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Generating unoccupied orbitals within density functional theory (DFT) for use in GW calculations of

quasiparticle energies becomes prohibitive for large systems. We show that, without any loss of accuracy,

the unoccupied orbitals may be replaced by a set of simple approximate physical orbitals made from

appropriately prepared plane waves and localized basis DFT orbitals that represent the continuum and

resonant states of the system, respectively. This approach allows for accurate quasiparticle calculations

using only a very small number of unoccupied DFT orbitals, resulting in an order of magnitude gain in

speed.
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The GW approximation to the electron self energy is a
proven and prominent method for treating the excited-state
properties of solids from first principles [1,2]. The pertur-
bative GW approach applied as a first-order correction to
the Kohn-Sham density functional theory (DFT) eigenval-
ues (known as the G0W0 approximation) provides accurate
quasiparticle energies in wide classes of materials [2–4].
Several recent efforts have been taken to extend the GW
methodology beyond the standard G0W0 level such as the
use of different mean-field starting points beyond DFT
[5–7] and various levels of self-consistency [6,8].

For large systems with more than several hundred atoms,
the GW calculations become quite challenging numeri-
cally. The expressions for the irreducible polarizability
�0 and the self-energy � involve infinite summations
over unoccupied single-particle orbitals of a mean-field
starting Hamiltonian [2]. In practical calculations, these
summations are truncated above a certain energy in the
single-particle spectrum, but the number of unoccupied
orbitals required increases rapidly with the system size
for a convergent basis set. There have been proposals to
avoid the explicit summation over unoccupied orbitals.
These include the self-consistent linear-response
Sternheimer approach [9,10], the extrapolar approximation
[11], and the effective-energy technique [12] based on a
common-energy-denominator approximation, the static re-
mainder correction to � [13,14], and substitution of high-
energy orbitals with just plane waves [15,16].

In this Letter, we report a method for constructing
simple approximate physical orbitals (SAPOs) for use in
GW calculations. The advantage of this approach is that it
is compatible with standard GW methodology and there-
fore requires no modification of existing GW codes. We
discuss our new method here within the framework of
plane-wave pseudopotential calculations; however, it can
be extended to other first-principles electronic structure
methods straightforwardly. The form chosen for the
SAPOs to replace DFT orbitals above a certain energy is

based on the following physical motivation. In molecular
systems, the spectrum of the electron single-particle orbi-
tals is composed of bound, resonant, and continuum states.
In extended systems, the distinctions among them are
blurred, but these classifications are still useful. The con-
tinuum orbitals are constructed from linear combinations
of plane waves that obey the symmetry of the system.
The plane waves are defined as exp½iðkþGÞ � r� where k
is the reduced wave vector in the first Brillouin zone, G is
the reciprocal lattice vector, and r is the position. The
symmetrization of plane waves improves numerical stabil-
ity in cutting off summations over unoccupied orbitals. The
energy eigenvalues of the continuum orbitals are set to
"nk ¼ hVDFTi þ ðkþGÞ2 where hVDFTi is the averaged
DFT potential, ðkþGÞ2 are the kinetic energies of plane
waves in Rydberg atomic units, and n is the index of
G-vectors sorted by kinetic energy. These energy eigenval-
ues, as discussed below, will need to be corrected further.
A small number of resonant orbitals is obtained from a
separate DFT calculation performed with limited short-
range localized basis functions using methods such as
SIESTA [17,18]. The energy eigenvalues resulting from the

SIESTA calculation are shifted bymatching the energy of the

highest occupied molecular orbital (HOMO) to that ob-
tained from a plane wave DFT calculation. This yields the
energies "nk of the resonant orbitals, which again will be
corrected further. Only the unoccupied orbitals are retained.
The approximate continuum and resonant orbitals and

the subspace of the exact DFT orbitals (which in general
contains all the occupied orbitals and a few unoccupied
ones) form an overcomplete set of orbitals fc nkðrÞg (where
n is the orbital number). As a result, the long-wavelength
limit of the plane-wave matrix elements

hc nkj exp½iðqþGÞ � r�jc mk0 i !
qþG!0

�nm (1)

(where q ¼ k� k0) does not hold. This leads to errors in
the head and wings of �0

GG0 ðq ¼ 0Þ. To eliminate these
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errors, we sort the approximate continuum and resonant
orbitals and the subspace of exact DFT orbitals by energy
eigenvalues f"nkg and apply the Gram-Schmidt orthonorm-
alization in ascending order of "nk:

�nkðrÞ ¼ c nkðrÞ �
P

n�1
m¼1h�mkjc nki�mkðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P

n�1
m¼1 jh�mkjc nkij2

q : (2)

We note that the exact DFTorbitals do not change with this
procedure, only the approximate continuum and resonant
orbitals are affected.

The unoccupied energies "nk described above are now
not the correct eigenvalues for the new orbitals�nkðrÞ. We
make the correction to "nk by assuming that the energies
"nk are the expectation values of the DFT Hamiltonian H
for the old orbitals c nkðrÞ and that the new orbitals�nkðrÞ
are the eigenvectors of H with the eigenvalues Enk:

hc nkjHjc nki ¼ "nk; H�nk ¼ Enk�nk: (3)

With the help of Eqs. (2) and (3), we derive the following
expression for the eigenvalues:

Enk ¼ h�nkjHj�nki

¼ "nk þ
P

n�1
m¼1 jh�mkjc nkij2ð"nk � EmkÞ
1�P

n�1
m¼1 jh�mkjc nkij2

: (4)

Instead of using Eq. (4), the DFT Hamiltonian H can be
diagonalized in the basis of f�nkðrÞg orbitals:

XN

m¼1

h�nkjHj�mkiC‘
mk ¼ E‘kC

‘
nk;

�nkðrÞ ¼
XN

m¼1

Cn
mk�mkðrÞ

(5)

(whereN is the total number of orbitals, which in general is
much smaller than the number of plane waves in the DFT
calculation) yielding more accurate energies Enk and orbi-
tals �nkðrÞ. The two sets fEnk;�nkðrÞg and fEnk;�nkðrÞg
are what we called the SAPOs.

We shall now verify the accuracy and efficiency of
the SAPOs by performing G0W0 calculations with the
BERKELEYGW package [19]. We first consider the benzene

molecule C6H6 in a supercell calculation. The DFT calcu-
lation for benzene was done using the plane-wave pseudo-
potential code PARATEC [20]. We employ norm-conserving
pseudopotentials [21] in nonlocal separable form [22], and
use the local density approximation [23] for the exchange-
correlation potential. The kinetic energy cutoffs for the
plane-wave expansions of wave functions and the dielectric
function are chosen to be Ec ¼ 60 Ry and E� ¼ 6 Ry,

respectively. The Coulomb potential is truncated at the
faces of the supercell to avoid spurious interactions be-
tween periodic replicas of the benzene [24]. To retain the
Coulomb interactionwithin the same benzenemolecule, the
size of the unit cell is set to 28:3� 25:9� 14:5 a0 (where

a0 is the Bohr radius). This is 8 times (2� 2� 2) the size
of the box confining the isosurface that encloses 99% of
the electron density of benzene. To get the absolute orbital
energies relative to the vacuum level, we subtract from
DFT eigenvalues the electrostatic (ionic and Hartree) po-
tential averaged on the faces of the supercell, hVi þ VHi ¼
0:42 eV. The resonant orbitals are calculated independently
with SIESTA using the double-� polarized basis set, which
is found to provide sufficient accuracy. Further increasing
the basis size in SIESTA does not affect the quasiparticle
energies since the additional resonant orbitals will be re-
moved during the orthonormalization process.
For benzene, we start with 2699 DFT orbitals (15 occu-

pied and 2684 unoccupied), which are sufficient for a
convergent calculation within the standard G0W0 approach
and start to successively reduce the number of unoccupied
orbitals and replace them with the SAPOs. We generate the
SAPOs with 2701 plane waves and 101 resonant orbitals,
which correspond to having energy eigenvalues up to the
energy cutoff of 6 Ry above the vacuum level. We con-
struct three sets of SAPOs, corresponding to using 17, 87,
and 481 exact DFT orbitals up to�0:09, 0.45, and 1.81 Ry
relative to the vacuum level, respectively. To generate the
SAPOs, we group the degenerate plane waves into stars,
construct a reducible representation for each star, decom-
pose it into irreducible representations, generate basis
functions for each irreducible representation, and make
symmetric combinations of plane waves. We then ortho-
normalize the symmetrized plane waves and resonant
orbitals from SIESTA calculations, correct the energy eigen-
values, and diagonalize the DFT Hamiltonian according to
Eqs. (2), (4), and (5). If the eigenvalues Enk and Enk go
above the energy cutoff of 6 Ry, the corresponding SAPOs
are thrown away. While generating 2699 DFT orbitals
using PARATEC [20] takes 285 CPU core hours on the
Cray XE6 supercomputer, constructing 2732 SAPOs only
takes 0.7 CPU core hour. It is also important to note that
unlike the DFT codes, the generation of SAPOs scales
linearly to tens of thousands of processors in the same
way as the GW codes [19]. In Fig. 1, we plot the eigenval-
ues and plane-wave components of the eigenvectors for
87 exact DFT orbitals and 113 SAPOs fEnk;�nkðrÞg of
benzene, illustrating that the SAPOs contain the salient
features of the exact DFT orbitals.
We now perform G0W0 calculations on benzene using

the SAPOs. [For benzene, the use of fEnk;�nkðrÞg or
fEnk;�nkðrÞg produces equally accurate results.] To exam-
ine separately the effects of the convergence of �0 and �
with different sets of orbitals, we carry out two indepen-
dent calculations. First, we employ the SAPOs in the
calculation of �0 and compute the self energy �COHSEX

in the static Coulomb-hole and screened-exchange
(COHSEX) approximation (expressed in a closed form
that involves only occupied DFT orbitals) [1]. Second,
we compute �0 with 2699 exact DFT orbitals and we use
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the SAPOs for calculating � within the generalized
plasmon-pole (GPP) model [2]. The resulting �COHSEX

and � for the HOMO of benzene are shown in Fig. 2.
For comparison, �COHSEX and � computed with only DFT
orbitals (without the SAPOs), with DFT and continuum
orbitals (without the resonant orbitals), and with DFT and
resonant orbitals (without the continuum orbitals) are also
shown in Fig. 2. From examining Fig. 2, we conclude that
both the continuum and resonant orbitals are equally es-
sential to the self energy in molecular systems. The con-
tinuum orbitals are accurately approximated by plane
waves and the resonant orbitals are easily obtained from
a localized basis DFT calculation, but not the other way
around. As one can see from Fig. 2, the errors in both
�COHSEX and � computed with only 17 DFT orbitals
complemented with the SAPOs converge quickly to within
50 meV of the final answer. We further perform G0W0

calculations of the HOMO and lowest unoccupied molecu-
lar orbital (LUMO) of benzene employing the three sets of
increasing number of SAPOs, fEnk;�nkðrÞg, in computing
both �0 and �. The results are summarized in Table I.
Again, the errors do not exceed 50 meV from the con-
verged G0W0 results even if only 2 unoccupied DFT orbi-
tals are used.
We have tested our method on other molecular and

extended systems. For a calculation of buckminsterfuller-
ene (C60), we employ the Perdew-Burke-Ernzerhof
exchange-correlation functional [30] and we set Ec ¼
51 Ry and E� ¼ 6 Ry. The size of the unit cell is 38:8�
38:8� 38:8 a0. We carry out G0W0 calculations with 5490
DFT orbitals (120 occupied and 5370 unoccupied) and
with 60 unoccupied DFT orbitals complemented with
5319 SAPOs up to the energy cutoff of 3 Ry above the
vacuum level. The generation of DFT orbitals and SAPOs
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FIG. 1 (color online). (a) Energy eigenvalues and (b) plane-wave components of the eigenvectors arranged in ascending order by
kinetic energy for the electronic orbitals of benzene (C6H6). Orbitals 1–87 are obtained from plane-wave DFT calculation. Orbitals
88–200 are the SAPOs fEnk;�nkðrÞg (Cþ R=E using the notation of Fig. 2). The zero of the energy scale in (a) is aligned with the
vacuum level.
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FIG. 2 (color online). Self energy (a) in the static COHSEX approximation and (b) within the GPP model for the HOMO of benzene
(C6H6). The sums over orbitals in (a) irreducible polarizability and (b) self energy are computed using 17, 87, 481, and 2699 exact DFT
orbitals complemented with the SAPOs made of the symmetrized plane waves and localized basis DFT orbitals that represent the
continuum (C) and resonant (R) orbitals of benzene, respectively, up to the energy cutoff of 6 Ry above the vacuum level. The C and R
orbitals are orthonormalized according to Eq. (2) with either the energy (E) correction of Eq. (4) applied or the DFT Hamiltonian (H)
diagonalization of Eq. (5) carried out. The horizontal lines denote the values computed with 2699 exact DFT orbitals.
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takes 5680 and 35 CPU core hours, respectively. To test the
convergence, we increase the number of SAPOs to 15 029
(up to 6 Ry) and 27 387 (up to 9 Ry). The resulting
quasiparticle energies for C60 are listed in Table I. For
crystalline silicon (c-Si), we use a local density approxi-
mation exchange-correlation functional, 8� 8� 8 k
mesh, Ec ¼ 43 Ry, and E� ¼ 10 Ry. SAPOs are obtained

by the symmetrization of plane waves using a ‘‘small
symmetry group’’ for each k point. We perform G0W0

calculations with 411 DFT orbitals (4 occupied and 407
unoccupied) and with 28 unoccupied DFT orbitals com-
plemented with 374 SAPOs up to the energy cutoff of
20 Ry above the averaged DFT potential. The generation
of DFT orbitals and SAPOs takes 43 and 0.06 CPU core
hours, respectively. The quasiparticle energies at the va-
lence band maximum (VBM) and the conduction band
minimum (CBM) as well as the indirect band gap Eg for

c-Si are shown in Table I. For both C60 and c-Si, the errors
in using SAPOs are again less than 50 meV.

In summary, we introduced and implemented the
concept of SAPOs for use in GW calculations. These
SAPOs and their energies are constructed from symme-
trized plane waves and localized basis DFT orbitals and

orthonormalized with respect to the lower energy DFT
orbitals and among themselves. The lower energy DFT
orbitals can in turn be constructed using plane-wave or
localized basis functions. This approach greatly extends
the validity of the simple plane-wave substitution method
[15,16]. It is aimed for molecular systems where tens of
thousands of unoccupied orbitals are required to converge
the GW quasiparticle energies. It is also applicable to
extended systems with many atoms per unit cell. It opens
an efficient route to accurate GW calculations for large
complex systems.
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