of the rigidly twisted bilayer of
MoS2. Upon relaxation, the atoms within the twisted struc-
tures reorganizes themselves and stabilizes the structure. Such
atomic reconstruction removes the unstable phonon modes
in the phonon dispersion. Due to this, we always compute
phonon dispersion using relaxed structures.

The relaxation of the rigidly twisted structures involves
straining and buckling of each constituent layers. In order
to demonstrate the consequences of relaxation, in Fig. 2 we
show the θ dependence of the ILS landscape and ILSav. We
can identify the high-symmetry stacking regions in the ILS
landscape for θ → 0◦ [Fig. 2(a)]: alternate triangles with the
least ILS (AB and BA, deep blue) and red circles with the
maximum ILS (AA). The AB and BA regions grow equally for
θ → 0◦ since they are degenerate in energy. Six domain walls
(light blue lines) meet at the “centers,” where AA stacking
(topological point defect) regions are located, similar to what
happens in twisted bilayer graphene (TBLG) [1,2,5,6]. The
ILS landscape for θ → 60◦, on the other hand [Fig. 2(b)],
is very different due to sublattice symmetry breaking. The
AA′ regions (Reuleaux-triangle–like) grow overwhelmingly
due to their lower binding energy. Six curved domain walls
meet at the centers, where A′B (red circles, maximum ILS)
stacking regions are located. The generalized stacking fault
energy in conjunction with continuum theory is also shown
to predict similar in-plane features [48] for TBL MoS2. It is
interesting to note that both the length and the shape of domain
walls can be tuned with twists as θ → 60◦. Figures 2(c) and
2(d) capture θ dependence of ILSav, ILSmin, and ILSmax of

FIG. 2. Evolution of the ILS landscape and its average (in
angstroms) with twist angle in TBL MoS2. The in-plane (x and y)
distances are in nanometers.

the MSL. For large twists (13◦ < θ < 47◦), the absence of
any extended ideal high-symmetry stacking regions leads to
θ -independent behavior of ILSav, ILSmin, and ILSmax; ILSmin

and ILSmax saturate for θ < 3◦ and θ > 57◦, although ILSav

does not saturate in this limit due to the presence of AA or A′B
and domain walls.

B. Inhomogeneous interlayer coupling

As a whole, twisting affects the phonon band structure in
two ways. First, the shrinking of the Brillouin zone gives rise
to folded phonon modes. Second, as there are multiple stack-
ings in the MSL, the interlayer coupling is inhomogeneous,
which leads to mode mixing among in-plane and out-of-plane
modes. Relaxation of the rigidly twisted structures further
changes this mode mixing and stabilizes the structure (the
SM frequency of unrelaxed TBL MoS2 is strongly imaginary,
implying instability). In order to separate the effects due to
only zone folding and the mixing of modes due to the presence
of multiple stacking, we compute Ai j = |〈ψ i

BL|ψ j
NI〉|2 projec-

tions of bilayer eigenmodes |ψ i
BL〉 onto individual layer modes

|ψ j
NI〉 at � for both untwisted and twisted structures [Figs. 3(a)

and 3(b)]. The untwisted and twisted structures are of the same
dimensions. The projections would have been identical if the
zone-folding effects were the only factor determining phonons
in twisted structures. It is clear from the figure that inhomo-
geneity in the interlayer coupling in the twisted structure leads
to greater mode mixing. The comparison of mode mixing
between untwisted and twisted structures is essential as the
mixing strongly depends on the twist angle and produces
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FIG. 3. Inhomogeneity in the interlayer coupling in the MSL and the evolution of low-frequency modes. Here Ai j (see the text for definition)
is plotted for (a) untwisted and (b) twisted (θ = 57.1◦) bilayers of the same dimensions for modes with ω < 50 cm−1. (c) SM (green) [LBM
(black)] frequencies at T = 0 K marked as vertical lines with height proportional to pSM (pLBM). Also shown are the power spectra of MVACF
(with highest peak normalized to 1) at T = 300 K. (d) SM and (e) LBM frequencies at T = 0 K with the color bar indicating pSM and pLBM.

nontrivial effects as we illustrate below. This observation is
also crucial, as it invalidates the usage of a simple linear chain
model to compute SM and LBM frequencies.

C. Shear and layer breathing modes

Next we focus on the effects of twisting on the SM and
LBM frequencies with (at T = 300 K) and without thermal
fluctuations (T = 0 K). While computing the MVACF (for
T = 300 K) we use the SM and LBM eigenvectors of BL
MoS2. As discussed above, due to mode mixing, the eigen-
vectors of the twisted structures can be composed of several
normal modes of the MSL. Any nondegenerate eigenmode
involving relative displacements of the layers of the MSL
should appear as a distinct peak in the power spectra of the
MVACF. In order to compare with finite-T results we also
project the eigenmodes of the MSL onto the BL MoS2 SM and
LBM eigenvectors, p = |〈êMSL|êBL〉|2 at T = 0 K [Fig. 3(c)].
It should also be noted that multiple zone-folded modes from
SM and LBM branches of different �q points of the BL MoS2

unit-cell Brillouin zone will appear at the � point of the
MSL Brillouin zone. However, the projection of these folded
modes onto BL MoS2 SM and LBM eigenvectors at the �

point will be significantly smaller than that of the modes not
arising due to zone folding. This is due to orthogonality of
the eigenvectors at different �q points. Therefore, considering
the evolution of the eigenmodes with the largest projections
(in fact, we consider all modes with pSM, pLBM > 0.1 as SMs
and LBMs), we infer the twist-angle dependence of shear and
layer breathing modes. We can categorize the θ dependence of
the low-frequency SM and LBM into three regions. Since the
change of the low-frequency modes with twist angle is a result
of complicated evolution of the interlayer coupling and mode
mixing, we present both the frequencies and the eigenvectors
of the SM and LBMs. The twist-angle dependence of the
eigenvectors provides deeper insight into the evolution of the
low-frequency modes, as we illustrate below.

1. Region I: 7◦ � θ � 53◦

In this region we find an averaged LBM and exceedingly
small SM frequencies (0–2 cm−1, ultrasoft). The LBM fre-
quency decreases monotonically as θ → 7◦ or 53◦ from larger
twists (Fig. 4). Furthermore, the projections pLBM > 0.9 and
pSM > 0.9 indicate that the nature of vibrations of SM and
LBMs remains similar to that of BL MoS2. As a representative
of this region, we show the eigenvectors corresponding to the
SMs and LBMs in Figs. 5(c), 6(g), 6(h), 7(g), and 7(h) for
θ = 23.48◦. Clearly, the SM (LBM) eigenvectors correspond
to the relative horizontal (vertical) uniform displacement of
the constituent layers. This is due to the absence of any
extended high-symmetry stacking in the MSL, which leads to
nearly uniform interlayer coupling. However, as we approach
region II, the LBM starts mixing with in-plane modes giving
rise to the monotonic decrease in the LBM frequencies. The
change in LBM frequencies (by ∼1.5 cm−1) can be used to
reliably infer large θ . Moreover, the presence of the LBM
also indicates that the layers in the twisted structures are not
completely decoupled (in the out-of-plane direction).

FIG. 4. Monotonic decrement of LBM frequencies of region I as
θ → 0◦ in TBL MoS2 with the color bar indicating pLBM. Identical
results are obtained near 60◦ as well. The calculated LBM frequency
for BL MoS2 is 43.5 cm−1.
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FIG. 5. Exact normalized eigenvectors with the largest projection on the bilayer LBM (pLBM) for several values of θ . The eigenvectors for
the top Mo layer are for (a) θ = 1.9◦, (b) θ = 5◦, and (c) θ = 23.48◦. The corresponding bottom layers move exactly in the opposite direction.
The arrows indicate the direction and magnitude of the in-plane displacement (with the associated color bar). The out-of-plane displacement
is shown as a field (colored, with associated color bar). Only at large twist angles does the LBM resemble that of BL MoS2.

2. Region II: 3◦ � θ � 7◦ and 53◦ � θ � 57◦

We find that the LBM frequencies are quite sensitive to
the twist angle including the presence of multiple LBMs. The
eigenvectors corresponding to LBMs clearly indicate the mix-
ing with in-plane modes. As an example, we show the LBM
eigenvector with a maximum pLBM for θ = 5◦ [Fig. 5(b)]. The
in-plane modes corresponding to the LBM are of similar order
of magnitude. In this region all the high-symmetry stackings
and domain walls occupy a comparable area fraction of the
MSL. This enhances the mode mixing. The ultrasoft SMs are
also present in this region. However, the corresponding SM
eigenvectors are no longer completely uniform [Figs. 6(e),
6(f), 7(e), and 7(f)] and start mixing with out-of-plane modes.
In short, this region represents the transition from completely
mismatched stacking (region I) to highly ordered stable stack-
ing regions separated by domain walls (region III).

3. Region III: θ � 3◦ and θ � 57◦

As θ decreases further (θ → 0◦ or θ → 60◦) we find one
LBM (with a significantly large pLBM) with frequency similar
to that of stable BL MoS2. This is due to the overwhelming
growth of the stable stacking regions (Fig. 2) in this region.

The mixing of the LBM with in-plane modes exists, but the
area is smaller compared to region II (Fig. 5). In order to
establish this, we plot the LBM eigenvector with the largest
pLBM for θ = 1.9◦ [Fig. 5(a)]. It is evident from the figure that
the LBM primarily arises from the out-of-plane vibration of
the AB stacked region. On the other hand, the SM frequencies
split essentially into two branches: one ultrasoft in nature
(similar to regions I and II) and one with high frequency
(similar to BL MoS2, 22–28 cm−1). Moreover, as θ decreases
from 3◦ to 0◦ (57◦ to 60◦) the high-frequency SM redshifts
[Figs. 3(d) and 3(e)]. The splitting of the SM has important
consequences on the frictional properties, as we discuss later.
The ultrasoft SMs are localized on domain walls and AA
stacking [domain walls and A′B near 60◦, Figs. 6(a), 6(b), 7(a),
and 7(b)]. On the contrary, high-frequency SMs primarily
originate from the relative displacement of stable stacking
regions [Figs. 6(c), 6(d), 7(c), and 7(d)]. The splitting of SM
frequencies occurs due to significant growth of the stable
stacking region in the TBL MoS2. The high-frequency SMs
are quite similar in magnitude to AB (AA′). The apparent
stiffening of these modes as θ → 3◦ is because of mixing with
out-of-plane modes. For instance, the SM frequency of indi-
vidual AB stacking is ∼21 cm−1, whereas the high-frequency

FIG. 6. Visualization of the eigenvectors at the � point corresponding to the ultrasoft shear modes for (a) and (b) θ = 1.9◦, (e) and (f)
θ = 5◦, and (g) and (h) θ = 23.48◦, along with (c) and (d) the high-frequency SMs. The positions of the domain walls and point defects are the
same as shown in Fig. 1. The arrows (gray colorbar) denote in-plane displacements (only for Mo atoms of the top layer, for clarity), whereas
out-of-plane displacements are represented as a continuous field (colored). The in-plane displacements of the Mo atoms of the bottom layer
are exactly opposite to that of the top layer.
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FIG. 7. Visualization of the eigenvectors at the � point corresponding to the shear modes for (a) and (b) θ = 58.1◦, (e) and (f) θ = 55◦,
and (g) and (h) θ = 36.52◦, along with (c) and (d) the high-frequency SMs. The position of the domain walls and point defects are the same as
shown in Fig. 1. The eigenvectors are represented in similar manner as in Fig. 6.

SM of TBL MoS2 with θ = 3◦ is ∼28 cm−1. It should be
pointed out again that the evolution of SMs does not arise from
the folded modes of the unit-cell Brillouin zone as discussed
earlier. The twist angle dependence of these eigenvectors is
strongly dependent on the interlayer interaction strength. To
further illustrate this point, we compare the ultrasoft SM
eigenvectors for TBL MoS2 with θ = 23.03◦ (MSL lattice
constant ∼47.3 Å with 5418 atoms) and θ = 1.9◦ (MSL
lattice constant ∼47.7 Å with 5514 atoms). The ultrasoft SM
eigenvectors in these two systems are remarkably different,
although they are of similar dimensions. For θ = 23.03◦ the
eigenvectors represent uniform relative displacement of the
layers, whereas for θ = 1.9◦ the eigenvectors are localized.
This shows that the eigenvectors corresponding to the ultrasoft
SMs are controlled by the interlayer interaction strength and
cannot be explained by simple zone-folding argument. More-
over, the high-frequency SMs are present only for θ = 1.9◦
and absent for θ = 23.03◦, further confirming our conclusion.
The maximum variations in the SM and LBM frequencies
(∼8 and ∼10 cm−1) are comparable to those observed in
Raman studies (∼8 and 6.7 cm−1, respectively [29]). Such
large variations of low-frequency modes and the appearance
of multiple LBMs can be useful for characterization of bilayer
properties.

D. Ultrasoft shear modes: Phasons

The presence of the ultrasoft modes with the twist angle is
one of the major findings of our work. Thus, we investigate
three important aspects of this finding: the origin of these
modes, their twist-angle dependence, and consequences on
frictional properties.

The ultrasoft modes represent an effective translation of
the MSL by local relative displacements of the atoms in the
constituent layers (see the Supplemental Material [49]). Since
the frequencies associated with these modes are also very
small (almost acoustic-mode-like), this implies that under the
relative displacements of two layers (following the eigenvec-
tors shown in Figs. 6 and 7) the energy of the TBL MoS2

remains invariant (or almost invariant), which can be a con-
sequence of continuous symmetry breaking. For example, the
in-plane acoustic modes (LA and TA modes), which represent
the invariance of the total energy under global translation,
originate due to translational symmetry breaking. However,
strictly speaking, we show that the ultrasoft SMs found in our
calculation are optical modes and do not represent continuous
symmetry breaking. The optical nature is clearly reflected in
the dispersion relation (dω/dq ≈ 0 for small q very near the
� point), unlike the acoustic modes [Fig. 8, small negative
values at � (�−0.2 cm−1) are within numerical accuracies
of our calculation]. We highlight both the acoustic and ul-
trasoft modes in order to show this difference clearly. The
ultrasoft nature of these SMs can be understood from the
one-dimensional Frenkel-Kontorova model. In this model, a
linear chain of atoms is subjected to an external periodic

FIG. 8. Dispersion of the low-frequency modes for several values
of θ . The x axis represents momentum, in units of 4π√

3am
, with am the

moiré lattice constant. The LA, TA, and ZA (ultrasoft shear) modes
are highlighted with blue solid (red dashed) lines. The insets show a
close-up of dispersion for q < 0.005 with ω < 0.4 cm−1.
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FIG. 9. Twist-angle dependence of the velocity of the phonon
modes for both acoustic modes (LA and TA) and ultrasoft phason
modes computed from the linear region of phonon dispersion.

potential. Depending on the ratio of the periodicity of the
potential and linear chain, the structures can be commen-
surate or incommensurate. For simplicity, we assume the
incommensurate (commensurate) structure as a lattice with
infinite (finite and small) periodic length. Without considering
dissipative coupling, the incommensurate structure possesses
a gapless Goldstone mode (phason) with linear dispersion due
to invariance of the phases of two mass density waves under
uniform relative displacement. When a commensurate state is
approached, the phason becomes gapped [50] with dω/dq ≈
0. This is exactly what happens in the case of ultrasoft SMs
found in our calculations. The linear chain of atoms and the
external periodic potential in the Frenkel-Kontorova model
are replaced by the constituent MoS2 layers of TBL MoS2 and
stacking-dependent binding energy, respectively. Since we
only simulate commensurate angles, the phasons are always
gapped (although ultrasoft) optical modes with dω/dq ≈ 0.
Hence, in our calculation the phase invariance associated with
these modes is always approximate. In the case of incommen-
surate twist angles, however, the phase invariance becomes
exact and we expect corresponding gapless phason modes
with ω ∝ q.

The exact eigenvectors for the ultrasoft SMs cannot be
directly probed by experiments. Keeping in mind the possible
experimental signatures of the twist-angle dependence, we
compute the dω/dq (group velocity) of these ultrasoft modes.
We compare them with the velocities of the acoustic modes
(Fig. 9) away from the � point using the linear dispersion
of these modes. The velocity of the acoustic modes remains
invariant with respect to the change of the twist angle,
whereas the velocity of the ultrasoft phason modes changes
significantly (by a factor of 2–3 at θ = 1.9◦, 58.1◦). We also
find that the dispersion of the low-frequency phonon modes
are extremely sensitive to relaxation, particularly for small
twist angles. Physically, the in-plane acoustic modes represent
the long-wavelength vibrations of the entire twisted bilayer
MoS2, with all the atoms of two layers participating. At the
� point, these modes correspond to uniform translation of all
the atoms in the MSL. Therefore, the acoustic mode velocities
within the harmonic approximation can be written in terms
of the Lamé coefficients μ and λ in the following manner:
vLA = √

(λ + 2μ)/ρ and vTA = √
μ/ρ [50]. The presence of

the MSL only affects the motion involving relative displace-
ment of the constituent layers. Since the LA and TA modes
only correspond to in-phase motion of the layers, they re-
main unaffected irrespective of the twist angle. Moreover, the

rigidity (governed by λ and μ) of the lattice for the in-plane
acoustic modes are the same as that of single-layer MoS2. This
is evident from the twist-angle-independent behavior of the
velocities of the LA and TA modes (Fig. 9). On the other hand,
the ultrasoft phason modes are localized on domain walls and
AA stacking for θ → 0◦ (domain walls and A′B stacking).
They represent acoustic modes of the emergent soft moirè
scale lattice (containing only domain walls and AA near 0◦
and domain walls and A′B near 60◦). Strictly speaking, they
become acoustic modes only for incommensurate structures,
as pointed out earlier. The soft nature of the lattice is no-
ticeable from the change of velocity of these modes (Fig. 9).
Similar to the LA and TA modes, the velocities of the phason
modes are functions of λE and μE , where λE and μE represent
effective Lamé coefficients of the moirè scale lattice. The
decrease in ultrasoft mode velocity implies a reduction in
strength of the effective Lamé coefficients. This is because
ultrasoft modes originate from the out-of-phase motion of the
two layers. Thus, the strength of the interlayer coupling gives
rise to effective Lamé coefficients. We leave details of the
consequences of this emergent soft lattice and investigation
of their rigidity for future work.

Before discussing the consequence of the twist-angle de-
pendence of the ultrasoft SM frequencies on frictional prop-
erties, we briefly summarize previous experimental studies of
this aspect. The introduction of a twist between two layers
of two-dimensional materials has been shown to modify the
frictional properties dramatically [24–26,51–57]. Depending
on the twist angle, the frictional force can be exceedingly
small (structural superlubricity) or moderately large. For in-
stance, the frictional force can drop by two to three orders
of magnitude if the twist angle is greater than 5◦ or less
than 55◦ in the case of graphene on graphite, twisted bilayer
MoS2 [24,51,53,58]. Also, for 5◦ � θ � 55◦, the frictional
properties remain almost constant. In all these examples, max-
imum friction is obtained when the two layers are untwisted.
Although microscopic details of the interlayer sliding process
giving rise to superlubric behavior can be quite involved, the
primary reason behind superlubricity is often attributed to
incommensurability between two surfaces. Here we identify
that the change of frictional properties with θ is intimately
related to the existence and evolution of the ultrasoft modes.
For θ = 0◦ or 60◦, the BL MoS2 is unit-cell commensurate.
When trying to shear one layer with respect to another in
BL MoS2, all unit cells have to cross the interlayer-sliding
barrier simultaneously. This leads to large SM frequencies
(∼21 cm−1) and high friction. This can also be understood
from the aforementioned one-dimensional Frenkel-Kontorova
model. In the unit-cell commensurate case [Fig. 10(a)], while
shearing the atoms globally with respect to the external pe-
riodic potential, every atom rises toward the hill. Thus, the
cost of shearing is large. However, if the system is large-
scale periodic [Fig. 10(b)], then every atom has to cross a
variable sliding barrier. This reduces the shearing energy, due
to cancellation of cost while ascending the hill and gain while
descending it. Similarly, TBL MoS2 for large twist angles
(θ � 5◦,� 55◦) is periodic at larger scale where shearing
unit cells have to cross a variable interlayer-sliding barrier
(due to the coexistence of multiple stackings with differ-
ent binding energies). In effect, this drastically reduces SM
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FIG. 10. One-dimensional Frenkel-Kontorova model with (a) unit-cell commensuration, (b) large-scale commensuration, and (c) mostly
unit-cell commensurate with discommensuration in between. The discommensuration is marked with a red line. Also shown is the development
of a barrier against shearing as (d) θ → 0◦ and (e) θ → 60◦. After relaxation of the twisted structures we slide the top MoS2 layer along the x
axis and calculate the total energy without further relaxation.

frequencies and hence friction as well (superlubric). This can
be easily confirmed from the existence of the ultrasoft phason
modes and the absence of high-frequency SMs. However,
as θ decreases further, not only do the high-frequency SMs
similar to the untwisted bilayer appear, but also the ultrasoft
modes start to localize on the domain walls (splitting of
SMs). This immediately implies that to globally shear one
layer with respect to the other, a large barrier has to be
overcome. Because only a small fraction of atoms participate
in the ultrasoft modes in this case, unlike large twist angle, a
significant fraction of atoms participate in the high-frequency
SM, implying pinning. The origin of the pinning lies in the
significant growth of stable stacking when θ → 0◦ or 60◦
(Fig. 2), leading to the development of a large interlayer slid-
ing barrier against shearing [Figs. 10(d) and 10(e)]. Similarly,
if the potential is strong enough in the Frenkel-Kontorova
model, most atoms sit at the minima. Only a small number
of atoms occupy the energetically unfavorable hills, known as
discommensuration [Fig. 10(c)]. This leads to pinned phasons
in the Frenkel-Kontorova incommensurate structures. The na-
ture of vibrations of ultrasoft phason modes in our calculations
(uniform at large θ due to complete stacking mismatch and
nonuniform at small θ due to overwhelming growth of stable
stacking) indicates the possibility of having pinned phasons
(Aubry-like transition) in the small twist incommensurate
structures [50,59–61]. Interestingly, similar pinning behavior
has also been realized in systems such as colloidal monolayers
in optical lattices [62,63] and physisorbed submonolayers on
crystal surfaces [64].

IV. DISCUSSION

A. Other 2D materials

Twisting one layer with respect to another in bilayers of 2D
materials leads to the presence of multiple types of stacking
in the MSL with different binding energies and stability, irre-
spective of the material’s electronic properties. The intralayer
interaction in 2D materials is far stronger than the interlayer
coupling. The combination of strong in-plane stiffness and
weak variable interlayer coupling of twisted structures should
produce similar behavior of low-frequency vibrational modes
in any 2D material. Thus, the existence of ultrasoft pha-
son modes, the twist-angle dependence of the corresponding
eigenvectors and velocity, is expected to be generic to any
2D materials. The twist-angle dependence of the interlayer

coupling is also revealed in the relaxed twisted structures. In
order to illustrate, we compute the low-frequency vibrational
modes for twisted bilayer MoSe2 using the MVACF at T =
300 K (Fig. 11). The trends are quite similar to the case of
TBL MoS2, justifying our conclusion.

B. Raman spectroscopy

We have demonstrated the evolution of shear and layer
breathing mode frequencies in twisted TMD bilayers. Irre-
spective of their Raman sensitivity, these modes are present
in the twisted bilayer structures. For BL MoS2 (untwisted,
most stable stacking), both the SM and LBM are found
to be Raman active [28]. The observation of these modes
using Raman spectroscopy depends on the Raman scattering
intensity [28]. Since both the SM and LBM in the case of BL
MoS2 are Raman active, we expect in the twisted structures
that the SM and LBM with the largest pSM and pLBM will
also be Raman active. However, this is speculative and ex-
plicit calculations of Raman intensity in twisted structures are
unfeasible at present. Hence, we compare our results directly
to Raman measurements in the case of TBL MoSe2 to show
the usefulness of our calculations in Fig. 12. The trends of the
twist-angle dependence of low-frequency vibrational modes

FIG. 11. Evolution of low-frequency vibrational modes with
twist angles for a twisted bilayer of MoSe2. The evolution of low-
frequency modes as θ → 0◦ is similar to that as θ → 60◦ and hence
is not shown here.
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FIG. 12. Comparison of the calculated twist-angle dependence
of low-frequency vibrational modes and Raman measurements [30]
in TBL MoSe2. The experimental SMs (LBMs) are denoted by green
stars (circles), whereas the computed SMs (LBMs) are denoted by
variable red stars (circles). The color bar indicates pSM and pLBM.

in TBL MoSe2 are in excellent agreement with experiment
[30]. Similar to TBL MoS2, we categorize the θ dependence
of SM and LBM frequencies. In region III, the high-frequency
SM appears and LBM frequencies are similar to that of BL
MoSe2, as predicted by our calculations. Multiple LBMs and
significant variation in LBM frequencies are also present in re-
gion II. In both regions I and II the SM frequencies are absent
(because they are ultrasoft in nature) in Raman spectroscopy.
However, two prominent features seem to be missing in the
Raman experiment [30]: (i) monotonic decrement of LBM
frequencies in region I (as in Fig. 4) and (ii) slight stiffening of
the SM frequencies compared to BL MoSe2 (region III). This
might be due to the fact that the experiment is carried out with
chemical vapor deposition grown samples, which is known to
exhibit less mobility and more disorder. We expect samples of
better quality, such as mechanically exfoliated structures that
can show these missing features.

C. Brillouin-Mandelstam spectroscopy

Due to ultrasoft nature (�1 cm−1) of the phason modes,
Raman spectroscopy cannot be used to probe them. Brillouin-
Mandelstam spectroscopy (BMS), which can probe small
frequencies (typically 0.1–6 cm−1), is often used in mineral
physics and material science to probe acoustic modes [65].
The phonon dispersion can also be mapped out by chang-
ing the incident light angle in BMS [66]. Therefore, the
sound speed along with elastic rigidity can be experimentally
obtained. Using BMS, our predictions of the existence of
the ultrasoft modes can be verified. Also, by measuring the
twist-angle dependence of the dispersion of the acoustic and
ultrasoft modes, our results on the velocity dependence of
ultrasoft modes can be tested. However, it is more likely to
find incommensurate twisted structures in experiments and
thus the phason modes may become completely gapless. Still,
we expect the phason velocity to be twist-angle dependent as
predicted here.

D. More twistnonics

We have demonstrated the manipulation of low-frequency
vibrational modes with twist and related effects in frictional

FIG. 13. Twist-angle dependence difference in specific heat
(in units of J/mol/K) of TBL MoS2 with respect to BL MoS2

(untwisted).

properties in transition-metal dichalcogenide bilayers. Since
the phonon plays an important role in determining many other
material properties, the ability to control the phonon disper-
sion will facilitate engineering of those properties [67]. Here
we outline a few of them. (i) The existence of ultrasoft modes
can strongly modify the low-temperature specific heat [68,69],
one of the key variables that dictates thermodynamic proper-
ties of a material. In order to illustrate this, we calculate the
difference in specific heat of twisted structures with respect
to BL MoS2 (Fig. 13). Clearly, there are significant changes
in δCv for T < 200 K. The corresponding single-layer MoS2

value is also shown. (ii) Acoustic phonons are known to be the
dominant heat carriers in insulating materials. The presence of
ultrasoft phason modes can significantly modify the thermal
conductivity of the twisted structures. Furthermore, as the
group velocities of the ultrasoft phason modes can be tuned
with twist angles, the thermal conductivity can also be en-
gineered. (iii) The electron-phonon coupling for the ultrasoft
modes can play an important role in determining electrical re-
sistivity. For example, in the case of twisted bilayer graphene,
electron-acoustic phonon coupling has been identified as the
dominant source of its high-T resistivity behavior [70]. The
authors assumed the relative displacement of the two layers
in twisted bilayer graphene as the additional acoustic modes
of the system with identical acoustic mode (LA and TA)
dispersion. Although, this model captures the features of the
resistivity qualitatively, the D/vph (D is deformation potential
for the electron-acoustic phonon coupling, vph is the phonon
velocity) appearing in theoretical calculations seems to be
off by a factor of 2–3 compared to experiment [70,71]. The
assumption of the shear modes as the acoustic modes is
reasonable in the twisted structures, as they are ultrasoft
in nature. However, the assumption that the dispersions of
the ultrasoft modes and acoustic modes are identical is not
accurate. Our calculations for the TBL MoS2 clearly show the
twist-angle dependence of the velocity of the phason modes
compared to that of the acoustic modes (differing by a factor
of 2–3). This might provide an explanation for the missing
factor in the case of TBLG.

Since the SM and LBM are interlayer coupling dependent,
by modifying the interlayer interaction strength (with external

013335-9



INDRAJIT MAITY et al. PHYSICAL REVIEW RESEARCH 2, 013335 (2020)

pressure, for example) the phonon spectra can be further
engineered. Another important degree of freedom to tune
phononic properties is the choice of materials, for instance,
van der Waals heterostructures (stacking of two dissimilar 2D
materials).

V. CONCLUSION

Here we have shown that the low-frequency modes are
extremely sensitive to twisting in the twisted TMD bilayer and
can be used as a probe to determine the twist angle. We have
also made predictions about the presence of ultrasoft phason
modes and the twist-angle dependence of their eigenvectors
and velocities. Our results indicate a twist-angle-dependent

transition from a superlubric to a pinned state. Our study
provides a step towards twistnonics in 2D materials.

Note added. Recently, we become aware of two recent stud-
ies, carried out within an elastic continuum approximation,
reporting the existence of similar ultrasoft phonon modes in
TBLG [72,73].
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