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We show that orbital energies from existing hybrid functionals do not give reliable band gaps. Even if a

functional yields a good bulk gap, it in general does not provide accurate gaps in different structural

configurations, e.g., surfaces or nanostructures. For example, none of the popular hybrid functionals

adequately describe the surface-state gap of the Sið111Þ-ð2� 1Þ surface. For graphene nanoribbons, some

hybrid functionals give good optical gaps (neglecting strong excitonic effects), but not quasiparticle gaps.

In both cases, there are strong variations from different hybrid functionals.
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Density functional theory (DFT) within the Kohn-Sham
formalism [1] has been the method of choice for theoretical
predictions of structural and ground-state electronic prop-
erties of condensed matter systems. However, for most
systems, assigning the Kohn-Sham orbital energy differ-
ence as the quasiparticle band gap Eg leads to a dramatic

underestimation of the band gap [2]. While in principle Eg

is accessible within DFT, the Kohn-Sham gap, however, is
not equal to Eg even for the exact functional [3]. This

problem is solved by appropriately calculating the
quasiparticle energies, e.g., within the ab initio GW
method [2]. Recently, there has been a new class of DFT
exchange-correlation functionals, the hybrid functionals,
constructed such that the orbital energies have been re-
ported to give good band gaps in solids [4,5], in particular,
semiconductors.

Hybrid functionals go beyond the usual Kohn-Sham
formalism and fall within the generalized Kohn-Sham
realization of DFT [6]. These functionals mix a fraction
bHF of nonlocal single-determinant exchange with conven-
tional DFT exchange-correlation functionals. Popular
hybrid functionals—B3LYP [7], PBE0 [8], and HSE
[9]—have been constructed to give good structural, ther-
modynamic, and bonding properties of solids [4,5].

In this Letter, we demonstrate that the orbital energies
from existing, popular hybrid functionals are not reliable in
predicting the band gaps of materials, either the optical or
the quasiparticle gap. Even if a specific functional may
give a good value for the bulk band gaps, the same func-
tional in general does not yield accurate gap values for the
same material in different configurations such as at its
surfaces or in nanostructures.

The quasiparticle gap of an insulator can be con-
ceptually defined in terms of the total energy of the
system containing N, N þ 1 and N � 1 electrons as Eg ¼
EðN þ 1Þ þ EðN � 1Þ � 2EðNÞ. The optical gap Eopt

is a different physical quantity and related to Eg as Eg �

Eexciton, where Eexciton is the exciton binding energy. Eopt is

also, in principle, accessible within time-dependent DFT
but the Kohn-Sham eigenvalues can only be used as a
rough approximation to the Eopt [10].

In hybrid functional calculations [6,11], one solves a
self-consistent field equation within the generalized Kohn-
Sham formalism:
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�ið ~rÞ ¼ �i�ið ~rÞ; (1)

where vion is the ionic potential, vH the Hartree potential,
v̂HF the Fock operator, vx and vc the local exchange and
correlation potentials within standard Kohn-Sham DFT,
respectively. Equation (1) goes beyond the regular Kohn-
Sham formalism as the total potential is no longer local. In
cases of range-separated hybrid functionals (such as HSE),
one replaces the v̂HF with a short [9] or long [12] range part
of the Fock operator. It is noted that different values of bHF,
if done properly, would give the same ground-state total
energy and density, but give different orbital eigenvalues
�i. As in the original Kohn-Sham formulation, �i are just
Lagrange multipliers in minimizing the total energy and
they are not quasiparticle excitation energies. The fact that
the �i’s can be changed with a different and arbitrary
choice of the parameter bHF nicely illustrates this point.
The physical quasiparticle gap is given by the sum of

energies needed to create a quasielectron and a quasihole
independently in the system. Such quasiparticle energies
EQP are given by Dyson’s equation:

�
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where �ð ~r; ~r0; EQPÞ is the electron self-energy operator [2].
The Kohn-Sham potential has been shown to be the best
local approximation to the self-energy operator [13]. At
best, the hybrid functional of Eq. (1) which mixes the
Kohn-Sham potential and single-determinant exchange,
is a rough approximation to the self-energy � which is a
nonlocal frequency-dependent operator that is sensitive to
many-electron and hence environment effects. From this
point of view, the hybrid functional eigenvalue gap from
Eq. (1) should be compared to the quasiparticle gap since
there is no interaction between the excited electron and
hole. The hybrid functional gap has also been related to the
quasiparticle gap by comparing the parameter bHF to the
effect of an average dielectric screening within the GW
approximation to � [4]. But since bHF is fixed for a given
hybrid functional, such screening is fixed and cannot re-
spond to a change in the environment. Band gaps calcu-
lated with hybrid functionals have also been associated
with Eopt [14] without much justification since as men-

tioned already electron-hole interaction is missing in
Eq. (1). To put these issues in concrete terms, we carry
out calculations on the Sið111Þ-ð2� 1Þ surface and on
armchair graphene nanoribbons using the popular hybrid
functionals in the literature.

While there have been a number of studies using hybrid

functionals for bulk crystals [15], there are only a few

calculations on predicting Eg or Eopt in one-dimensional

[16,17] and two-dimensional [18] systems. Low-

dimensional systems often have optical excitations with

large exciton binding energies making the quasiparticle

gaps and optical gaps quite different [19–22]. The

Sið111Þ-ð2� 1Þ surface is a system with multiple gaps,

bulk-state gap and surface-state gap, that have been mea-

sured by photoemission and optical experiments. It pro-

vides a good test for hybrid functionals because not only

are the surface-state wave functions qualitatively different

from the bulk wave functions, but also screening at the

surface is very different from the bulk.
The �-bonded chain reconstruction of the

Sið111Þ-ð2� 1Þ surface [23] has been studied extensively,
both theoretically [19,20] and experimentally [24,25]. On
an ideal Si (111) surface, the surface Si atoms are bonded
to only three atoms rather than the usual four. Owing to the
2� 1 reconstruction, the dangling pz orbitals form
�-bonded chains along the ½01�1� direction. These dangling
orbitals give rise to two surface-state bands inside the
quasiparticle bulk band gap, one occupied and one unoc-
cupied [24]. Because of the quasi-1D nature of surface
states localized on the �-bonded chains, the photo-excited
surface-state electron and holes form discrete excitonic
states with a large binding energy [19,20,25] as compared
to the exciton in the bulk. Thus, unlike bulk Si, the quasi-
particle gap of the surface states differs significantly from
the optical gap.

We perform DFT calculations using ab initio pseudopo-
tentials and plane wave formalism as implemented in
PARATEC [26]. The Si ionic pseudopotential was generated

using the Troullier-Martins scheme [27] in the PBE ap-
proximation [28] to the exchange-correlation functional.
The use of pseudopotentials generated within PBE for
hybrid functional calculations can in principle lead to
some errors. We explicitly check the bulk Si band gap
calculated with PBE pseudopotential and a Hartree-Fock
pseudopotential and found the differences in the band gaps
for all the functionals studied here to be less than 50 meV
[29]. Thus, any possible error from the pseudopotentials is
negligible. We use a 12-layer slab to simulate the (111)
surface in a 24 atom centrosymmetric supercell with

�20 �A of vacuum in between the slabs. The Brillouin

zone was sampled with a 4� 8 ~k-point grid along the
surface directions. We used a plane wave cutoff of 35 Ry
for the wave functions. Because of the unscreened
Coulomb interaction in the Fock operator being long
ranged, we employed a slab truncation scheme for the
Coulomb interaction [30] for all the hybrid functional
calculations, except HSE where the Coulomb interaction
is now short ranged due to the error-function complement
in the expression [9]. The structure was relaxed within the

PBE approximation (forces � 0:02 eV= �A) and was kept
fixed for the hybrid functional calculations. Because the
forces were small, relaxing the structure within each hybrid
functional is not expected to change the electronic struc-
ture. Explicitly, within HSE, the relaxation of the atoms

moved them by <0:1 �A.
Figure 1 shows our calculated band structure for the

Sið111Þ-ð2� 1Þ surface using semilocal (PBE) and hybrid
functionals. Also shown is the projected bulk Si band

FIG. 1. Surface bands (black dots) of the Sið111Þ-ð2� 1Þ
surface calculated with (a) PBE, (b) PBE0, (c) HSE,
(d) B3LYP, and (e) Hartree-Fock approximations. Up and
down filled triangles are experimental data (from direct and
inverse photoemission) of Ref. [24]. The shaded gray is the
projected bulk band structure. Energy (in eV) of the top of the
bulk valence band is set to zero in each panel.
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structure. To calculate the projected bulk band structure
with a refined grid, we interpolated the bands using
Wannier functions constructed from a bulk calculation

with a 8� 8� 8 ~k-point mesh. We aligned the bulk and
slab band structures by setting the top of the bulk valence
band at the � point to be at the same energy in both
calculations. Based on quantum confinement energy esti-
mated for a particle in a one-dimensional well, we estimate
the uncertainty in alignment in the two band structures to
be about 0.2 eV. It is important to point out that, the
uncertainty in alignment does not affect any of the
surface-state band gaps in Fig. 1 since there is no slab
confinement effect on the surface states. As is evident from
Fig. 1, different hybrid functionals give quite different
band structures. Besides the PBE band structure, which
qualitatively resembles the direct and inverse photoemis-
sion experiment reasonably well, the HSE band structure
also looks similar to experiment. Experimentally, the top of
the occupied surface band at J is known to be below the top
of the bulk valence band at � by 0.1 eV [24]. However, in
all the hybrid functional and Hartree-Fock calculations,
this was found not to be the case, even after accounting
for a possible 0.2 eV shift in the alignment. This effect is
clearly seen in the Hartree-Fock results where the surface
band is 0.7 eV (after shifting by 0.2 eV) above the top of the
valence band at �. All hybrid functionals show similar
incorrect behavior, with the surface band at J nearly at
the same energy as that of the top of the bulk valence band
at � for HSE and PBE0 and 0.14 eVabove for B3LYP. The
GW results (not shown in Fig. 1) from Ref. [20], on the
other hand, are in excellent agreement with experiment.

Table I gives the relevant band gaps, calculated as a
difference between the highest occupied and lowest unoc-
cupied bulk or surface states, for the different functionals.
Also presented are the GW [19,20,31] and the GW plus

Bethe-Salpeter equation (GW-BSE) [20,31] and experi-
mental results. As can be seen from Table I, all the hybrid
functionals significantly overestimate the optical surface-
state gap. Moreover, different hybrid functionals give gaps
that differ by up to 0.5 eV. Our calculated values of the bulk
gap for PBE0, B3LYP, HSE, and Hartree-Fock functionals
agree well with the previous calculations for Si [34]. It is
also interesting to note that the values of the bulk gap are
not simply related to the fraction of exact exchange in the
hybrid functional. This is not surprising given that the band
gaps depend on the detailed character of the wave func-
tions and screening environment. The actual self-energy
operator is complex and cannot be determined by just one
parameter—the fraction of single-determinant exchange.
Range separation in HSE may be viewed as a different
‘‘effective’’ screening environment and results in a differ-
ent gap. Hartree-Fock substantially overestimates both the
bulk and the surface-state gap. This is primarily because of
the lack of screening in Hartree-Fock. While PBE0 and
B3LYP also overestimate all the gaps, HSE gives a bulk
gap that is close to the experimental value. However, when
compared to the experimental optical surface-state gap, the
HSE surface-state gap is also too large. It should be pointed
out that, in this case, the HSE surface-state gap is similar to
the experimental quasiparticle surface-state gap. This does
not agree with the claim in the literature that the HSE gap is
expected to agree with the optical gap and it is a good
estimate of the quasiparticle gap only when the exciton
binding energy is small [14]. In the present case, the bulk
Si exciton binding energy is �15 meV while the surface-
state exciton binding energy is 0.28 eV. On the other hand,
gaps calculated within the GW and the GW-BSE ap-
proaches [20], for the quasiparticle gap and the optical
gap, respectively, match the corresponding experimental
values well.
For the 1D system, we studied armchair graphene nano-

ribbons (AGNRs) of different widths. The AGNRs studied
have armchair-shaped edges with the dangling � bonds at
the edges passivated by hydrogen atoms. Following the
conventional notation, a AGNR-N is specified by the num-
ber of dimer lines N along the ribbon forming the width. In
this study, we employ hybrid functionals to calculate the
electronic properties of three AGNR-Ns (N ¼ 5, 6, and 7),
which cover the distinct three families [35] (N ¼ 3p� 1,
3p, and 3pþ 1, where p is an integer) of AGNRs.
These nanoribbons have been previously studied theoreti-
cally [17,22,35].
For the calculations of the AGNRs, we used the

Troullier-Martins scheme [27] to generate the C and H
pseudopotentials within PBE functional. Similar to the Si
case, we checked that the bulk diamond band gap calcu-
lated with the PBE pseudopotential was within 50 meVof
the band gap calculated with a Hartree-Fock pseudo-
potential for all the hybrid functionals [29]. The wave
functions were expanded in plane waves with a cutoff

TABLE I. Bulk and surface-state gaps of Sið111Þ-ð2� 1Þ
calculated using various functionals and with the GW method.
The experiment (PE) refers to direct and inverse photoemis-
sion values while (opt) refers to optical gap. All values are given
in eV.

Bulk gap Surface-state gap

Generalized Kohn-Sham gap

PBE 0.55 0.38

PBE0 1.71 1.19

HSE 1.14 0.65

B3LYP 1.83 1.04

Hartree-Fock 6.63 4.67

Quasiparticle gap

GW [20,31] 1.23 0.69

Experiment (PE) [24,32] 1.17 0.75

Optical gap

GW-BSE [20,31] 1.23 0.43

Experiment (opt) [25,33] 1.16 0.47
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energy of 65 Ry. The Brillouin zone was sampled with

1� 1� 16 ~k points. The structures of the AGNRs were
fully relaxed within PBE. As in the Si surface case, the
structures were not relaxed further using hybrid function-
als. The details of the GW and GW-BSE calculations,
performed with the BerkeleyGW package [36], were as
per Ref. [22]. To avoid nanoribbon-nanoribbon interaction,
we employed a wire truncation scheme [30] of the
Coulomb potential in the Fock operator in all cases, except
for the HSE functional as for the reason explained
previously.

Table II shows the calculated band gaps using various
methods. In the absence of experiment, the GW gaps are
expected to be close to the actual quasiparticle gaps of the
AGNRs and the GW-BSE gaps are close to the actual
optical gaps. Our calculations are in good agreement
with previous calculations [17,22]. The exciton binding
energies were found to be large as seen in the difference
between the quasiparticle and optical gap values. All the
functionals show the expected family behavior of the gap
in the AGNRs [35]. However, in these systems as in the
case of Sið111Þ-ð2� 1Þ, gaps calculated with different
hybrid functionals differ by up to 0.5 eV. Hartree-Fock
overestimates all the gaps, while PBE underestimates the
optical gap. PBE0 and B3LYP hybrid functionals under-
estimate the quasiparticle gap and overestimate the optical
gap. HSE gaps are in good agreement with optical gaps
from the GW-BSE calculations, but not in agreement with
the quasiparticle gap. This is the opposite behavior from
the Sið111Þ-ð2� 1Þ case where the HSE band gaps were in
agreement with the quasiparticle gaps. It is also worth
pointing out that the GW-BSE calculation gives discrete
peaks in the absorption spectrum that are related to bound
excitons whose excitation energy corresponds to the opti-
cal gap. While the band gap from the HSE functional is
close to the optical band gap from GW-BSE, the HSE
absorption onset corresponds to a continuum onset rather
than discrete bound states. This is a qualitatively different
behavior.

These results show that gaps calculated using existing
hybrid functionals are not reliable and have large variabil-
ity depending on the functional and system studied. It is,
moreover, not justified which gaps the results from the
popular hybrid functionals should correspond to—optical
or quasiparticle. Importantly, the reliability of band gaps
obtained with hybrid functionals is not dependent just on
the materials, but also on the environment. Owing to this,
hybrid functionals cannot be assumed to give good optical
or quasiparticle gaps. Further, one cannot even treat bHF as
an empirical parameter for cases with multiple gaps such as
the Si surface.
In conclusion, we have studied materials in different

configurations with hybrid functionals. For the
Sið111Þ-ð2� 1Þ surface, none of the popular hybrid func-
tionals give the correct surface-state optical gap, while the
HSE functional gives a good quasiparticle gap. For
AGNR’s, none of the popular hybrid functionals give the
correct quasiparticle gap. PBE0 and B3LYP overestimate
the optical gap as compared to GW-BSE results, while
HSE gives good agreement with the GW-BSE optical gaps
although electron-hole interaction is not explicitly in-
cluded. Overall, there is a large variability in the results
from different hybrid functionals, and in their current
forms hybrid functionals may not be relied upon to predict
band gaps.
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