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Electronic structure and optical properties of F centers in α-alumina
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We use a state-of-the-art GW Bethe-Salpeter equation (BSE) formalism to study electronic structure and
optical properties of oxygen vacancies (F centers) in α-alumina. The density functional theory (DFT) +
GW formalism has been employed to compute the charge transition levels (CTLs) for oxygen vacancies.
We propose a reformulation of the DFT+GW approach to calculate these CTLs. Our new approach allows
for transparent application of electrostatic corrections required in finite supercell calculations using periodic
boundary conditions. We find that F centers in this material introduce deep donor levels, (+2/+1) at 2.4 eV,
and a (+1/0) level at 3.9 eV above the valence band maximum. We also study F -center absorption and emission
processes using constrained DFT and BSE. Our calculated absorption and emission energies are in excellent
agreement with experiments and provide an unambiguous interpretation of the same.
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I. INTRODUCTION

Aluminium oxide (Al2O3) with corundum structure (α-
alumina) is one of the most used structural ceramics in the
world. This material is used in a wide variety of applications
including high-temperature structural ceramics, abrasives, di-
electric insulators, catalysts, and optical devices [1–4]. α-
alumina has not only been used in traditional fields such as
cutting tools in industries, substrates for the growth of thin
metal, semiconductor, and insulator films, etc., but also in
exciting new applications such as strong durable optical fibers
and scratch resistant screens on mobile electronics devices
[3,4]. This is because of the unusual combination of mechan-
ical, chemical, and electronic properties [2] of this material.

As is well known, all material properties can change dra-
matically in the presence of defects in an otherwise perfect
crystal [5,6]. For instance, anionic vacancies in a crystal
with one or more electrons at the defect site have been
found to absorb light in the visible spectrum. They can make
a wide-band-gap transparent material colored [7], and are
called F centers or color centers. Defects in aluminium oxide
have been studied extensively over the last few decades to
understand their role in influencing the properties of this
material [7–13]. Oxygen related point defects, especially oxy-
gen vacancies, are known to be a common defect in oxides
[14]. Thermodynamic charge transition levels (CTLs) provide
useful information from an electronic or optoelectronic ap-
plication point of view. CTLs not only describe whether the
defect is going to act as an electronic donor or acceptor but
also whether it is shallow (∼kBT from bands edges) or lies
deep inside the band gap [15]. Shallow levels can introduce
carriers in the nearby band edges through thermal excitations.
Deep levels have been used in the recent years for various
applications, such as pinning the Fermi level in an energy
region far from the band edges [16,17], as single spin centers
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for quantum computing in systems like the nitrogen-vacancy
(NV) center in diamond [18,19], etc.

In this paper, we use a state-of-the art GW Bethe-Salpeter
(BSE) formalism to study electronic structure and optical
properties of oxygen vacancies in α-alumina. We compute
thermodynamic charge transition levels (CTLs) for oxygen
vacancies using the density functional theory (DFT) + GW
formalism. We propose an alternative approach to calcu-
late these CTLs. This approach provides an efficient way
to perform electrostatic corrections. We also study F -center
absorption and emission processes using constrained DFT
and BSE.

II. COMPUTATIONAL METHODS

We perform first-principles DFT calculations using the
QUANTUM ESPRESSO package [20]. We use the general-
ized gradient approximation (GGA) [21] for the exchange-
correlation functional. Norm-conserving pseudopotentials
[22] are used to describe electron-ion interactions. The elec-
tronic wave functions are expanded in plane waves with
energy up to 75 Ry. The calculations for perfect crystals
have been done using a unit cell containing 30 atoms and
a 4 × 4 × 2 k-point sampling of the Brillouin zone. For the
calculations with oxygen vacancies in various charge states,
we use 2 × 2 × 1 and 3 × 3 × 1 supercells, containing 120
and 270 atoms respectively. These supercell sizes are large
enough to exclude any short-range defect-defect interactions.
The Brillouin zone for 2 × 2 × 1 and 3 × 3 × 1 supercells
is sampled using 2 × 2 × 2 k-point grid and � point respec-
tively. We simulate different charge states (q = 0, 1, 2) of the
oxygen vacancy.

Quasiparticle and optical properties are calculated within
the GW -BSE formalism as implemented in the BERKELEYGW
package [23]. To compute the quasiparticle energies (EQP) we
solve the Dyson equation [24], where the self-energy operator
[�(E )] has been calculated within the G0W0 approximation.
The dielectric matrix is calculated within the random phase
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approximation (RPA) and expressed in a plane-wave basis
with plane-wave energies up to 25 Ry. The matrix is calculated
at zero frequency and extended to finite frequencies using
the generalized plasmon pole model proposed by Hybertsen
and Louie [25]. In the case of unit cell calculations we
include 1000 bands while performing the sum over unoccu-
pied states involved in the dielectric matrix and self-energy
calculations. To ensure the convergence of our results with
the number of bands, we added a static remainder [26] term
to the self-energy. For 2 × 2 × 1 and 3 × 3 × 1 supercells, we
increase the number of bands to 4000 and 9000 respectively.
To study electron-hole interactions and excitonic effects we
solve the Bethe-Salpeter equation [27]. The electron-hole
interaction kernel for BSE calculations performed on unit
cells is computed with 44 valence and 11 conduction bands.
The calculated kernel is extrapolated from a 4 × 4 × 2 k-point
grid to a 10 × 10 × 5 k-point sampling of the Brillouin zone.
These parameters are sufficient to obtain a converged optical
spectrum for energies up to ∼5 eV from the absorption edge.

The formation energy of a point defect, E f
q (R)[εF ], in

charge state q, with all the atoms at coordinates {R} and the
chemical potential of the electron (Fermi level) εF , can be
defined as [15]

E f
q (R)[εF ] = Edef

q (R) −
[

Eperf +
∑

i

niμi

]
+ [εF + Ev]q,

(1)

where Edef
q (R) is the total energy of the defect supercell in

charge state q with all the atoms at coordinates {R}, and
Eperf is the total energy of the perfect supercell (without
any defects). ni refers to the number of atoms removed
(ni < 0) from or added to (ni > 0) the perfect supercell to
make the defect supercell. The removed/added atoms are
exchanged from a bath with chemical potential μi. It should
be noted that we have defined εF with respect to valence band
maxima (Ev).

Thermodynamic charge transition level (CTL), εq/q−1, is
defined as the value of the electron chemical potential (εF ) at
which the charge state of the defect changes from q to q − 1.
It can be written in terms of formation energies as [15]

εq/q−1 = E f
q−1(Rq−1)[εF = 0] − E f

q (Rq)[εF = 0], (2)

where {Rq} and {Rq−1} denote the equilibrium structures with
defect in charge states q and q − 1 respectively.

Within standard DFT, one can obtain the formation ener-
gies in equilibrium configurations of respective charge states
and thus calculate εq/q−1. However, as calculating CTLs in-
volves addition or removal of one or multiple electrons, Using
just the DFT formalism is expected to pose problems. To
overcome this issue we have used the DFT + GW formalism
[28–30]. In this method we write the CTL as

εq/q−1 = [
E f

q−1(Rq−1) − E f
q−1(Rq)

] + [
E f

q−1(Rq) − E f
q (Rq)

]
≡ E relax

q−1 [Rq] + EQP(Rq) (3)

The first term (E relax
q−1 [Rq]) on the right-hand side of Eq. (3)

is a relaxation energy. For a system containing a defect in
charge state q − 1, E relax

q−1 [Rq] is the total energy difference

between a structure with all the atoms at coordinates {Rq} and
the equilibrium structure (in this case {Rq−1}). The relaxation
energy can be computed accurately within DFT. The second
term on the right-hand side of Eq. (3), EQP(Rq), involves a
change in the electron number as the defect charge changes
from q to q − 1. This is the electron affinity (EA) of a system
containing a defect in charge state q with all the atoms at {Rq}.
This quasiparticle energy can be computed accurately using
the GW formalism. Alternatively, we can write

εq/q−1 =[
E f

q−1(Rq−1) − E f
q (Rq−1)

] + [
E f

q (Rq−1) − E f
q (Rq)

]
≡ EQP(Rq−1) − E relax

q [Rq−1] (4)

where E relax
q [Rq−1] is defined in the same way as E relax

q−1 [Rq]
in Eq. (3) and EQP(Rq−1) is the ionization potential (IP) of a
system containing a defect in charge state q − 1 with all the
atoms at {Rq−1}. In Fig 1(a) we show two paths that can take
the system from being at equilibrium with a defect at charge
state q to one where it is at equilibrium with charge state
q − 1. Using Eq. (3) or (4) to compute εq/q−1 is equivalent to
taking the red or the blue path shown in Fig. 1(a). Following
either of the two paths, one should get the same thermody-
namic CTLs. This DFT + GW formalism should eliminate the
errors in calculating CTLs within standard DFT.

First-principles calculations on defects often use a periodic
boundary condition (PBC) with a finite supercell size. While
the supercell can be made to be large enough to eliminate
any short-range interaction between a defect and its peri-
odic image, the long-range interactions, such as Coulomb
interaction between charged defects, cannot be eliminated
entirely. To tackle this issue, we break down the defect-defect
interaction within the PBC into a short-range part such as
quantum-mechanical interaction (overlap of the wave func-
tions) and a long-range part such as elastic or electrostatic
interaction. In practice, we work with a supercell size that
is large enough to eliminate any short-range defect-defect
interactions. For the long-range electrostatic and elastic inter-
actions we use a correction/extrapolation scheme. As elastic
interactions decay faster (1/L3) than electrostatic interactions
(1/L), typically one worries more about the latter. In this
study, we use the Freysoldt—-Neugebauer—-Van de Walle
(FNV) electrostatic correction scheme [31] as implemented in
the COFFEE package [32]. The single oxygen vacancy created
in the supercell sizes 2 × 2 × 1 (120 atoms) and 3 × 3 × 1
(270 atoms) translates into defect concentrations of 8333 and
3704 ppm (parts per million) respectively. One can define
the chemical formulas of the defect supercells as Al2O3−x

with x = 0.018 and x = 0.042 for the 270 and 120 atom
supercells respectively. By performing electrostatic correc-
tion to eliminate the effects of long-range Coulomb interac-
tion, we study oxygen vacancies in α-alumina in the “dilute
limit” [15].

While calculating relaxation energies using DFT one may
be tempted to assume that the electrostatic correction involved
is zero, as the total energy corrections for two formation
energies with defects in the same charge state cancel each
other. This is not true, as the lattice screenings in the two
cases are different. The lattice relaxations in the two struc-
tures are as if they are screening different defect charges (as
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FIG. 1. Paths that can take a system at equilibrium with a defect at charge state q to one where it is at charge state q − 1. Paths that are
equivalent to using (a) Eq. (3) (red), Eq. (4) (blue), and (b) Eq. (5) are shown.

they correspond to {Rq} and {Rq−1}). Moreover, the choice
of dielectric constant, while performing eigenvalue correc-
tion to compute quasiparticle excitation energies for charged
defects, is ambiguous if one uses Eq. (3) or (4). This is
because an unknown fraction of lattice dielectric constant is
included, owing to small supercell sizes. Using either the
electronic dielectric constant (εelec) or the full dielectric con-
stant (εtotal) is not expected to provide accurate electrostatic
corrections.

We propose an alternative path to calculate CTLs which
does not suffer from the above-mentioned issues. The CTL
can be calculated using the path shown in Fig. 1(b). The CTL
using this path can be written as

εq/q−1 = [
E f

q−1(Rq−1) − E f
q−1(Ru)

]
+ [

E f
q−1(Ru) − E f

q (Ru)
] + [

E f
q (Ru) − E f

q (Rq)
]

= E relax
q−1 [Ru] + EQP

u − E relax
q [Ru], (5)

where {Ru} denotes the unrelaxed structure, which can be ob-
tained by removing an atom from a perfect supercell without
changing positions of any other atoms. We compute E relax

q [Ru]
(E relax

q−1 [Ru]) using DFT. These relaxation energies correspond
to the relaxation of a defect supercell with the charge state q
or q − 1 from {Ru} to corresponding equilibrium structures.
Quasiparticle excitation energy in Eq. (5) (EQP

u ) can be com-
puted as either IP of the unrelaxed system with defect charge
state q − 1 (P1) or EA of the same structure with defect charge
state q (P2). The choice of path shown in Fig. 1(b) is motivated
by the fact that the dielectric constant required for electrostatic
correction of the EQP

u term is well defined (εelec).
To understand optical properties of the F center we relax

the structure for the triplet excited state of the F center
using constrained DFT. We perform a spin polarized DFT
calculation and fix the occupations in such a way that one
electron from a defect state gets promoted to the conduction
band with its spin flipped. This occupation scheme keeps the
system neutral and mimics a triplet excited state. We find
that the geometries obtained within such a relaxation are very
close to the F+ geometry.

III. RESULTS AND DISCUSSION

α-alumina, which has the chemical formula Al2O3, con-
sists of hexagonal unit cells (space group R3̄C) containing
30 atoms or 6 formula units. It can also be constructed
with a smaller rhombohedral unit cell containing 10 atoms
(2 formula units). We have used a hexagonal unit cell of
α-alumina in all our calculations.

The lattice parameters of α-alumina that we find from our
calculations are in very good agreement with previous DFT
calculations [9,12] and experimental values [33], as shown
in Table I. Our calculations show that the band gap of this
material has a strong lattice parameter dependence. We study
the band gap of α-alumina as we change the in-plane lattice
parameter (a) by keeping the c/a ratio fixed, using both
LDA (PZ) and GGA (PBE). The results are shown in Fig. 2.
The band gap of this material increases almost linearly as
we decrease the in-plane lattice parameter (a). Due to the
overbinding effect of LDA, the band gap of the equilibrium
structure within LDA is larger compared to that found within
GGA (using its equilibrium structure). As we can see in
Fig. 2, the difference between GGA and LDA band gaps at
their respective equilibrium lattice parameters is ∼1 eV. This
difference is almost entirely because of the difference in the
lattice parameters. Our results explain the large variation in
the reported band gaps in the literature [9–12]. Figure 2 also
shows our calculation of the GW quasiparticle gap starting
from a DFT calculation with GGA at two different lattice
parameter values. The GW gap also varies significantly as a
function of in-plane lattice parameter, inheriting the depen-
dence from the DFT starting point.

TABLE I. Comparison between lattice parameters and band gap
values from our calculations with literature

This work This work Ref. [12] Ref. [9]
Parameter (LDA) (GGA) (LDA) (GGA) Expt. [33]

a (Å) 4.68 4.81 4.69 4.82 4.76
c (Å) 12.45 13.13 12.79 13.16 12.99
Eg (eV) 6.75 5.82 6.72 5.82 9.4
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FIG. 2. Variation of band gap with lattice parameter, calculated
using both GGA (blue circle) and LDA (black squares), the equilib-
rium lattice parameter in both cases and the corresponding band gap
have been marked. In these calculations the c/a ratio was fixed to
the equilibrium value. GW quasiparticle gaps starting from a DFT
calculation with GGA at two different lattice parameter values have
been marked with red triangles.

Table II shows the quasiparticle band gap (Eg) and exciton
binding energy (EEBE) obtained from our calculations and
compares them with values reported in the literature. Our
calculated quasiparticle band gap is in reasonable agreement
with previous GW calculations done on this material by
Marinopoulos et al. [12]. The difference in the quasiparticle
gap between two calculations can be attributed to the differ-
ence in the lattice parameters used. Marinopoulos et. al. [12]
used lattice parameters obtained from a DFT calculation using
LDA, which is expected to result in a slightly larger DFT
as well as quasiparticle gap compared to one obtained using
experimental lattice parameters (Fig. 2). However, the exciton
binding energy reported in the aforementioned study is very
close to the one we obtain using experimental lattice parame-
ters. This suggests a weaker lattice parameter dependence of
EEBE compared to Eg. We also find that the GW quasiparticle
gap using experimental lattice constants (9.1 eV) is in close
agreement with the experimental gap at room temperature
(9.31 eV) [11]. This is due to the fact that we have used
the room temperature experimental lattice parameters in our
studies [33].

Figure 3 shows the defect levels inside the band gap,
originating from oxygen vacancies in different charge states.
We show the results obtained using DFT as well as GW . The
calculations were performed on a 3 × 3 × 1 supercell. The
position as well occupation of these defect levels for three
charge states—neutral (V 0

O ), +1 (V +1
O ), and +2 (V +2

O )—are

TABLE II. Quasiparticle band gap and exciton binding energy
obtained from our calculation compared with values reported in
literature

Results This Expt. [11] Expt. [11]
(eV) work Ref. [12] at 0 K at 300 K

Eg 9.1 9.36 9.57 9.31
EEBE 0.37 0.4 0.13 0.15

FIG. 3. Defect level positions and their occupations for different
charge states from DFT as well as GW calculations.

shown in the figure. For V 0
O we find one doubly occupied spin

degenerate level inside the bulk band gap. As we remove one
electron from the neutral defect, the system becomes spin po-
larized with only one of the spin-split defect levels occupied.
Removing one more electron from the defect results in an
unoccupied spin degenerate level inside the gap. Quasiparticle
corrections at the GW level do not move the DFT defect levels
rigidly. The energy (with respect to valence band maximum)
of the occupied defect levels increases by ∼0.3 eV, whereas
that of the unoccupied levels increases by 2.1 and 2.6 eV for
V +1

O and V +2
O respectively. It should be noted that we have

included electrostatic corrections for the defect levels shown
in Fig. 3. Structurally, in case of +2 and +1 charge state the
four Al atoms next to oxygen vacancy on an average relax
outward by ∼0.23 and ∼0.1 Å respectively, whereas, in the
neutral charge state, the Al atoms relax inward by ∼0.05 Å.

In Table III we show thermodynamic charge transition
levels calculated using Eq. (3) (P1) and Eq. (4) (P2) with
two different supercell sizes, 2 × 2 × 1 and 3 × 3 × 1. We
report the values obtained with (ec) as well as without electro-
static corrections (we) to show the importance of electrostatic
correction while calculating CTLs. We have used ε = εelec =
3.1 while performing the electrostatic corrections [34]. One

TABLE III. CTLs calculated with two different cell sizes using
Eq. (3) (P1) and Eq. (4) (P2). We report the values obtained with
(ec) and without electrostatic corrections (we) and the differences
between them (�).

CTL P1we P2we �we P1ec P2ec �ec Meanec

ε
+1/0
120 4.87 3.58 1.3 3.66 3.58 0.08 3.62

ε
+1/0
270 4.86 3.77 1.09 3.96 3.77 0.19 3.86

ε
+2/+1
120 5.14 3.72 1.42 2.79 2.51 0.28 2.65

ε
+2/+1
270 5.04 3.84 1.20 3.23 2.94 0.29 3.08
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FIG. 4. Cell size dependence of the relaxation energy (E relax) for defect at charge state +1 (a) and +2 (b). E relax values for four different
cell sizes has been used to obtain the value at infinite cell size limit (E relax[∞]).

can see from Table III that the CTLs calculated without
electrostatic corrections following P1 and P2 are different
by ∼1 eV (�we) [28]. As CTL is a thermodynamic quantity
which should not depend on the path one chooses to calculate
it, this discrepancy is unphysical. Once we include appropriate
electrostatic corrections to EQP the � values decrease dra-
matically [28]. However, it can be seen from Table III that
the � including electrostatic corrections (�ec) are still large
and the CTLs have significant cell size dependence (Meanec

for two cell sizes are significantly different). In the following
sections we show that the remaining discrepancy is primarily
due to the choice of dielectric constants used in electrostatic
corrections. Using only the εelec for electrostatic corrections
assumes that the charges localized at defect sites interact
only though electronically screened Coulomb interaction. In
this case, the lattice screening (εlatt) does not play any role.
But during the process of structural relaxation the atoms
surrounding the defects move to screen the defect charges.
Therefore, in any finite supercell size some lattice screening
effects are automatically included. Furthermore, since we only
correct the EQP we assume that E relax requires no electrostatic
correction. In the following section we show that this assump-
tion is not valid.

To address the above mentioned issues and to eliminate
the remaining error in CTLs following P1 and P2 (�ec) we
calculate the CTLs using Eq. (5). In these calculations the
quasiparticle energies have been calculated using the unre-
laxed defect structures. As a result, one can justifiably use
εelec to perform electrostatic corrections for EQP. While in
principle one can construct an electrostatic model for the
correction to E relax, we have computed it by extrapolating the
relaxation energies from four supercell sizes. In Fig. 4 we
show the extrapolation of E relax to the infinite cell size limit
using a first-order polynomial (E relax[L] = E relax[∞] + m ×
L−1). We find that using higher order polynomials for the
extrapolation does not significantly change the infinite cell
limit of the relaxation energies (E relax[∞]). We use the infinite
cell limit E relax for the calculation of CTLs. Table IV shows
the CTLs calculated using Eq. (5). The calculations have been
performed for two different supercell sizes as well as two
different paths. We find that the errors between the two paths
(�) is now less than 0.2 eV. Moreover, in Table V we show

that the CTLs calculated in this way has a much smaller cell
size dependence (<0.2 eV). Calculating CTL using Eq. (5)
therefore provides an efficient way to perform electrostatic
corrections and to obtain more accurate results than using
Eq. (3) or (4). With this modified DFT + GW formalism, our
calculation shows that the oxygen vacancy has two donor
levels within the gap of α-alumina. It has charge transition
levels (+2/ + 1) at 2.4 eV and (+1/0) 3.9 eV above the
valence band maximum (VBM).

The lowest energy optical absorption of the F center in
α-alumina involves a transition from an 1S-like ground state
to a 1P-like singlet excited state [7,8]. The system then relaxes
to a triplet excited state 3P using a nonradiative relaxation
process. The emission occurs when the system goes through a
3P → 1S transition. As this is a spin-forbidden transition, the
lifetime of this process is very high (∼36 ms) [8] and results
in photoluminescence. Experimental studies of the F center in
alumina [7,8] have found the absorption and emission peaks
at 6.1 and 3 eV respectively.

To study F -center optical absorption we start from the
neutral defect supercell. As discussed earlier, the ground state
in this case has a doubly occupied defect state at 2.55 eV from
the VBM (Fig. 3). To study the singlet transition (1S → 1P) we
perform a BSE calculation including both the direct (Kd ) and
exchange (Kx) contributions in the electron-hole interaction
kernel. We find the lowest energy exciton at 6.2 eV. This
agrees very well with the experimental absorption peak at
6.1 eV [8]. Without electron-hole interaction this absorption
peak would have been at 6.55 eV, indicating a considerable

TABLE IV. CTLs calculated using 2 × 2 × 1 and 3 × 3 × 1 su-
percells which contain 120 and 270 atoms respectively. We have
reported values calculated using Eq. (5) with including electrostatic
corrections for both EQP and E relax.

CTL E relax
q−1 E relax

q EQP
P1 εq/q−1 EQP

P2 εq/q−1 �

ε+1/0 (120) −0.13 −1.12 2.91 3.90 2.87 3.87 0.03
ε+1/0 (270) −0.13 −1.12 2.87 3.86 2.94 3.93 0.07
ε+2/+1 (120) −1.12 −3.75 −0.19 2.44 −0.36 2.27 0.17
ε+2/+1 (270) −1.12 −3.75 −0.14 2.49 −0.09 2.54 0.05
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TABLE V. CTLs calculated using 2 × 2 × 1 and 3 × 3 × 1 su-
percells which contain 120 and 270 atoms respectively. The values
reported here have been calculated using Eq. (5) including electro-
static corrections for both EQP and E relax.

Cell 2 × 2 × 1 3 × 3 × 1
size (120 atoms) (270 atoms) � Mean

ε+1/0 3.88 3.89 0.01 3.88
ε+2/+1 2.35 2.51 0.16 2.43

excitonic effect with a exciton binding energy of ∼0.35 eV.
This exciton binding energy is very close to the bulk α-
alumina value (0.37 eV).

We denote the singlet to triplet absorption (1S → 3P) and
emission (3P → 1S) energies by Eab and Eem respectively.
From Fig. 5 which shows the energy-level scheme for absorp-
tion and emission processes of the F center in α-alumina, it is
evident that Eab and Eem are related by

Eab = Eem + (
E

3P[R1S] − E
3P[R3P]

) + (
E

1S[R3P] − E
1S[R1S]

)
= Eem + E

3P
relax + E

1S
relax, (6)

where E
3P
relax is the triplet excited state relaxation energy and

E
1S
relax is the ground state relaxation energy. The E

3P
relax is the

total energy difference (when the system is in triplet excited
state) between all the atoms at the 1S equilibrium structure
({R1S}) and the 3P equilibrium structure ({R3P}). Similarly,
E

1S
relax is the the total energy difference (when the system

is in singlet ground state) between all the atoms at the 3P
equilibrium structure ({R3P}) and the 1S equilibrium structure
({R1S}).

The emission process of the F center in α-alumina involves
a 3P → 1S transition. To study this process we calculate the
“dark” triplet solution of the BSE with the system at the
equilibrium structure of the ground state. Within BSE, triplet
solutions are found by making the exchange contribution
(Kx ) in the electron-hole kernel to be zero. We find that the
lowest energy required for the triplet transition is 4.9 eV.
This energy can be interpreted as Eab in Eq. (6). We find the
excited state relaxed geometry ({R3P}) using constrained DFT
calculations as discussed earlier. The excited state relaxation
energy (E

3P
relax) and ground state relaxation energy are then

calculated using the appropriate total energies of the ({R1S})
and ({R3P}) structures. We find that E

3P
relax is 0.61 eV and E

1S
relax

is 1.19 eV. Using these results in Eq. (6), we find that the
emission energy is 3.1 eV. This is in excellent agreement with
the experimental photoluminescence emission peak [8]. In
Fig. 4 we explain the absorption and emission processes and
also show all the excitation and relaxation energies calculated
for F -center absorption and emission processes in α-alumina.

FIG. 5. Energy-level scheme for absorption and emission pro-
cesses associated with the F center in α-alumina

IV. CONCLUSION

We have used first-principles methods to study electronic
and optical properties of α-alumina. Using the DFT + GW
formalism we calculate the thermodynamic CTLs for oxygen
vacancies in this material. We propose a modified version of
this formalism which can be used to perform electrostatic cor-
rection more efficiently and therefore provide more accurate
CTL values. We find that oxygen vacancy in this material
has deep donor levels, (+2/+1) at 2.4 eV and a (+1/0)
level at 3.9 eV above the VBM. We also study the optical
absorption and emission process of a neutral oxygen vacancy
in α-alumina (F center) using GW -BSE methodology. For the
photolumiscence emission process, we use constrained DFT
to simulate the excited state relaxation processes. Our calcu-
lations show that the F center in α-alumina has absorption and
emission peaks near 6.2 eV and 3.1 eV respectively. This is in
very good agreement with previous experimental findings for
this defect.
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