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A conceptual difficulty in formulating the density-functional theory of the fractional quantum Hall effect
is that while in the standard approach the Kohn-Sham orbitals are either fully occupied or unoccupied,
the physics of the fractional quantum Hall effect calls for fractionally occupied Kohn-Sham orbitals. This
has necessitated averaging over an ensemble of Slater determinants to obtain meaningful results. We
develop an alternative approach in which we express and minimize the grand canonical potential in terms of
the composite fermion variables. This provides a natural resolution of the fractional-occupation problem
because the fully occupied orbitals of composite fermions automatically correspond to fractionally
occupied orbitals of electrons. We demonstrate the quantitative validity of our approach by evaluating the
density profile of fractional Hall edge as a function of temperature and the distance from the delta dopant
layer and showing that it reproduces edge reconstruction in the expected parameter region.
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The density-functional theory (DFT) is a powerful tool for
treating many particle ground states. A quantitatively reliable
DFT of the fractional quantum Hall (FQH) effect would
obviously be extremely useful for elucidating the fundamental
physics of FQH systems with spatially varying density,
whether induced by an external potential or generated sponta-
neously, which are not readily amenable to many of the
theoretical methods used in the field. However, the problem is
nontrivial [1,2] because the solution is not close to a single
Slater determinant in which some of the Kohn-Sham orbitals
are fully occupied and the others empty, but instead entails
fractional occupation of Kohn-Sham orbitals, as demanded
by the physics of the FQH effect (FQHE). Theoretically,
fractionally occupied orbitals arise because all single particle
orbitals of electrons are degenerate in the absence of inter-
action, and interaction produces a strongly correlated state in a
nonperturbative fashion. A possible way to obtain on-average
fractionally filled Kohn-Sham orbitals is through ensemble
averaging. In the first application of DFT to the FQHE,
Ferconi, Geller, and Vignale [1] averaged over a thermal
ensemble to achieve fractional fillings andobtained the density
profile at the edge in the presence of a confinement potential.
In another approach, Heinonen, Lubin, and Johnson [2]
performed an average over the ensemble of Slater determi-
nants obtained in successive steps of the iterative scheme for
solving the Kohn-Sham equations, and also generalized their
approach to include the spin degree of freedom [3,4].
We present in this work a formulation of the DFT of

FQHE in terms of composite fermions rather than electrons.
This provides a natural solution to the fractional-occupation
problem, because fully occupied orbitals of composite
fermions, as obtained in the DFT formulation, automatically
correspond to fractionally filled Kohn-Sham orbitals of
electrons. We minimize, in a local density approximation,

the thermodynamic potential expressed as a functional of the
CF density in various CF Landau levels, using an exchange
correlation functional for composite fermions deduced from
microscopic calculations and an entropy functional that
properly incorporates the physics of strong correlations.
To test the quantitative validity of our approach, we deter-
mine the density profile of the FQHE edge and find, in
agreement with previous exact diagonalization studies, that
the edge undergoes a reconstruction when the delta-dopant
layer containing the positive neutralizing charge is farther
than a critical distance. We further find that, for general
fractions, edge reconstruction extends much deeper into
the interior of the sample than previously suspected, and
determine the temperatureswhere it iswashed out by thermal
fluctuations. As another application, we calculate how the
periodic potential produced by a Wigner crystal (WC) in a
nearby layer affects the density of composite fermions
at ν ≈ 1=2.
The objective is to minimize the grand potential

Ω½ρ� ¼ Exc½ρ� þ EH½ρ� þ
Z

d2rρðrÞ½VðrÞ − μ� − kBTS

ð1Þ
expressed in terms of the electron density ρðrÞ, which is
related to the local electron filling factor νðrÞ as
ρðrÞ ¼ νðrÞ=2πl2, where l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

is the magnetic
length. Here Exc and EH are the exchange-correlation
and Hartree energies, VðrÞ is the potential energy due to
interaction with an external charge distribution, μ is the
chemical potential, T is the temperature, and S is the
entropy. To express Ω½ρ� in terms of composite fermions,
let us recall some relevant facts about composite fermions
[5,6]. The density of composite fermions is the same as that
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of electrons, but composite fermions experience an effec-
tive magnetic field B� ¼ B − 2ρϕ0 (ϕ0 ¼ hc=e), form
Landau-like levels [called Λ levels (ΛLs)], and their filling
factor ν� is related to the electron filling factor by the
equation ν ¼ ν�=ð2ν� � 1Þ. (We specialize, for simplicity,
to composite fermions carrying two flux quanta.) Because
we will deal with nonuniform densities, we define
ν�ðrÞ ¼ P

jν
�
jðrÞ, where ν�jðrÞ is the local filling factor

of the jthΛL. The effective CF cyclotron energy is given by
the relation ℏω�

c ¼ ℏðeB�=m�cÞ ¼ ℏ½eB=ð2ν� � 1Þm�c�≡
½α=ð2ν� � 1Þ�ðe2=ϵlÞ, where the last equality is motivated
from dimensional arguments [6,7], and has also been tested
in calculations that identify the CF cyclotron energy to the
energy required to excite a far separated CF particle-hole
pair [8]. Explicit calculation yields α ¼ 0.33 for a system
with zero thickness [6,7], which is what we shall assume
below.
We first determine the exchange correlation function by

making the local density approximation, which is valid
when the variation in the density is sufficiently slow that we
can consider it to be locally constant. In other words, we
assume that the variations in density are negligible on the
scale of the CF magnetic length l� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=ejB�jp
. We write

Exc ¼
Z

d2rρðrÞExc½ρðrÞ�; ð2Þ

where Exc½ρðrÞ� is the exchange-correlation energy per
particle for a system with uniform density. For a uniform
system, Exc is precisely the energy that is usually obtained
in numerical calculations (because the total energy includes
electron-background and background-background terms
that cancel the Hartree part of the interaction energy of
electrons). It is possible to obtain, in the CF theory, the
thermodynamic limits for the energies at the discrete value
of fillings ν ¼ n=ð2n� 1Þ, where the electronic ground
states are accurately represented as ν� ¼ n filled ΛLs
of composite fermions [9,10]. From explicit calculation
with the microscopic theory of composite fermions, the
exchange-correlation energy per electron at ν¼ n=ð2n�1Þ
is given very accurately by [11]

Exc

�
ν ¼ n

2n� 1

�
¼ a

n
2n� 1

þ b; ð3Þ

with a ¼ −0.324 and b ¼ −0.303. (We express all energies
and also kBT in units of e2=ϵl, which is ∼150 K at B ¼ 9 T
for parameters appropriate for GaAs.) The energy as a
function of continuous ν has downward cusps at
ν ¼ n=ð2n� 1Þ. Rather than attempting a microscopic
calculation for the full curve of energy vs filling factor,
which can be performed assuming that the composite
fermions in the partially filled ΛL form a crystal [12],
we will make a model that is more natural from the DFT
point of view and sufficient for current purposes. We will
interpret the exchange-correlation energy of electrons as a
sum of exchange-correlation and kinetic energies for
composite fermions:

Exc½ν� ¼ E�
xc½ν� þ E�

K½ν�; ð4Þ
where we follow the usual convention that all quantities
marked by an asterisk * refer to composite fermions. We
shall further assume that composite fermions themselves
are weakly correlated; i.e., E�

xc is smooth and all cusps
arise from E�

K . In terms of the CF cyclotron energy ℏω�
c,

E�
K at the special fillings ν ¼ n=ð2n� 1Þ is given by

E�
K½ν¼n=ð2n�1Þ�¼ðn=2Þℏω�

c¼ðα=2Þ½n=ð2n�1Þ�. This
leads us to the final form of Exc for arbitrary ν that we use in
our calculations below:

Exc½ν� ¼ aνþ b −
α

2
νþ E�

K½ν�: ð5Þ
At T ¼ 0, the average kinetic energy per CF for a general
filling ν ¼ ν�=ð2ν� � 1Þ with n ¼ intðν�Þ is given by

E�
K½ν� ¼

�
2nþ 1 −

nðnþ 1Þ
ν�

�
j1 − 2νj α

2
; ð6Þ

where ν� ¼ jν=ð1 − 2νÞj. At finite T, the CF kinetic
energy per particle can be evaluated numerically as E�

K ¼
ð1=ν�ÞPjðjþ 1=2Þℏω�

cν
�
j with ν� ¼ P

jν
�
j and ν�j ¼

ðe½ðjþ1=2Þℏω�
c−μ�=kBT þ 1Þ−1. The resulting Exc is plotted in

Fig. 1 along with Vxc ¼ δExc=δνðrÞ ¼ Exc þ ν∂Exc=∂ν.
In the limit of T ¼ 0, Exc has cusps and Vxc discontinuities
at ν ¼ n=ð2n� 1Þ. We note that, for simplicity, we have
not incorporated into our model the physics of the ν ¼ n=
ð4n� 1Þ incompressible states at ν < 1=3 described in
terms of composite fermions carrying four flux quanta.
To obtain an expression for the entropy, we need the

knowledge of the excitation spectrum of the strongly
correlated FQH state. As detailed calculations have shown
[13], the counting of excited states is consistent with the
model of weakly interacting composite fermions for tem-
peratures small compared to the CF Fermi energy
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FIG. 1. Exchange-correlation energy ExcðνÞ [Eq. (5)] and
potential VxcðνÞ ¼ Exc þ ν∂Exc=∂ν as a function of the filling
factor ν for several temperatures.
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E�
F ∼ 0.1e2=ϵl. We note that the degeneracy of the CF ΛLs

is determined by the effective magnetic field, which in turn
depends on density and thus position. As a result, a sum
over all single CF energy levels is written as

X
i;γ

¼
X
i

Z
d2r

2πðl�Þ2 ¼
X
i

1

2πl2

Z
d2rj1 − 2νðrÞj; ð7Þ

where i is the ΛL index and γ labels single CF states within
a ΛL. The entropy of composite fermions is thus given by

S½fν�i g� ¼ −
1

2πl2

Z
d2rj1 − 2νðrÞj

×
X
i

fν�i ðrÞ ln½ν�i ðrÞ� þ ½1 − ν�i ðrÞ�

× ln½1 − ν�i ðrÞ�g: ð8Þ
For FQH states corresponding to filled ΛLs (νi ¼ 1 or 0)
the entropy vanishes as it should.
In terms of ν�jðrÞ, the thermodynamic potential is

rewritten as (with E representing the total energies and
E representing the energies per particle)

Ω½ν�jðrÞ� ¼ E�
K þ EH þ E�

xc þ
Z

d2r
2πl2

νðrÞVðrÞ

− μ

�Z
d2r
2πl2

νðrÞ − N

�
− kBTS½fν�jðrÞg�; ð9Þ

where under local density approximation, we have

E�
K½fν�jg� ¼

α

2πl2

Z
d2rj1 − 2νðrÞj2

X
j

ν�jðrÞ
�
jþ 1

2

�
;

ð10Þ

E�
xc½νðrÞ� ¼

1

2πl2

Z
d2r

��
a −

α

2

�
νðrÞ þ b

�
νðrÞ; ð11Þ

and the entropy is given in Eq. (8). Equation (10) reduces
to Eq. (6) in the limit of zero temperature, when all ΛLs
other than the topmost one are fully occupied, but we allow
occupation of higher ΛLs, as appropriate at finite temper-
atures. The term μN, whereN is the number of electrons, has
no effect on the self-consistency equations. The electron
density (or filling factor) is given by

ρðrÞ ¼ νðrÞ
2πl2

¼ 1

2πl2

P
jν

�
jðrÞ

2
P

jν
�
jðrÞ � 1

: ð12Þ

Using δνðrÞ=δν�i ðr0Þ ¼ ½1 − 2νðrÞ�j1 − 2νðrÞjδðr − r0Þ
we minimize Eq. (9) with respect to ν�jðrÞ. This results
in the condition

ν�jðrÞ ¼
1

exp½ϵ�jðrÞ=kBT� þ 1
; ð13Þ

where ϵ�jðrÞ, the local self-consistent energy of the jth ΛL,
is given by

ϵ�j ¼ j1 − 2νðrÞjðε�1j þ 2kBTs�Þ þ ½1 − 2νðrÞ�ðε�2 − μÞ;
ð14Þ

ε�1j ¼
�
jþ 1

2

�
α − 4αj1 − 2νðrÞj

X
i

�
iþ 1

2

�
ν�i ðrÞ; ð15Þ

ε�2 ¼
1

2πl2

Z
νðr0Þ
jr − r0j d

2r0 þ VðrÞ þ 2

�
a −

α

2

�
νðrÞ þ b;

ð16Þ
s� ¼ −

X
i

fν�i ðrÞ ln½ν�i ðrÞ� þ ½1 − ν�i ðrÞ� ln½1 − ν�i ðrÞ�g:

ð17Þ
The solution ν�jðrÞ is obtained by demanding self-
consistency of Eq. (13). From the knowledge of ν�jðrÞ,
the electron density and the free energy Ω can be readily
evaluated. The self-consistent ΛL energies ϵ�jðrÞ are very
complicated functions of various parameters, and display a
nontrivial dependence on the position.
To obtain the self-consistent solution we begin with an

initial choice for ν�jðrÞ that tracks the neutralizing charge
and calculate the new values according to Eq. (13) fixing
the chemical potential to ensure the correct total charge.
A new choice is then obtained by mixing the input and
output values, and the procedure is iterated until self-
consistency is achieved. See Supplemental Material [14]
for further details. To ensure smoothness on the scale of l�,
which is expected on physical grounds and also assumed in
local density approximation, we average the local filling
factor ν�jðrÞ over a length lave at each step of our self-
consistency loop. In our calculations shown below, we use
lave ¼ l� (which depends on the local filling factor). As
mentioned above, in the limit T → 0 the local CF filling
factor ν�jðrÞ approaches either 0 or 1 in each ΛL, depending
on whether the self-consistent ΛL energy ϵ�jðrÞ is positive
or negative. This produces a fractional value for the local
νðrÞ, as appropriate for the physics of the problem.
As a first application of the above formalism, we

consider the behavior at the edge of a FQH state.
Following the typical experimental geometry, we shall
model the positively charged background as a uniformly
charged δ-doped disk at a setback distance d from the plane
containing the electrons. This corresponds to

VðrÞ ¼ −e2
Z

d2r0
ρbðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jr − r0j2 þ d2
p : ð18Þ

Exact diagonalization studies on small systems [15–18] at
ν ¼ 1=3 have found that an edge excitation mode becomes
soft when d becomes larger than a critical value∼1.5l (recall
l ≈ 8 nm for B ¼ 9 T), which is interpreted in terms of an
edge reconstruction [19]. The systemswere too small to shed
light on the nature of the reconstructed edge, or to study this
physics at more general fillings of the type ν ¼ n=ð2n� 1Þ,
which are expected to have much more complex edges.
As seen in the Supplemental Material [14], our DFT method
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shows that for the 1=3 state edge reconstruction occurs at
d ¼ 1.5 at small T, which is a strong confirmation of the
quantitative validity of our approach.We illustrate the power
of our approach by taking the example of the edge of 3=7
FQH state. Figure 2(a) displays the evolution of the edge at a
low temperature as a function of d. Edge reconstruction is
seen at d ∼ 1.7l. Incompressible stripes of ν ¼ 2=5 and
ν ¼ 1=3 are seen to emerge except for very small d, with a
stripe pattern alternating between 3=7 and 2=5 extending
deep into the interior at large d at low T. We note that the
alternating stripe pattern is qualitatively distinct from that
seen in the integer quantum Hall effect [20]. The reason is
because the densities for nearby FQH states are very close,
and thus the stripe formation does not entail a high Hartree
cost. Figures 2(b) and 2(c) and S2 [14] display the evolution
of the 3=7 edge as a function of T. Edge reconstruction is
absent at small d, while for d ¼ 2.2, it is washed out by
kBT ¼ 0.017, which is much smaller than the CF Fermi
energy E�

F ∼ 0.1. Figure S3 [14] depicts the spatial depend-
ence of ϵ�jðrÞ for several choices of parameters. We note that
significant experimental progress has been made toward
imaging the quantumHall edges to explore compressible and
incompressible stripes as well as edge reconstruction (see
Refs. [21–24] and references therein).
As a second application of our DFT method, we consider

the geometry investigated in the recent experiment of Deng
et al. [25], where they study commensurability oscillations
of composite fermions near filling factor ν ¼ 1=2 in the
presence of a periodic potential produced by a Wigner
crystal in a nearby layer at a distance d. Analogous
commensurability oscillations have been observed in an
antidot superlattice [26] and also in the presence of a
one-dimensional periodic potential [27–31]. We ask here
how the presence of a nearby WC affects the density of
composite fermions in the vicinity of ν ¼ 1=2, where
composite fermions form a compressible CF Fermi sea
[7]. The above method is not convenient in this regime, as

we have a very large number of occupied ΛLs. We there-
fore work directly with Eq. (1), setting T ¼ 0. We further
neglect the physics of incompressibility, which should
be valid for ν ≈ 1=2, and approximate the exchange-
correlation energy as Exc ¼ aνþ b [from Eq. (3)].
Minimization with respect to the electron density gives

2aνðrÞ þ bþ 1

2π

Z
d2r0

νðr0Þ
jr − r0j þ VðrÞ ¼ μ; ð19Þ

where we measure energies in units of e2=ϵl and length in
units of l. The potential due to the WC is modeled through
Eq. (18) with ρb ¼ −

P
Rð2πÞ−1e−jr−Rj2=2, corresponding

to a Gaussian electron at each site R of a triangular lattice
with lattice constant c. Fourier transformation gives the
deviation of filling factor from its uniform value as

ΔνðrÞ ¼ −
4πffiffiffi
3

p
c2

X
K≠0

e−jKjd−
jKj2
2
þiK·r

1þ 2ajKj ; ð20Þ

where the reciprocal lattice vectors are given byK ¼ s1K1 þ
s2K2 with K1 ¼ ð2π=c;−2π= ffiffiffi

3
p

cÞ, K2 ¼ ð0; 4π= ffiffiffi
3

p
cÞ,

and s1, s2 are integers. ΔνðrÞ is independent of the unper-
turbed filling factor (provided we are in the compressible
region near ν ¼ 1=2). The parameters b, μ, and the potential
due to the uniform neutralizing background only couple to
K ¼ 0 and thus play no role inΔνðrÞ. Figures 3 andS4 (in the
Supplemental Material [14]) show ΔνðrÞ for several values
of d and c. An injected composite fermion sees the sum of
the external and the Hartree potentials VHðrÞ þ VðrÞ ¼
μ − 2aνðrÞ − b, and is thus attracted to high density regions.
Complex patterns can appear, often dominated by values of
jKj ≈ −1=2a ≈ 3=2, where the denominator becomes small,
as seen in the left two panels of Fig. 3. In such situations, the
potential experienced by an injected composite fermion is
complicated and may not produce clearly identifiable geo-
metric resonances. However, for large d and large c these
additional patterns are suppressed by the numerator and
the density ΔνðrÞ closely reflects a hexagonal lattice as
seen in the right panel of Fig. 3, thus allowing standard
commensurability oscillations. This is consistent with the
experiments of Deng et al. [25], where they observe
commensurability oscillations for relatively large values of
d and c (d ≈ 6.5 and 20 < c < 60).

(a) (b) (c)

FIG. 2. (a) Evolution of the 3=7 edge as a function of the setback
distance d for a small temperature kBT ¼ 0.003. The νðrÞ for
successive d are vertically displaced for clarity. Edge reconstruction
is seen to occur at d ≈ 1.7. (b),(c) Evolution of the 3=7 edge as a
function of temperature for two values of d. For d ¼ 2.2 the edge
structure melts at kBT ≈ 0.017. kBT is quoted in units of e2=ϵl.

FIG. 3. Change in the density of the CF Fermi sea due to the
presence of a WC of lattice constant c in a nearby layer at a
distance d. The three panels, from left to right, have
ðd; cÞ ¼ ð3; 15Þ, (3, 20), (6, 30). The color represents ΔνðrÞ
according to scale shown on top. All lengths are in units of l.
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Wehave assumed in our calculations a fully spin polarized
system, as appropriate for sufficiently high magnetic fields.
It would be interesting to extend our approach to include
spin and explore the possibility of spin textures at the edge
[3,4,32,33]. Zhang,Hu, andYanghave investigated precisely
the model studied above by careful exact diagonalization
studies [33] and concluded that edge reconstruction of the
1=3 state does not involve spin reversal unless the magnetic
field is very small (< 1.0 T for GaAs). This is not surprising
because, as stressed by Karlhede et al. [32], the energetics
of spin textures at the edge is closely related to that of
Skyrmions [34], and calculations have shown that Skyrmions
at 1=3 become viable only at very low Zeeman energies [35].
We note that the Chern-Simons mean field theory of
composite fermions [7,36] has also been used to treat the
effect of an external periodic potential on the state in the
vicinity of half filling [37,38]; see Supplemental Material
[14] for a comparison with our approach.
In summary, we have presented a new formulation of

the density-functional theory of the FQHE that offers a
natural way of producing fractionally occupied Kohn-Sham
orbitals of electrons. We have introduced an exchange
correlation energy that is consistent with microscopic
calculations, and an entropy that incorporates the physics
of strong correlations. We have applied our DFT to study
the physics of the FQH edge as well as to the CF Fermi sea
exposed to a periodic potential.
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