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Origin of layer dependence in band structures of two-dimensional materials
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We study the origin of layer dependence in band structures of two-dimensional (2D) materials. We find that
the layer dependence, at the density functional theory (DFT) level, is a result of quantum confinement and the
nonlinearity of the exchange-correlation functional. We use this to develop an efficient scheme for performing
DFT and GW calculations of multilayer systems. We show that the DFT and quasiparticle band structures of a
multilayer system can be derived from a single calculation on a monolayer of the material. We test this scheme
on multilayers of MoS2, graphene, and phosphorene. This new scheme yields results in excellent agreement with
the standard methods at a fraction of the computation cost. This helps overcome the challenge of performing
fully converged GW calculations on multilayers of 2D materials, particularly in the case of transition-metal
dichalcogenides, which involve very stringent convergence parameters.
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I. INTRODUCTION

Two-dimensional (2D) materials have been extensively
studied in the last decade [1–9] owing to their applications in
electronics and optoelectronics [10–12]. 2D materials consist
of layers that are held together by weak van der Waals forces. A
remarkable feature of these layered materials is the difference
in properties of a monolayer compared to multilayers of the
same material [2–7,13,14]. For instance, monolayer of MoS2

has a direct band gap, while multilayers of MoS2 have an
indirect gap [2,3,5,13,15]. Most gapped 2D materials, such as
transition-metal dichalcogenides (TMDCs), hexagonal boron
nitride, and phosphorene, show an unmistakable reduction in
band gap with the number of layers [2,3,6,7,13–20].

First-principles electronic structure calculations, based on
the GW [21,22] approximation, have resulted in band gaps that
are in excellent agreement with experiments [6,8,16,23–27]
on these materials. Band gaps of these materials calculated
using density functional theory (DFT) [28,29], while underes-
timated, also show a clear reduction with the number of layers
[7,14,15,18–20]. Most studies have attributed this reduction in
the band gap to quantum confinement [3,5–7]. However, there
are no studies that quantitatively explain this trend.

The idea of quantum confinement comes from the model
of an electron in a one-dimensional box. In multilayer stacks
of 2D materials, the confining length of the box is directly
proportional to the number of layers. In this context, the
increase in the confinement length in multilayers as compared
to a monolayer, due to the summing of constituent layer
potentials, is attributed to quantum confinement. On adding
the potentials of constituent layers, the interlayer spacing
creates a finite barrier in the interstitial region between adjacent
layers. This barrier with a DFT-calculated Hartree potential
profile has been used to qualitatively explain the trend in
the layer dependence of the band gap in phosphorene [6].
Recently, perturbation approaches [18,30], which need input
from explicit multilayer calculations, have been used to study
layer dependence of band structures.

Furthermore, in the case of TMDCs, it has been shown
that the quasiparticle band gap calculated using the GW

approximation converges extremely slowly with the number
of unoccupied states, k-point sampling, and the screened

Coulomb cutoff [31,32]. Performing separate GW calculations
for a monolayer, bilayer, trilayer, or more with parameters that
ensure convergence is computationally very challenging. To
study the variation of properties as a function of interlayer
spacing or stacking of the layers needs one to repeat the cal-
culation for different parameters. Moreover, GW calculations
on heterostructures of 2D materials are presently intractable
due to their lattice incommensurability necessitating the use
of large supercells of each material. Identifying the origin
of layer dependence opens up the possibility of deriving
ground-state and excited-state properties of multilayer stacks
from calculations on a monolayer alone. Doing so would
immensely ease the computation cost incurred in performing
separate DFT and GW calculations for different configurations
of the constituent layers.

We study the physical origin of layer dependence in band
structures of 2D materials. We show that while quantum
confinement gives qualitatively the right trend, the nonlinearity
of the Vxc functional plays a crucial role in quantitatively
determining the layer dependence. We show that within
DFT, band structures of multilayer stacks can be derived
from a single calculation on a monolayer of the material.
We also extend this scheme to obtain quasiparticle energies
of multilayer systems from a single GW calculation on a
monolayer of the material. We apply this method to understand
the layer dependence of band structure in multilayers of a
prototypical TMDC, 2H-MoS2, and compare the results to the
standard calculations on this material [2–4]. We demonstrate
the transferability of this scheme by applying it to graphene
and phosphorene.

II. COMPUTATION DETAILS

We performed the DFT calculations using the plane-wave
pseudopotential method as implemented in the QUANTUM

ESPRESSO [33] package. Norm-conserving pseudopotentials
were used in all calculations. The wave functions were
expanded in plane waves with an energy cutoff of 150 Ry
for MoS2. For graphene and phosphorene, we used a wave
function cutoff of 70 Ry and 40 Ry, respectively. The local
density approximation to the exchange-correlation functional
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[34] was used in MoS2 and graphene calculations. For
phosphorene we used the Perdew-Burke-Ernzerhof exchange-
correlation functional [35]. The Brillouin zone was sampled
with 24 × 24 × 1, 21 × 21 × 1 and 21 × 15 × 1 k-point grids
for MoS2, graphene, and phosphorene, respectively. We kept
the in-plane lattice parameter for each material fixed in all the
calculations. The bilayer and trilayer were constructed from
the monolayer with the appropriate stacking and interlayer
spacing. No atomic relaxations were allowed in the bilayer and
trilayer. The supercell dimension in the out-of-plane direction
was fixed at 35 Å.

The GW calculations were performed using the BERKE-
LEYGW package [36,37]. For MoS2, the dielectric function was
evaluated with plane waves up to a cutoff of 35 Ry and was
extended to finite frequencies using the generalized plasmon
pole (GPP) [22] model. The self-energy was constructed
using the one-shot G0W0 method. The Coulomb interaction
was truncated in the out-of-plane direction [38]. For MoS2

supercell size of 35 Å in the out-of-plane direction, 24 ×
24 × 1k-point sampling and 8400 valence and conduction
states are necessary to ensure convergence [32]. We perform
separate calculations on monolayer, bilayer, and trilayer
MoS2 with 12 × 12 × 1 k-point sampling and 6000 valence
and conduction states and compare the quasiparticle band
structures of bilayer and trilayer with results obtained from
the proposed scheme. These parameters, while not fully
converged, demonstrate the efficacy of this scheme. We also
perform fully converged calculations on a monolayer of MoS2

and derive the band gap, ionization potential, and electron
affinity of bilayer and trilayer using our scheme. Our fully
converged monolayer band gap is in good agreement with
previous calculations [8,32]. For phosphorene, we perform
separate calculations on monolayer, bilayer, and trilayer with
21 × 15 × 1 k-point sampling, 800 valence and conduction
states, and 15 Ry dielectric cutoff. We compare the band gap,
ionization potential, and electron affinity obtained using our
scheme to those obtained from the full calculation. The static
remainder technique was used to speed up convergence with
the number of bands [39] in all calculations.

III. DFT BAND STRUCTURES

In order to understand the layer dependence of the DFT
band gap, consider a bilayer of MoS2 with constituent layers
labeled “a” and “b” [Fig. 1(a)] [40]. We perform separate
DFT calculations on layer a, layer b, and the bilayer to obtain
the self-consistent charge densities and potentials of each. In
Fig. 1(b), we plot the planar averaged charge densities of
layer a, layer b, and the bilayer. From the figure one can
see that the bilayer charge density, ρbi, lies on top of the
sum of the charge densities of the constituent layers, ρa + ρb,
which indicates that there is no significant rearrangement of
charge in the bilayer compared to the monolayers. Figure 1(c)
shows the planar averaged total DFT potential of the bilayer,
V bi

tot. From this figure, it is clear that the sum of the layer
potentials V a

tot + V b
tot is not equal to the bilayer potential. The

sum of the potentials, as described above, is the use of quantum
confinement to obtain the potential for the bilayer. The
difference, V bi

tot − (V a
tot + V b

tot), is localized to the interstitial
region between the two layers where the charge densities

FIG. 1. (a) Bilayer MoS2 in AB stacking, red spheres represent
Mo atoms and yellow spheres S atoms. (b) Planar averaged charge
density of bilayer MoS2 (black solid line), planar averaged charge
density of layer “a” (red dash-dot line), layer “b” (blue dashed
line) and sum of layer a and b (magenta line not seen). The shaded
regions indicate the position of the MoS2 layers in the simulation cell.
(c) Planar averaged DFT potential of the layer a, V a

tot (red dash-dot
line), layer b, V b

tot (blue dashed line), the sum V a
tot + V b

tot (solid
magenta line), and bilayer, V bi

tot (black solid line). (d) Difference
V bi

tot − (V a
tot + V b

tot) (black solid line) and Vxc[ρa + ρb] − (Vxc[ρa] +
Vxc[ρb]) (violet dashed line).

overlap. It can not arise from the Hartree potential since it
is a linear functional of the charge density and here the charge
density of the bilayer is a sum of the charge densities of the
individual layers. It can not arise from the ionic potential either,
due to the absence of atomic relaxations in the bilayer. The
difference must arise due to the nonlinearity of the exchange-
correlation functional. Figure 1(d) plots this difference, which
is an additional barrier between the layers. Figure 1(d) also
plots Vxc[ρa + ρb] − (Vxc[ρa] + Vxc[ρb]) = �Vxc, showing
that this additional barrier indeed comes solely from the
exchange-correlation difference. The total bilayer potential
can thus be expressed as a sum of the individual layer potentials
and �Vxc. Thus, the layer dependence of properties is an effect
of quantum confinement and nonlinearity of the Vxc functional.

We can construct the DFT Hamiltonian for the bilayer in
terms of the potential and charge density of the constituent
layers as:

H = T̂ + V a
tot + V b

tot + �Vxc, (1)

where T̂ is the kinetic energy operator. It should be noted
that everything required to construct this Hamiltonian can be
obtained from a single monolayer calculation, say on layer a.
Based on the relative configuration of atoms in layer b with
respect to layer a, a suitable transformation can be applied
on ρa and V a

tot to obtain ρb and V b
tot, respectively. The wave

functions of layer a, {ψa
nk}, can similarly be transformed to

obtain the wave functions of layer b, {ψb
nk}. The Hamiltonian

can then be constructed in the basis of the wave functions of the
two layers, {ψa,ψb}, keeping in mind that the wave functions
of the two layers do not form an orthogonal basis. The gener-
alized eigenvalue problem can be solved to yield eigenvalues
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FIG. 2. (a), (b), and (c) plot the DFT band structure of monolayer,
bilayer, and trilayer MoS2, respectively. (d), (e), and (f) plot the DFT
band structures of monolayer, bilayer, and trilayer graphene. The
black solid line indicates the result from separate DFT calculations
on these systems. The red dashed line shows the result obtained
by a single-shot diagonalization of the constructed Hamiltonian
Eq. (1) for these systems in the basis of the wave functions of the
constituent layers. The blue dashed lines are the eigenvalues obtained
by considering only quantum confinement in these systems.

and eigenfunctions of the bilayer. This procedure can easily be
generalized to N layers: H = T̂ + ∑N

i=1 V i
tot + �Vxc; where

�Vxc = Vxc[
∑N

i=1 ρi] − ∑N
i=1 Vxc[ρi]. It is worth noting that

while constructing the Hamiltonian we use Vxc(r) and not just
the planar averaged quantities.

The band structure of monolayer, bilayer, and trilayer
MoS2 from separate DFT calculations is plotted in Figs. 2(a),
2(b), and 2(c), respectively. The points � and � are marked
halfway between �-M and K-� respectively. Figures 2(d),
2(e), and 2(f) similarly show the band structure of monolayer,
bilayer, and trilayer graphene, respectively. Figure 2 also
shows the band structure obtained by neglecting �Vxc from
Eq. (1). This describes the effect of quantum confinement
alone on the layer dependence of the band structures. While
it captures the qualitative trends such as the transition from
direct to indirect band gap in MoS2, it fails to give an
accurate layer dependence of the value of the band gap,
ionization potentials, and level splittings in the band structure.
In MoS2, the splittings are overestimated at the conduction
band minimum (CBM) of the � point and underestimated
at the � point valence band maximum (VBM). The relative

FIG. 3. Modulus squared wave functions of monolayer MoS2,
integrated out along [010] lattice vector direction. z is the out-of-plane
direction and x the [100] direction. Top: CBM wave functions at K,
�, and � points, respectively. Bottom: VBM wave functions at K, �,
and � points, respectively.

positions of the conduction band edges at the �, K, and �

points are also very different from the full DFT calculation.
Similarly, in graphene, excluding �Vxc overestimates the
ionization potential and the band splittings. The band structure
obtained from the eigenvalues obtained by diagonalizing the
constructed Hamiltonian described previously is also plotted
in Fig. 2. As can be seen, these band structures are in excellent
agreement with the full calculation for MoS2 and graphene.
A slight difference up to 5–10 meV is found due to a small
rearrangement of charge in the bilayer or trilayer as compared
to the sum of the constituent layer charge densities. Hence,
to obtain the quantitative layer dependence, both the effects
of quantum confinement and nonlinearity of the exchange-
correlation functional need to be accounted for.

The band structures of MoS2 in Fig. 2 show a transition
from a direct band gap at K in the monolayer to an indirect
band gap from � to � in the bilayer. The transition is driven
by the large splitting of the VBM at the � point and CBM at
the � point. The K point VBM and CBM on the other hand
split only slightly. The amount by which a band splits depends
on the off-diagonal elements of the multilayer Hamiltonian
represented in the basis of the constituent layer wave functions
and the overlap between the wave functions of the constituent
layers. The VBM and CBM of the monolayer at K are localized
in space and have a large Mo d orbital character (see Fig. 3).
The CBM at � and VBM at � on the other hand have a strong
S pz character (see Fig. 3). They are hence more delocalized
in the out-of-plane direction and hybridize more with the wave
functions of other layers than the wave functions at K. This
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leads to the large splittings in the band structure at these points
for the bilayer and trilayer [see Figs. 2(b) and 2(c)]. The VBM
and CBM at K, VBM at �, and CBM at � show little to no
splitting in the band structures owing to their localized nature
(see Fig. 3).

IV. QUASIPARTICLE BAND STRUCTURES

We can extend this method to calculate the quasiparticle
energies and band structures. The DFT eigenvalues can be
corrected by using the GW approximation to the electron self-
energy, � [22]. For the bilayer, quasiparticle eigenvalues are
given by:

ε
QP
i = εDFT

i + 〈
ψbi

i

∣∣�bi
(
ε

QP
i

) − V bi
xc

∣∣ψbi
i

〉
,

where |ψbi
i 〉 is the DFT wave function corresponding to the

eigenvalue εDFT
i and ε

QP
i is the corresponding quasiparticle

energy. Evaluating �bi with the one-shot G0W0 method
within the GPP approximation [22] requires the bilayer charge
density, the bilayer irreducible polarizability, χbi

0 , and wave
functions of the bilayer, ψbi.

We now show that all the required quantities can be
approximated from the quantities obtained from a monolayer
calculation, say on layer a. The procedure to obtain ψbi and ρbi

is as described before. The bilayer self-energy can be written
as a sum over the individual self-energies of the layers and a
correction term:

〈ψbi| �bi |ψbi〉 = 〈ψbi| �a
GW+�b

GW |ψbi〉 + 〈ψbi| ��|ψbi〉 .

(2)

〈ψbi| �a
GW |ψbi〉 can be computed directly from mono-

layer irreducible polarizability, χa
0 , ρa , and ψa . To compute

〈ψbi| �b
GW |ψbi〉, we obtain χb

0 , ρb, and ψb by applying
transformations similar to the ones described above to χa

0 ,
ρa , and ψa respectively. The correction term, 〈ψbi| �� |ψbi〉
contains information on the interaction between the lay-
ers. Due to the weak coupling between the layers, we
expect 〈ψbi| �� |ψbi〉 to be a small correction (compared
to 〈ψbi| �a + �b |ψbi〉). We can evaluate �� at various
levels of approximation. It can be evaluated at the DFT
level by �� = �Vxc; or assuming just exchange interaction
between the layers ��x = �bi

x − �a
x − �b

x ; or within the
static limit of GW (COHSEX) ��COHSEX = �bi

COHSEX −
�a

COHSEX − �b
COHSEX; or within full GW . The only additional

quantity needed in some of these approximations is, χbi
0 , which

can be approximated as a sum of the irreducible polarizability
of constituent layers: χbi

0 = χa
0 + χb

0 [24,25]. This method
can easily be extended to calculate band structures of n
layers by computing 〈ψn| �n |ψn〉 = 〈ψn| ∑N

i=1 �i
GW |ψn〉 +

〈ψn| �� |ψn〉. �� = �n − ∑N
i=1 �i can then be evaluated

at an appropriate level of approximation.
Table I shows the ionization potential, electron affinity, and

band gap for bilayer and trilayer MoS2 for different approxi-
mations to ��. We compare them to the full GW calculation
on these systems. �� = �Vxc and �� = ��COHSEX show
good agreement with the converged gap for the bilayer but fail
to give the right ionization potential (IP) and electron affinity
(EA). The COHSEX approximation to �� works well for the
band gap in trilayer too, but again falls short in the ionization

TABLE I. Ionization potential (IP), electron affinity (EA), and
band gap (in eV) of bilayer and trilayer MoS2 evaluated using the
constructed � for various approximations of �� described in the text.
The top section compares the results from full calculations performed
with 12 × 12 × 1 sampling, 6000 bands to the results from various
approximations of ��. ��800

GW denotes �� evaluated at the GPP
level with 800 bands. The bottom section are the results obtained by
applying our scheme to a fully converged monolayer calculation.

�� Bilayer Trilayer

(12 × 12 × 1) IP EA Gap IP EA Gap

�Vxc 5.49 3.38 2.11 4.84 2.75 2.09
��x 7.09 4.26 2.83 7.04 4.56 2.49
��COHSEX 5.65 3.55 2.10 4.98 3.33 1.65
��800

GW 6.16 3.99 2.17 5.86 4.11 1.75
Full 6.17 4.03 2.14 5.87 4.17 1.70

�� Bilayer Trilayer

(24 × 24 × 1) IP EA Gap IP EA Gap

��800
GW 6.05 4.03 2.02 5.81 4.09 1.72

potential and electron affinity. The difference in band gap
obtained using �� = ��COHSEX and �� = ��x shows that
correlation plays an important role in the interaction between
the layers. As the next level of approximation, we compute ��

using GW with a few number, Nc, of conduction states. We
find that a small number, Nc = 800, is sufficient to converge
the bilayer and trilayer MoS2 self-energies. Figures 4(a)
and 4(b) show this convergence. It should be noted that
the small number of states are used here only to compute
the ��. We do not calculate χbi

0 with a few unoccupied
states. The bilayer irreducible polarizability is constructed with

FIG. 4. (a) and (b) Convergence of the constructed
〈ψCBM | �bi |ψCBM〉 and 〈ψCBM | �tri |ψCBM〉 with the number
of bands for the CBM at � (green crosses). The horizontal line is the
converged result from full calculations. The blue circles show the
slow convergence of the full calculation with the usual procedure.
(c), (d), and (e) plot the quasiparticle band structure of monolayer,
bilayer and trilayer MoS2, respectively. The black solid line indicates
the result from separate GW calculations. The red dashed line shows
the result obtained using the scheme described in the text.

165125-4



ORIGIN OF LAYER DEPENDENCE IN BAND STRUCTURES . . . PHYSICAL REVIEW B 95, 165125 (2017)

TABLE II. Ionization potential (IP), electron affinity (EA), and
band gap (in eV) of bilayer and trilayer phosphorene evaluated using
the constructed � for various approximations of �� described in the
text. ��300

GW denotes �� evaluated at the GPP level with 300 bands.

Bilayer Trilayer

�� IP EA Gap IP EA Gap

�Vxc 5.47 3.71 1.76 5.12 3.74 1.38
��x 6.45 4.62 1.83 6.66 4.86 1.80
��COHSEX 5.27 3.69 1.58 4.69 3.60 1.09
��300

GW 5.73 4.17 1.56 5.50 4.25 1.25
Full 5.73 4.20 1.53 5.49 4.29 1.20

the converged monolayer irreducible polarizabilities. With
this approximation, we obtain the IP, EA, and band gap in
good agreement with the full calculation [see Table I]. A
major computational bottleneck in performing separate GW

calculations for the monolayer, bilayer, and trilayer is the
generation of the large number of unoccupied bands on a
fine k-point grid and using these to compute the irreducible
polarizability. This scheme completely does away with the
need to regenerate the unoccupied bands and the polarizability
for the bilayer and trilayer once we have the same for a
monolayer. Figures 4(d) and 4(e) compare the bilayer and
trilayer MoS2 quasiparticle band structures obtained using this
scheme with those obtained from full calculations on these.
The eigenvalues are in good agreement with the full GW

calculation, up to 100 meV, and obtained at a small fraction of
the computation cost. Note that the results in Fig. 4 and Table I
were obtained with slightly softened convergence parameters
(see Sec. II). We also perform a monolayer calculation with
the fully converged parameters and use this scheme to derive
the band gap, IP, and EA for bilayer and trilayer [see Table I].
The converged IP, EA, and band gap for the monolayer are
found to be 6.76, 4.02, and 2.74 eV, respectively. The band
gap for the monolayer is found to be in good agreement with
previous calculations [8,32].

Table II compares the IP, EA, and band gap for bilayer
and trilayer phosphorene obtained using this scheme to those
obtained from the full calculation on these. Here we find that
Nc = 300 is sufficient to converge the bilayer and trilayer
self-energies. The COHSEX approximation to �� again
shows good agreement with the full calculation for the band
gap (up to 100 meV), but fails to give the right IP and EA.
Evaluating �� at the COHSEX level thus seems to be a
consistent approximation to obtain the converged quasiparticle
band gap.

V. INTERLAYER SPACING DEPENDENCE IN BILAYER

The transition in bilayer MoS2, from interacting mono-
layers to noninteracting ones can be studied by gradually
increasing the interlayer spacing. Figure 5 shows the evolution
of the DFT band structure, charge density, and potential of
bilayer MoS2 as a function of increasing interlayer spacing
d. The equilibrium spacing is deq = 6 Å. As the spacing
between the layers increase, the interaction between them
weakens and the splitting of the valence bands at � and

FIG. 5. (a), (b), and (c) DFT charge density, potential, and band
structure of bilayer MoS2 at the equilibrium interlayer spacing of
6.0 Å, respectively. (d), (e), and (f) For interlayer spacing of 7.5 Å.
(g), (h), and (i) For interlayer spacing of 9.0 Å.

the conduction bands at � reduces. This leads to a band-gap
transition from �-� to �-K to K-K. At d = 7.5Å, the charge
densities of the two layers stop overlapping, but the potential
barrier between the layers is not zero. At this point the
layers are weakly interacting and the nature of interaction
within DFT is purely due to quantum confinement; �Vxc is
zero. At d = 9Å and above, the two layers are completely
noninteracting at the DFT level and the gap is that of monolayer
MoS2.

We construct the bilayer self energy at different interlayer
spacings using the various approximations to ��. The gap
thus computed is shown in Fig. 6(a). In the approxima-
tion of �� = ��x and �� = �Vxc, the layers become
noninteracting once the charge densities of the two layers
stop overlapping. Thus, the gap in this approximation goes
to the monolayer gap for spacing larger than d = 7.5 Å.
The approximations of �� = ��COHSEX and �� = ��800

GW

include the long-range correlation interaction between the
layers. The band gap computed in these approximations
thus show a slower convergence to the monolayer gap with
increasing interlayer spacing. Note that these calculations are
performed using a coarser 12 × 12 × 1k-point sampling and
6000 bands, leading to an overestimate of the monolayer gap in
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FIG. 6. (a) Band gap of bilayer MoS2 as a function of interlayer
spacing evaluated using the constructed � for various approximations
to ��. The dashed line marks the monolayer band gap within GW .
(b) VBM and CBM of the bilayer as a function of interlayer spacing,
evaluated using �� = ��800

GW . The dashed line marks the GW VBM
and CBM of a monolayer.

Fig. 6. Figure 6(b) shows the VBM and CBM levels computed
using �� = ��800

GW as a function of increasing interlayer
spacing. The bilayer CBM shows a weak dependence on the
interlayer spacing and is already aligned with the monolayer
CBM, while the bilayer VBM shows a slow convergence
towards the monolayer VBM as the spacing is increased. This
is similar to the effect of a metallic substrate on a molecule,
where DFT shows no renormalization of the band gap but
accounting for correlation effects in GW shows a significant
renormalization [41–43]. The renormalization of the molecular
levels is due to screening from image charge effects, arising
from the metal substrate. In the bilayer MoS2 system, sim-
ilarly, one monolayer is affected by the screening from the
other.

VI. CONCLUSION

We studied the origin of layer dependence in band structures
of 2D layered materials and developed a scheme to derive
multilayer properties from calculations on a monolayer alone.
We showed that the observed trend in layer dependence
within DFT is a combined effect of quantum confinement
and nonlinearity of the DFT exchange-correlation functional.
We also constructed the electron self-energy for multilayers in
terms of monolayer irreducible polarizability, charge density,
and wave functions. The DFT and quasiparticle band structures
obtained using this scheme are in excellent agreement with
those from the full calculation. The advantage of this scheme
is that it can provide accurate results operating at a small
fraction of the computation cost of a full calculation on
multilayer systems. We show that using this scheme, one
is able to capture the long-range correlation effects within
GW , which leads to a significant renormalization of the
gap even when DFT finds the layers to be noninteracting at
larger interlayer spacings. This scheme can also be useful to
study the variation in band structure as a function of stacking
between the layers. Furthermore, it can be extended to study
the nature of interaction between layers in heterostructures
of these materials. It paves a way to derive properties of
a heterostructure from just unit cell calculations on the
constituent materials. This scheme is a promising tool to study
multilayers and layer dependence of properties in the growing
family of 2D layered materials.
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