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Temperature-dependent layer breathing modes in two-dimensional materials
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Relative out-of-plane displacements of the constituent layers of two-dimensional materials give rise to unique
low-frequency breathing modes. By computing the height-height correlation functions from molecular dynamics
simulations, we show that the layer breathing modes (LBMs) can be mapped consistently to vibrations of a simple
linear chain model. Our calculated thickness dependence of LBM frequencies for few-layer (FL) graphene and
molybdenum disulfide (MoS2) are in excellent agreement with available experiments. Our results show a redshift
of LBM frequency with an increase in temperature, which is a direct consequence of anharmonicities present in
the interlayer interaction. We also predict the thickness and temperature dependence of LBM frequencies for FL
hexagonal boron nitride. Our Rapid Communication provides a simple and efficient way to probe the interlayer
interaction for layered materials and their heterostructures with the inclusion of anharmonic effects.

DOI: 10.1103/PhysRevB.97.161406

Two-dimensional (2D) materials, for example, graphene,
transition-metal dichalcogenides, and hexagonal boron ni-
tride (hBN), are being studied extensively for their exciting
electronic, thermal, and mechanical properties [1,2]. A great
deal of effort has also been directed towards understanding
hybrid structures of these 2D materials [3]. It is well known
that typically a few layers of 2D materials and their hybrid
structures are coupled by weak van der Waals (VDW) forces.
Such layer-layer couplings give rise to unique low-frequency
interlayer vibrational modes at finite temperatures, namely,
shear and layer breathing modes (LBMs). [4,5]. It has been
found experimentally that LBMs are more sensitive to external
perturbations than shear modes [6]. These LBMs can be
used as a direct probe to determine layer thickness, stacking
order, effects of external environment, adsorbates, etc. [6–18].
Furthermore, LBMs play a crucial role in interlayer electric
conductance [19] and thermoelectric transport [20]. Under-
standing the origin and quantification of LBM frequencies is
thus of immense practical importance.

Three key features emerge from the low-frequency Raman
spectroscopic measurements of LBMs in 2D materials: (i) A
system with n layers will have n − 1 distinct LBMs [21].
(ii) LBM frequencies (at the � point) are highly sensitive to
the thickness of the material, i.e., the number of layers. For
instance, when the number of layers of graphene is increased
from 2 to 8, the lowest LBM frequency redshifts from 81 to
22 cm−1 [6]. (iii) The lowest LBM frequency also redshifts
with an increment of temperature (T ) as seen in experiments
by controlled laser heating [6,13]. The reported linewidths in
Raman spectroscopic measurements for LBMs are typically
larger than shear modes [11]. These observations suggest the
presence of strong anharmonicity in the interlayer interaction
for LBMs. In this Rapid Communication, we address these
three key aspects of LBMs.
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A 2D material embedded in three-dimensional space can
have out-of-plane acoustic phonon mode called flexural mode
(ZA). In the harmonic approximation, this flexural mode has a
dispersion ωflex ∝ q2 for small momentum q. For n layers, due
to interlayer coupling, the degeneracy in the ZA branch is lifted,
and distinct modes appear in the vibrational spectra, implying
vertical stretching/compression of the layers. These modes are
known as LBMs (ZO′, optical modes). In order to understand
the thickness dependence of LBMs, two common approaches
are used. First, a linear chain model of n masses with a
nearest-neighbor interaction is used widely to determine LBM
frequencies. This simple model has been shown to predict the
frequencies accurately, given a knowledge of nearest-neighbor
layer coupling [6,7,10,11]. However, the mapping of the n-
layer system to such a simple model starting from a more
general description of the constituent layers is unclear. The
effects of next-nearest-neighbor layer coupling in such a model
have not been quantified as well. Second, first-principles calcu-
lations based on density functional perturbation theory (DFPT)
are frequently used to calculate LBM frequencies [10,22]. In
these calculations, however, the temperature dependence of
LBMs is not revealed. The inclusion of anharmonic effects,
i.e., multiphonon processes and thermal expansion coefficients
are necessary to capture the temperature dependence of LBM
frequencies.

Here, we present a simple method to calculate LBM
frequencies by using a combination of classical molecular
dynamics (MD) simulations and the theory of membranes.
We justify the application of the linear chain model in the
small momentum regime (q → 0) by computing the height-
height correlations from MD simulations. Our calculations
of the layer dependence of the LBM frequencies for few-
layer graphene and MoS2 are in excellent agreement with
available experiments. We show the evolution of the LBM
frequency with temperature for the bilayer (BL) system of
graphene, MoS2, and hBN. In the studied temperature (T )
range, we find expansion of interlayer separation and redshift
in LBM frequency with a T increment. As the interlayer
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separation is calculated directly from the MD simulation, all
anharmonicities in the interlayer interaction are incorporated
in the calculation.

We perform MD simulations with the periodic boundary
condition in the NPT (where N is number of atoms per
layer and P is the pressure) ensemble using a Nosé-Hoover
thermostat and barostat as implemented in LAMMPS [23]. We
simulate three different layered materials, namely, graphene,
MoS2, and hBN and vary the number of layers from 2 to 6.
Initially, all the samples are chosen to be roughly square
shaped and contain ≈8000–9000 atoms per layer (N ). After
equilibration, we use 4000 snapshots (a 2-ns production run)
to average the calculated properties. We use different force
fields (FFs) to compute the LBM frequencies. For graphene
three different FFs are adopted: the long-range bond order
potential for carbon (LCBOP) [24], a combination of the
reactive empirical bond order potential and the Lennard-Jones
potential (REBO + LJ) [25,26], and DREIDING, a more
generic FF [27]. For the case of MoS2 and hBN, a mix of
the Stillinger-Weber and Lennard-Jones potential (SW + LJ)
[28–30] and DREIDING are used, respectively.

The applicability of the theory of membranes (a continuum
description) to understand long-wavelength physics in 2D
materials, such as graphene, is now well established [31–33]. In
the harmonic approximation of membrane theory, the bending
energy for a BL system with weak VDW interaction between
the layers can be written as

EBL = 1

2

∫
[κ(∇2h1)2 + κ(∇2h2)2 + σ (h1 − h2)2]d2x,

(1)

where κ is the bending rigidity of each constituent layer, h1, h2

are the heights of two layers with respect to each of their
reference plane, and σ denotes the interlayer coupling. In
the momentum space, using the combinations of h = (h1 +
h2)/

√
2 and δh = (h1 − h2)/

√
2, one can identify two modes:

the mean and the fluctuation modes. The corresponding height
correlation functions [34] are

HBL(q) = 〈|h(q)|2〉 = NkBT

S0κq4
, (2)

δHBL(q) = 〈|δh(q)|2〉 = NkBT

S0(κq4 + 2σ )
, (3)

where S0 is the surface area per atom and q = |
q| is defined by
the dimension of the simulation box. The dispersion relations
for the long-wavelength physics can be inferred from the

above relations: ωmean =
√

κ
ρ
q2 and ωfluc =

√
κq4+2σ

ρ
, where

ρ is the two-dimensional mass density {see the Supplemen-
tal Material (SM) [35]}. It should be noted that quantum
effects are neglected in the calculation of height correlation
functions [HBL(q), δHBL(q)]. Although the effects are im-
portant at low T , these effects are reported to be unimportant
above a crossover temperature of T ∗ ∼ 70–90 K [33]. All the
correlation functions presented here are calculated for T �
150 K from MD simulations, hence, quantum effects can be
neglected.

Figure 1(a) shows height correlation functions per atom
[HBL(q)/N, δHBL(q)/N ] for the mean and the fluctuation

FIG. 1. (a) Height correlation functions for the mean mode
HBL(q)/N (graphene: the red squares; MoS2: the green circles)
and the fluctuation mode δHBL(q)/N (graphene: the red triangles;
MoS2: the green stars) for BL graphene and BL MoS2 using MD
simulations. The black dashed and dashed-dotted lines show scaling
q−4, q−3.18 respectively. The solid lines denote the fit to the fluctuation
mode. The inset shows schematics of normal modes at the � point.
(b) The linear chain model: two masses (m) connected by a spring
with spring constant σ .

modes in BL graphene and MoS2 at room temperature. In the
figure we have shown the results for BL graphene using the
REBO + LJ and for BL MoS2 using the SW + LJ. However,
the main features of the height correlation functions are
insensitive to the choice of force fields. The mean mode of BL
graphene is well described within the harmonic approximation
[Eq. (2)] for 0.5 Å−1 � q � 1.0 Å−1. The membrane theory
predicts a change in scaling from HBL(q) ∝ q−4 to HBL(q) ∝
q−3.18 when anharmonicities become important owing to the
coupling of bending and stretching [36]. This deviation from
the harmonic approximations of membrane theory, i.e., a
change in scaling from HBL(q) ∼ q−4, is found in all the
simulated samples. Our results show that anharmonic effects
are more pronounced in BL MoS2 compared to that of graphene
[Fig. 1(a)]. More generally, we find the mean mode of the
BL system behaves like a single layer for all the simulated
materials. The fluctuation mode for both BL graphene and
MoS2 becomes a constant for q � 0.2 Å−1. This implies that
near the zone center (� point) the interlayer coupling (σ )
dictates the height fluctuations as predicted by Eq. (3). This
aspect of the fluctuation mode is key for the rest of our Rapid
Communication. Contrary to the mean mode, for small q, the
anharmonicities arising from the coupling between bending
and stretching are found to be irrelevant for the fluctuation
mode. The fluctuation mode is identified with the LBM. For
q > 1.0 Å−1, we find deviations from the membrane theory
and the existence of Bragg peaks. These peaks [Fig. 1(a)] sig-
nify the underneath crystal lattice structure. This is reasonable
as we are using MD simulated data of crystals and fitting them
with the continuum theory of membranes.

For q → 0, ωmean → 0, and ωfluc →
√

2σ
ρ

, we identify
ωfluc as the LBM frequency (ZO′) of a BL system. This
dispersionless feature of ωfluc helps us in two significant ways:
(i) We can estimate σ directly from the flat region of δHBL(q)
without depending on any other mechanical parameter. (ii) The
mapping of the BL system to the linear chain model [Fig. 1(b)]
becomes transparent. In such a model, the force constants are
determined solely from the interlayer coupling. The schematics
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TABLE I. Comparison of force constants calculated from the MD
simulation and the first-principles approach.

BL system Temperature (K) σ (×1019 N m−3) Method

Graphene 300 8.1 REBO + LJ
7.3 LCBOP

Graphene 0 7.9 DFPT [22]
MoS2 300 8.3 SW + LJ
MoS2 0 9.26 DFPT [10]

of the modes of the constituent layers at the � point are shown
in the inset of Fig. 1(a). The interlayer interaction lifts the
degeneracy of the flexural modes of each layer into ωmean and
ωfluc for q → 0. This can be confirmed from the differences
of δHBL(q)/N and HBL(q)/N . In Table I, we show the force
constants for BL graphene and MoS2 and compare those with
the values obtained from first-principles calculations. As can
be easily examined from the table, our results are in excellent
agreement with earlier reports.

The generalization of the LBMs from a BL to a FL system
can be performed in a similar fashion as in Eq. (1). Keeping
only the nearest-neighbor layer coupling terms in the FL
system, we find the normalized eigenvectors and use them to
compute all the height correlation functions explicitly (see the
SM [35]). We find the mean mode of the FL system behaves
like a single layer for the studied sample sizes. Similar to the
case of the BL system, the fluctuation modes are identified
with the LBMs. In Fig. 2 we show the layer dependence of
the LBM frequencies for graphene, MoS2, and hBN. For a
n-layer system, there are (n − 1) distinct LBM frequencies.
As can be seen from the figures, our results for graphene
[Fig. 2(a)] and MoS2 [Fig. 2(b)] capture the layer dependence
accurately. The figures also show the LBM frequencies using
DFPT [10,22]. Experimental data for graphene are shown only
for the lowest LBM frequency as they dominate the Raman
response [6]. The LBM with the lowest frequency displays
an extraordinarily simple structure where constituent layers
expand and compress with respect to the midlayer (odd n)
or midpoint (even n). Qualitatively, this mode results in the
least restoring force, hence, the lowest frequency (for the
schematics see the SM [35]). With DREIDING, the frequencies

are overestimated by ∼28% [Fig. 2(c)] for FL graphene.
Although overestimated, the general trend for the thickness
dependence of the LBM frequencies is similar for hBN and
graphene, consistent with another prediction [37]. We cannot
compare the LBM frequencies for hBN with the experimental
data as the LBMs have not been characterized for hBN yet.

Two simple traits of the evolution of frequencies with
thicknesses of 2D samples must be pointed out: (i) Upon
increasing the number of layers, interlayer coupling between
nearest-neighbor layers remains almost constant (within the
error bar), consistent with an earlier report [22]. Thus, by
computing σ from the BL system and using a simple linear
chain model the dramatic redshifts of the lowest frequency of
the LBMs with thicknesses can be captured without calculating
explicitly the height fluctuation modes for the FL sample.
(ii) The effect of the next-nearest-neighbor interaction is
found to be negligible for all the simulated samples (see the
SM [35]). If the coupling is significant enough, this method
can be easily applied by adding more terms to the bending
energy and reevaluating the height fluctuation correlations with
normalized eigenvectors.

So far, in the bending energy cost [Eq. (1)] for a BL system,
both the interlayer and the intralayer interaction terms are
assumed to be harmonic. As is well known, at constant P , upon
heating the material, the volume changes. This change in vol-
ume can be explained via inclusion of anharmonic terms in the
Hamiltonian. Also the change in phonon frequency (ω) with T

can only be obtained from the anharmonicities of the potential
energy. We calculate the change in the LBM frequency with
T , χ = dω

dT
, the first-order temperature coefficient, to discern

the anharmonic effects in the interlayer interaction. In this
regard, we also compute the thermal expansion coefficient for
interlayer separation α⊥ = 1

c
dc
dT

. All the reported values are es-
timated for the BL system with T well below the melting point.

Figure 3 shows the temperature dependence of interlayer
separation and the LBM frequency for BL graphene with
REBO + LJ and the DREIDING FF. Our results show that the
equilibrium spacing between layers c increases with T (α⊥ >

0). Moreover, increasingT leads to the softening of the effective
spring constant σ of the harmonic oscillator. This results in a
redshift (χ < 0) of the LBM frequency, which can also be
substantiated from Table II. All the anharmonic effects are
automatically included in our calculation of σ . In principle,

FIG. 2. Thickness dependence of LBM frequencies. (a) FL graphene, (b) FL MoS2, and (c) comparison of FL graphene and FL hBN
calculated using the DREIDING [27] force field. The solid lines are used as a guide to the eye. The vertical lines (red) denote error bars.
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FIG. 3. Change in interlayer spacing c (left scale) and LBM
frequency ω (right scale) with T . The blue (green) circles present
variation of c using the REBO + LJ (DREIDING), and the blue
squares (green squares) show the evolution of ω using the REBO
+ LJ (DREIDING). The solid lines represent linear fits to the data.

χ can be grouped into two parts: a “self-energy” shift due
to direct anharmonic coupling of the phonon modes χV and
a shift because of the volume change in the material χT

[13,38]. As all our simulations are carried out at constant
P , both contributions are included in the estimated χ . The
second-order temperature coefficient is found to be irrelevant
in the studied temperature range. In Table II, we have shown α⊥
for BL systems and compared it to the bulk values [39]. With
standard DREIDING parameters α⊥ is always underestimated
compared to more accurate FFs. We find that α⊥ for the BL
(with accurate FFs) is larger than that of the bulk (experiments).
It is interesting to note that there is a difference in the order of
magnitude for α⊥ (∼10−5 K−1) and the in-plane expansion
coefficient α‖ (∼10−6 K−1). This is consistent with earlier
observations [40,41]. However, the fact that α⊥ is greater
than α‖ is not very surprising. This is due to the difference
in strengths of interlayer and intralayer interactions of 2D
materials.

To summarize, we have analyzed out-of-plane vibrations
of 2D materials using a combination of classical molecular
dynamics simulations and membrane theory. We report our

TABLE II. The effect of anharmonicity is to increase the interlayer
spacing and redshift of the LBM frequency. The thermal expansion
coefficients are shown at T = 300 K.

Material Method α⊥ (×10−5 K−1) χ (×10−3 cm−1 K−1)

BL REBO + LJ 4.9 ± 0.2 −12.4 ± 0.8
Graphene DREIDING 1.9 ± 0.1 −6 ± 1

LCBOP 6.2 ± 0.3 −22.6 ± 0.9
Graphite Expt. [42] 2.7
BL MoS2 SW + LJ 2.4 ± 0.3 −9.4 ± 1.4
Bulk MoS2 DFPT [43] 1.1
BL hBN DREIDING 2.3 ± 0.1 −6.7 ± 0.8
Bulk hBN Expt. [41] 3.77

results for three different classes of 2D materials, namely,
graphene, MoS2, and hBN. We provide a consistent way to
map the LBMs of a few layers of stacked 2D materials to a
simple linear chain model in the long-wavelength limit. The
thickness sensitivity of the LBM frequencies at the � point
are well captured and in agreement with earlier reports. We
also find a redshift of the LBM frequency upon increasing
T . We compute the interlayer separation thermal expansion
coefficient along with the shift in LBM frequency for the BL
systems. We show that with accurate FFs LBM frequencies can
be reliably estimated within this simple picture. Our method
also provides a framework to capture pressure or any other
external environmental effects on the LBM frequencies. This
Rapid Communication opens up the possibility for efficiently
computing LBM frequencies (including anharmonic effects)
to characterize and understand properties of 2D materials and
their heterostructures.
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on the Rapid Communication.
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