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First-principles investigation of cubic BaRuO3: A Hund’s metal
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A first-principles investigation of cubic BaRuO3, by combining density functional theory with dynamical
mean-field theory and a hybridization expansion continuous time quantum Monte Carlo solver, has been carried
out. Nonmagnetic calculations with appropriately chosen on-site Coulomb repulsion U and Hund’s exchange
J for single-particle dynamics and static susceptibility show that cubic BaRuO3 is in a spin-frozen state at
temperatures above the ferromagnetic transition point. A strong redshift with increasing J of the peak in the
real frequency dynamical susceptibility indicates a dramatic suppression of the Fermi liquid coherence scale as
compared to the bare parameters in cubic BaRuO3. The self-energy also shows clear deviation from Fermi liquid
behavior that manifests in the single-particle spectrum. Such a clean separation of energy scales in this system
provides scope for an incoherent spin-frozen (SF) phase that extends over a wide temperature range, to manifest
in non-Fermi liquid behavior and to be the precursor for the magnetically ordered ground state.
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I. INTRODUCTION

Transition metal oxides (TMOs) have occupied a unique
and very significant position in the investigations of correlated
electron systems. The interplay of spin, charge, and orbital
degrees of freedom in the partially filled and localized 3d and
4d orbitals leads to a rich set of phenomena including high
temperature superconductivity, colossal magnetoresistance,
and the Mott metal-insulator transition. Due to the extended
nature of 4d orbitals, the corresponding TMOs exhibit strong
hybridization with oxygen. This leads to a large crystal field
splitting that could be of the order of the local screened
Coulomb interaction (U ) and a broad 4d band of width W . As
a consequence, these materials prefer a low spin state rather
than the high spin state.

Furthermore, the wide d band in 4d-orbital based TMOs,
such as the ruthenates, leads to a moderate screened Coulomb
interaction U � W as compared to the much narrower d

band in 3d-orbital based TMOs [1]. Surprisingly however,
most of the Ru-based TMOs show strong correlation effects
that are reflected in the enhanced linear coefficient of their
specific heat γ . A few of such ruthenates are mentioned in
Table I, where we have also indicated the magnetic order of
the ground state as well as the effective mass computed as
the ratio of experimentally [1,2] measured γ to γLDA, which
is computed [2] within a local density approximation (LDA).
The origin of such enhanced effective mass could be a local
Coulomb repulsion induced proximity to an insulating state.
An alternative origin could be the Hund’s [1,3–5] coupling J

(intra-atomic exchange), which, as has been shown recently for
several materials, especially ruthenates [3,6,7], leads to their
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characterization as “Hund’s metals.” A prominent member of
this class is BaRuO3 which, depending on synthesis condi-
tions, can exist in four polytypes [8]. These are nine-layered
rhombohedral (9R), four-layered hexagonal(4H), six-layered
hexagonal (6H), and cubic (3C). The 9R has a paramagnetic
insulating (PI) ground state while 4H and 6H are paramagnetic
metals (PM).

The 3C-BaRuO3 polytype is a ferromagnetic metal with
Curie temperature Tc = 60 K, which is much smaller than the
value of Tc (= 160 K) in SrRuO3 [9]. The experimental value
of the saturated magnetic moment of 3C-BaRuO3 [8] is 0.8
μB /Ru, which is far less than the 2.8 μB /Ru expected for a
low spin state. It is also smaller than the measured value of
1.4 μB /Ru in SrRuO3 [9]. The observed effective magnetic
moment (μeff) in the paramagnetic phase of BaRuO3 and
SrRuO3 is, however, very close to the moment of a S = 1 state
with a rotationally invariant J term. From Table I we can read-
ily understand that electron correlations in 4H-BaRuO3 and
6H-BaRuO3 are comparable to the correlation in SrRuO3, and
in case of 9R-BaRuO3 they are weaker. Although the strength
of the electron correlations in 3C-BaRuO3 is still unknown,
a non-Fermi liquid behavior in the experimentally measured
resistivity [8,10], i.e., ρ(T ) ∝ T 1.85 in the ferromagnetic phase
and its crossover to T 0.5 in the paramagnetic phase (similar to
SrRuO3 [11] and CaRuO3 [12] compounds), hints towards a
strongly correlated system [1].

In the present work we address the following questions:
Is 3C-BaRuO3 a correlated metal or not? If yes, then what is
the origin and strength of correlations? What is the probable
origin of the non-Fermi liquid (NFL) signature in the resistivity
[8,10]? We have employed the dynamical mean-field theory
(DMFT) framework in combination with an ab initio method
[13], namely density functional theory (DFT) within the
generalized gradient approximation (GGA) [14]. In the DMFT
[15] framework, a lattice problem is mapped on to a single
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TABLE I. Magnetic ground state and the ratio of γ to γLDA for 4d

Ru-based compounds. (PM: paramagnetic metal, FM: ferro-magnetic
metal, and PI: paramagnetic insulator.)

Compound Magnetic order γ

γLDA

Sr2RuO4 PM 4
Sr3Ru2O7 PM 10
CaRuO3 PM 7
SrRuO3 FM < 160 K 4
3C-BaRuO3 FM < 60 K –
4H-BaRuO3 PM 3.37
6H-BaRuO3 PM 3.37
9R-BaRuO3 PI 1.54

impurity Anderson model with a self-consistently determined
bath. We solve the resulting quantum impurity problem by
using the hybridization expansion [16,17] continuous-time
quantum Monte Carlo algorithm (HY-CTQMC). Our main
finding is that 3C-BaRuO3 is a Hund’s correlated metal.
Furthermore, we find that 3C-BaRuO3 is in a spin-frozen state
at temperatures in the neighbourhood of the ferromagnetic
transition temperature. This state, we speculate, is the precur-
sor of the ferromagnetic ground state and also a possible origin
of the experimentally observed NFL behavior in resistivity.

The rest of the paper is organized as follows. In Sec. II we
describe the DFT details and Wannier projection briefly. In
Sec. III we describe our results from GGA+DMFT(CTQMC)
for 3C-BaRuO3. We present our conclusions in the final
section.

II. DETAILS OF THE DENSITY FUNCTIONAL THEORY
CALCULATIONS AND RESULTS

The 3C polytype of BaRuO3 belongs to the space group
of Pm-3m which corresponds to an ideal cubic perovskite
structure, while the closely related CaRuO3 and SrRuO3

crystallize in an orthorhomic distorted perovskite structure
of space group Pnma [8]. A significant structural change
from CaRuO3 to SrRuO3 and to BaRuO3 is a decrease in
the bending angle [8] (180◦-φ) of Ru-O-Ru bonds, which
becomes zero for BaRuO3. Apart from the slight distortions
of the RuO6 octahedra in CaRuO3 and SrRuO3, which are
absent in BaRuO3 [8], each of these materials have threefold
degenerate t2g bands near the Fermi level with a formal valence
of four electrons [8], i.e., t4

2ge
0
g . We perform density functional

theory (DFT) calculations within the generalized gradient
approximation using the plane-wave pseudopotential code
QUANTUM ESPRESSO [18]. We use ultrasoft pseudopotentials
with the Perdew-Burke-Ernzerhof [19] exchange-correlation
functional. An 8 × 8 × 8 Monkhorst-Pack k grid is used for
optimization together with an 80 Ry energy cutoff and a 640
Ry charge cutoff. The system is considered to be optimized
if the forces acting on all the atoms are less than 10−4

Ry/bohr. After optimization we find the lattice parameter to be
4.0745 Å. Throughout the calculations, the Marzari-Vanderbilt
cold smearing is used with a degauss value of 0.01 Ry. A
20 × 20 × 20 k grid without any symmetries is used for all the
non-self-consistent calculations (including Wannier90 calcu-
lations). To extract the information of the low-energy subspace,

FIG. 1. Band structure of cubic BaRuO3 in its nonmagnetic
phase. Energies are scaled to the Fermi level (dotted line).

which is used in the DMFT calculation, we have projected
the Bloch wave functions obtained from our DFT calculations
onto the Ru-t2g orbitals using the maximally localized Wannier
functions (MLWF) [20] technique as implemented in the
Wannier90 code [21].

The electronic band structure, density of states (DOS), and
projected DOS (pDOS) of BaRuO3 in its nonmagnetic (NM)
phase are given in Figs. 1 and 2. The DFT results predict
BaRuO3 to be a metal in its nonmagnetic phase with major
contributions from the Ru-4d and O-2p orbitals across the
Fermi level. Hybridization between Ru-4d orbitals and O-2p

orbitals spans from approximately 8 eV below the Fermi level

FIG. 2. Projected density of states (PDOS) of BaRuO3. Green
(shaded light gray), violet (shaded dark gray), black (thick line),
orange (dashed line), and gray (dot-dashed line) represent the DOS of
the whole system, Ru-atom, O-atom, Ru-eg , and Ru-t2g , respectively.
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FIG. 3. Orbital plots of maximally localized Wannier functions
used to reproduce the low-energy subspace Hamiltonian.

to around 5 eV above the Fermi level. Bands above 5 eV are
mainly composed of Ba-d and Ru-p orbitals.

We find that, due to the octahedral environment of the
oxygen ions surrounding the ruthenium, the Ru-4d orbitals
split into two sets, namely t2g and eg , where t2g (eg) orbital’s
contribution to the DOS is mainly below (above) the Fermi
level, supporting the low-spin t2g configuration of the nominal
valence Ru4+ (d4).

From Fig. 2 we infer that the low-energy subspace (−2.5 to
1 eV), which is relevant for the DMFT calculations, is mainly
composed of Ru-t2g orbitals (with minor contributions from
O-2p and Ru-eg orbitals) with occupancy of approximately
four electrons. Hence, to extract the low-energy subspace
Hamiltonian in an effective Wannier function basis, we project
the Bloch wave functions obtained from our DFT calculations
onto the dxz, dyz, and dxy orbitals. The optimized Wannier
functions calculated using the MLWF method as implemented
in the Wannier90 [21] code are given in Fig. 3 and the
corresponding low-energy subspace band structure calculated
using these Wannier functions are given in Fig. 4. Clearly the
band structures obtained from both the basis sets (Wannier,
plane wave) compare fairly well in the low-energy subspace,
validating the proper choice of our projection. Also, as shown
in Fig. 3, the Wannier functions show the dxz, dyz, and dxy

orbital character and in addition have a substantial O-2p

character due to their contributions near the Fermi level. The
Hamiltonian obtained in this Wannier basis is used for all the
DMFT calculations, as the unperturbed or the “noninteracting”
Hamiltonian.

III. GGA+DMFT

In the DMFT calculations we introduced a local Coulomb
interaction of density-density type between the orbitals. The
interaction part of the Hamiltonian is given in the second

FIG. 4. Low-energy subspace band structure obtained from:
(a) Plane-wave basis and (b) Wannier basis.

quantization notation by

H int
ii =

3∑

i,α=1

Uniα↑niα↓ +
∑

i,α �=β

∑

σσ ′
(V − Jδσσ ′)niασ niβσ ′ ,

where i represents the lattice site and α, β represent orbital
indices. U is the Coulomb repulsion between two electrons
with opposite spin on the same orbital. We impose orbital
rotational symmetry by setting V = U − 2J , where J is the
Hund’s coupling, which lowers the energy of a configuration
with different orbitals (α �= β), and parallel spins σ = σ ′.
We solve the effective impurity problem within DMFT by
using the hybridization expansion continuous-time quantum
Monte Carlo (HY-CTQMC). In the literature, a range of U

and J values have been used for 4d-Ru based TMOs. Indeed,
determining these without ambiguity is not possible at present.
In a recent work [7], using the constrained random phase
approximation (cRPA) method, the U value for ruthenates
was found to be 2.3 eV. Thus, we choose URu = 2.3 eV.
We fix the JRu ∼ 0.5 to a value such that the theoretically
calculated paramagnetic magnetic moment matches the cor-
responding experimentally measured value. Apart from this
specific set of model parameters, we have investigated a
range of (U,J ) values in the neighborhood of (URu,JRu) to
ascertain the position of 3C-BaRuO3 in the phase diagram.
In the DMFT calculations, we find the chemical potential
by fixing the occupancy to four electrons per Ru. Before
we discuss our results on cubic BaRuO3 with density-density
type interactions, we briefly review investigations on the role
of rotationally invariant interactions for multiband models
within DMFT. Werner et al. [3] have studied a three-band
model with a full rotationally invariant Hamiltonian for a
toy density of states. They found a quantum phase transition
between a paramagnetic metallic phase and a spin-frozen phase
with a rotationally invariant on-site exchange 0 < J < U

3 .
The characteristic features of the spin-frozen phase are that
the single-particle self-energy has non-Fermi liquid (power-
law) behavior and the local spin-spin correlation function
〈Sz

i (0)Sz
i (τ )〉 does not decay at long times. Later, the same

model was studied by Mravlje et al. [6] in a ruthenium-based
compound and interestingly they found a generalized Fermi
liquid as the ground state of the system for any finite J . Antipov
et al. [22] have shown that spin-flip terms are essential in
restoring the Fermi liquid behavior at zero temperature [23,24].
They also found that spin-flip and pair-hopping terms lead to
enhancement of effective mass and a decrease of magnetic
ordering temperature in comparison with density-density type
interactions. So, a quantitative estimation of m∗ is not possible
with density-density type interactions.

Now we are going to discuss our results for single and two-
particle dynamical quantities obtained from GGA+DMFT by
using HY-CTQMC as an impurity solver.

A. Single-particle dynamics

To begin with, we focus on the single-particle dynamics that
is mainly determined by the self-energy 
(iωn). Figure 5(a)
shows the imaginary part of Matsubara self-energy for U =
2.3 eV and T = 60 K for a range of J values. For J � 0.1, the
low-frequency behavior of the self-energy has a generalized
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FIG. 5. Imaginary part of the Matsubara self-energy [−Im
(iωn)]
for U = 2.3 eV and different J values for (a) T = 60 K and (b)
T = 116 K.

Fermi liquid (GFL) form, i.e., −Im
(iωn) ∼ aωα
n , where

0 < α � 1. As we increase J , a deviation from the power law is
seen at low ωn as the −Im
(iωn) acquires a nonzero intercept.
The latter is characteristic of non-Fermi liquid behavior, where
the imaginary part of the self-energy has a finite value as
ωn → 0. Thus as a function of increasing J , the single-particle
dynamics exhibits a crossover from GFL to NFL that is
driven by Hund’s exchange [3]. The crossover is found to
persist at a higher temperature T = 116 K and is shown in
Fig. 5(b).

A natural question arises about the choice of the U = 2.3
eV for 3C-BaRuO3. Does this crossover from GFL to NFL
survive with respect to variations in U? The imaginary part of
the self-energy for U = 3 and 4 eV computed at a temperature
T = 60 K is shown in Fig. 6. Clearly, for U = 2.3 and 3
eV, the intercept of the imaginary part of the self-energy is
finite for J � 0.2 (from Fig. 5 and the top panel of Fig. 6),
while for U = 4 eV, a GFL form of −Im
(iωn) is obtained for
0 � J � 0.5 eV. This implies that the NFL behavior for higher
values of U (� 4 eV), if at all occurs, must be for J > 0.5 eV.
Hence, we conclude that the URu = 2.3 eV, corresponding to
3C-BaRuO3 is somewhat special, since it places this material
in a crossover region for physically reasonable values of the
Hund’s exchange.

Recent works on ruthenates found that the NFL behavior
seen in the single-particle dynamics is characteristic of a finite
temperature spin-frozen phase which crosses over to a Fermi
liquid ground state at lower temperatures. This incoherent
spin-frozen state [6] is characterized by finite intercepts in
the imaginary part of the self-energy and fluctuating local
moments (on the susceptibility). In order to better understand
the crossover phase, we carry out a quantitative analysis of the
imaginary part of the self-energy for many more J values in
the same range as considered in Fig. 5. The imaginary part
of the self-energy at low Matsubara frequencies is fit to the

FIG. 6. Imaginary part of the self-energy for T = 60 K and
different J values (see legend) with (a) U = 3 eV and (b) U = 4 eV.

form [3]

−Im
(iωn)
ωn→0→ C + A|ωn|α. (1)

Figure 7 shows the exponent α and intercept C as a function of
J at various temperatures from 60 to 230 K, for U = 2.30 eV.
The exponent α initially decreases with increasing J , goes
through a minimum value of 0.5 at J ∼ 0.25 eV, and increases
gradually for higher J . Werner et al. [3] found this behavior in
a three orbital Hubbard model with fully rotationally invariant
interactions for fixed filling (n = 2.0) and Hund’s exchange,

FIG. 7. Exponent α (circles, left axis) and intercept C (squares,
right axis) obtained by fitting the data to −Im
(iωn) = C + A |ωn|α
at different J values, U = 2.3 eV and T = 60, 116, and 232 K.
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but varying the U value. In our model the intercept C remains
zero for J � 0.15 eV and above that increases with J . Thus
we identify a crossover Hund’s exchange J0 = 0.15 eV such
that for J < J0 the GFL phase exists, while for J > J0 the
crossover NFL phase is found for � 60 K, where frozen
moments are expected to scatter the conduction electrons. We
have repeated the above analysis for U = 3 eV and find that
the crossover J0 ∼ 0.15 eV is the same as that for U = 2.3 eV
within numerical tolerance.

It is interesting to note that the exponent α in the GFL
or in the NFL region is not equal to one. In the GFL phase,
the exponent must approach one with decreasing temperature,
and indeed, it does, as seen in Fig. 7 for J < J0. Curiously,
the exponent hardly changes with either temperature or J in
the spin-frozen phase. Since a ferromagnetic transition occurs
at Tc = 60 K, it is likely that the spin-frozen phase is a
precursor of the FM phase, and the local moments condense
into a magnetically ordered state for T < 60 K. Since even the
intercept depends very weakly on temperature, the spin-frozen
phase appears to be almost temperature independent. This
implies that the NFL behavior should manifest in transport
and thermal measurements over a wide range of temperatures
from about 60 to at least 230 K.

The crossover function, given in Eq. (1), does not have
a microscopic basis, and has been used purely as a fitting
function. Since the latter is not unique, the identification
of J0 must be verified through an alternative fit. Hence we
have used a fourth order polynomial also to fit −Im
(iωn)
and confirm the robustness of J0. The intercept C0 shown
in the top panel of Fig. 8 does become finite only for
J � J0. Thus, the identification of J0 remains robust. For a
Fermi liquid, the linear coefficient of the self-energy C1 is
related to the quasiparticle weight Z by C1 = −(1 − 1/Z) at

FIG. 8. Imaginary part of the self-energy [−Im
(iωn)] fitted to
a fourth order polynomial: (a) zeroth order coefficient C0, (b) Z =
1/(1 + C1), where C1 is the linear coefficient, for different J values,
U = 2.3 and 3.0 eV and T = 60 K.

FIG. 9. Local static spin susceptibility as a function of temper-
ature for different J values and U = 2.30 eV. The dashed curve
represents a 1/T fit at high temperatures. Inset: The screened
magnetic moment as a function of temperature.

T = 0. Although C1 does not have the same interpretation
at finite temperature, a qualitative picture may be obtained
by examining the dependence of Z = 1/(1 + C1). The lower
panel of Fig. 8 shows that Z decreases throughout the GFL
phase. Although Z lacks any interpretation in the NFL phase
(J > J0), a finite Z is, nevertheless, obtained which behaves
in a similar way as the exponent of the power law fit (Fig. 7).

B. Two-particle dynamics

The effect of temperature on spin correlations may be
gauged through the local static spin susceptibility, given by
χloc(T ) = ∫ β

0 dτχzz(τ ). Figure 9 shows χloc(T ) as a function
of temperature for a range of J values. For J � 0.1, χloc(T )
is very weakly dependent of temperature over the entire range
shown, which is characteristic of Pauli-paramagnetic behavior
and hence corresponds to a GFL. For larger J values, we
observe local moment behavior [χloc(T ) ∼ 1/T ] (see dashed
line fit in the main panel). Thus with increasing J , χloc

also crosses over to the local moment region from the GFL
regime. We will see later that the temperature dependence
of the susceptibility allows us to identify the value of the
Hund’s exchange coupling appropriate for 3C-BaRuO3. The
inset shows the screened magnetic moment as a function of
temperature computed through [25,26] m = √

T χ (T ). In the
GFL phase (J < J0), the magnetic moment is seen to decrease
monotonically with decreasing temperature indicating an
absence of local moments at T = 0. While for J > J0, the
magnetic moment appears to saturate as T → 0 indicating
fluctuating incoherent local moments in the spin-frozen phase.

In the 4d Ru-based TMOs, most theoretical studies are
restricted to single-particle spectral functions and static sus-
ceptibilities [4,6]. There are only a few studies on two-particle
spectral functions including vertex corrections [27], and even
those are limited to fixed U and J values. In brief, there are
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FIG. 10. Imaginary part of dynamical spin susceptibility on real
frequency axis obtained from maximum entropy method for various
J values, U = 2.3 eV and T = 60 K.

no studies available for the behavior of two-particle spectral
functions (including vertex corrections) across the GFL to NFL
crossover.

We have calculated the dynamical spin susceptibility
χ (ω,T ) on the real frequency axis by using the maximum
entropy method [28,29]. In Fig. 10 we show the imaginary
part of χ (ω,T ) for various J values at U = 2.30 eV and
T = 60 K. A large scale spectral weight transfer to the infrared
occurs upon increasing J . Concomitantly, the half-width at
half-maximum also decreases. The peak of χ (ω,T ) represents
the characteristic energy scale of the system [27,29], below
which a Fermi liquid should emerge. The dramatic redshift
of the peak with increasing J implies a strong suppression
of the coherent scale [29–31]. Thus with increasing J , the
energy scale for crossover from a low temperature Fermi liquid
ground state to a high temperature incoherent phase decreases
sharply. Since the only other scale (apart from the coherence
scale) are the nonuniversal scales such as J , the bandwidth
or U , the incoherent crossover phase should exist from very
low temperatures to quite high temperatures. This explains the
wide temperature range over which an incoherent spin-frozen
phase, and the corresponding non-Fermi liquid behavior, is
found, e.g., in the resistivity [1,8,11].

C. Identification of J for 3C-BaRuO3

Now we turn to an identification of model parameters
appropriate for 3C-BaRuO3 in the (U,J ) plane. As mentioned
earlier, we have chosen URu = 2.3 eV for 3C-BaRuO3 which
has been obtained through cRPA for its closely related cousins
in the ruthenate family [6,7,32]. We obtain JRu by comparing
the theoretically computed temperature dependent static sus-
ceptibility (from Fig. 9) with that of the experiment [8]. From
experiments it is known that the saturated magnetic moment
at 5 K (in the ferromagnetic state) is 0.8 μB /Ru, while the
high temperature paramagnetic moment is 2.6 μB /Ru. Since

our theory is valid only in the nonmagnetic phase, we choose
the latter for theoretical comparison. One more issue is the use
of Ising-type or density-density type Hund’s coupling usually
underestimates the saturated magnetic moments, which results
in a S = 1 state corresponding to an ideal magnetic moment
of 2 μB /Ru rather than 2.8 μB as would be expected for a
true S = 1 state with a rotationally invariant J term. Thus,
the high temperature moment that we would be comparing
to is (2.6/2.8) × 2 = 1.86 μB /Ru. We see from the inset of
Fig. 9 that such a moment is obtained for J ∼ 0.5 eV. Hence
we identify JRu ∼ 0.5 eV. We note that the experimentally
measured χ−1

loc (T ) is linear at high temperature, and deviates
from linearity [8] at T � 150 K. Again, such deviation from
the high temperature 1/T form in theoretical calculations
is seen for J ∼ 0.5 at T � 150 K (main panel of Fig. 9),
thus lending support to the identification of JRu ∼ 0.5 eV. We
have checked that the deviations from linearity occur at much
higher temperatures (� 300 K) for J = 0.3 and 0.4 eV, hence
the error bar on JRu should be less than 0.1 eV. The value
of Hund’s coupling JRu ∼ 0.5 eV places 3C-BaRuO3 deep
in the incoherent spin-frozen phase for T � 60 K, and thus
could explain the transition into a magnetically ordered state
at T � 60 K.

In addition to the static part, it would be interesting to
see if the dynamics also contributes to the NFL behavior.
Indeed the experimentally observed non-Fermi liquid behavior
in ρ(T ) could originate from an anomalous self-energy.
Hence, we compute the real frequency self-energy through
analytic continuation of the Matsubara 
(iωn) and display
−Im
(ω) (top panel) and the corresponding k-integrated
spectrum, A(ω) = −ImG(ω) (bottom panel) for various tem-
peratures in Fig. 11, where the local Green’s function is

FIG. 11. (a) Imaginary part of the self-energy. (b) Single-particle
spectral function on the real frequency axis obtained from the
maximum entropy method for different temperatures and U = 2.3 eV,
J = 0.5 eV.
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given by

G(ω) =
∑

k

G(k,ω)

=
∑

k

1

(ω+ + μ)I − HGGA(k) − 
(ω)
. (2)

Note that, within DMFT, the k dependence arises purely
through the dispersion embedded in HGGA(k). If the low-
energy excitations are Fermi liquid like, then we should expect
Im
(0) ∝ −T 2. Figure 11(a) shows that the self-energy at
the chemical potential has a finite and almost temperature-
independent imaginary part. This feature, also displayed in
Fig. 7, signifies that low-energy excitations are NFL in nature,
and temperature does not have much effect on the value of
Im
(0) in the spin-frozen phase. A very interesting insight
into the dynamics of the spin-frozen phase comes from the
low frequency form of the self-energy. The inset zooms in
onto the low frequency part of −Im
(ω), which is seen to
have a form ∼ C + Aω2 that is usually found in disordered
Fermi liquids [33]. Such a form is consistent with the scenario
of incoherent and fluctuating local moments in the spin-frozen
phase.

The single-particle spectral function A(ω) shown in
Fig. 11(b) has an overall line shape very similar to that of
SrRuO3 [34] and Sr2RuO4 [1]. A metallic nature is indicated
by a finite weight at the Fermi level. A closer look at the temper-
ature dependence at low frequencies shows the emergence of
structures that presumably correspond to transitions between
the various multiplets of the atomic limit. However, a far more
detailed study, varying U and J , is required for a precise iden-
tification of the origin of these features. Since analytic contin-
uation using the maximum entropy method requires immense
computational resources, especially in the spin-frozen phase,
we have not attempted to carry out such a study in the present
work.

Experiments can probe single-particle dynamics in the
spin-frozen phase through, e.g., angle-resolved photoemission
spectroscopy (ARPES). Theoretically we can predict the
ARPES line shape through a calculation of the momentum-
resolved spectral function given by A(k,ω) = −ImG(k,ω)/π .
In Fig. 12 we plot the intensity map of the momentum-resolved
spectral function A(k,ω) of 3C-BaRuO3 obtained from DFT
by simply ignoring the self-energy in Eq. (2) (top panel) and
then compared with the results of DFT+DMFT (lower panel)
at T = 154 K for URu = 2.3 eV and JRu = 0.5 eV. In the
case of DFT, the quasiparticle bands have a minimum at the �

point (−2.3 eV) and a maximum at R point (0.8 eV). When we
turn on interactions (DFT+DMFT), the first striking feature
that emerges is that there are no quasiparticle bands. But,
even though each of the bands acquires a finite width when
interactions are introduced, there is a resemblance between
the quasiparticle bands in the spectral function map and the
DFT spectra. The “fat bands” are simply a result of the finite
scattering rate arising from the imaginary part of the self-
energy (Fig. 11). Furthermore, although the bands in DFT as
well as DFT+DMFT have a minimum and maximum exactly
at the same high symmetry points, the values of corresponding
energies renormalize to −4.8 and 1.0 eV, respectively. The

FIG. 12. Intensity map of the spectral function A(k,ω) obtained
from DFT (top panel) and DFT+DMFT (lower panel) for U = 2.3 eV,
J = 0.5 eV at T = 154 K plotted along high symmetry directions in
the irreducible Brillouin zone.

bands below −1.0 eV (incoherent regime) are much more
broadened [6,34] in comparison with the those closer to the
Fermi level, which again is a manifestation of the peak in the
imaginary part of the self-energy around −2 eV.

For the values of URu = 2.3 eV and JRu ∼ 0.5 eV, we
obtain a relatively modest effective mass m∗

mGGA
of 1.56 at

T = 60 K. A definitive comment about the effective mass in
the ground state cannot be made with the preceding estimate at
finite temperature, since the quasiparticle weight has a proper
meaning [35] only below the Fermi liquid coherence scale,
which is strongly suppressed for J = 0.5 (as compared to
J = 0) as seen from the dynamical susceptibility results (from
Fig. 10). The strong suppression of the Fermi liquid scale
suggests that 3C-BaRuO3 could be very strongly correlated.
Here we would like to comment on the value of U (= 4.0 eV)
and J (= 0.6 eV) chosen in a previous work [36], where the
interaction parameters were obtained from a “local spin density
approximation constraint” technique. For those parameters,
a recent study of one of the 4d Ruthenium compounds
[7] within a five d-band model finds that correlations are
induced due to the proximity to a Mott insulating state, which
concurs with our results for a three d-band model (from the
lower panel of Fig. 2). However, the proximity of a Mott
insulating state does not violate adiabatic continuity and hence
as shown above, the choice of (U,J ) = (4.0,0.6) eV would not
explain several anomalous features of 3C-BaRuO3 including
the wide 1/T behavior of χloc(T ), or the NFL behavior of
resistivity. These and the transition to a ferromagnetically
ordered state at low temperature are naturally explained by the
presence of a spin-frozen phase as found for URu = 2.3 eV and
JRu ∼ 0.5 eV.
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IV. CONCLUSIONS

We have studied 3C-BaRuO3 in the nonmagnetic phase by
using GGA+DMFT (HY-CTQMC). In the dynamical corre-
lation functions and static spin susceptibility, we observed a
crossover from GFL to NFL driven by the Hund’s exchange
J . A fitting of the self-energy to a power law function
determines the crossover boundary, i.e., J0 = 0.15 eV. The
local, on-site Coulomb repulsion URu = 2.3 eV was chosen to
be the same as that found through a constrained random phase
approximation calculations for the closely related SrRuO3. We
determine the Hunds exchange JRu ∼ 0.5 eV, appropriate for
3C-BaRuO3 such that the computed high temperature para-
magnetic moment matches the experimentally found value.
Nonmagnetic calculations with these parameters (URu, JRu)
for single-particle dynamics and static spin susceptibility show
that cubic-BaRuO3 is in a spin-frozen state at temperatures
above the ferromagnetic transition point. Future calculations

incorporating symmetry broken states should reveal the causal
relation between the high temperature spin-frozen phase and
the dynamics in the low temperature ferromagnetic phase.
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