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Ab initio GW calculations are a standard method for computing the spectroscopic properties of many materials.
The most computationally expensive part in conventional implementations of the method is the generation and
summation over the large number of empty orbitals required to converge the electron self-energy. We propose
a scheme to reduce the summation over empty states by the use of a modified static remainder approximation,
which is simple to implement and yields accurate self-energies for both bulk and molecular systems requiring a
small fraction of the typical number of empty orbitals.
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I. INTRODUCTION

The GW methodology1–3 has been successfully applied
to the study of the quasiparticle properties of a wide range
of systems4 from traditional bulk semiconductors, insulators,
and metals to nanosystems like polymers, nanotubes, and
molecules.5–7 The approach yields quantitatively accurate
quasiparticle band gaps and dispersion relations from first
principles. A perceived drawback of the GW methodology
is its computational cost, usually thought to be an order of
magnitude more than a typical DFT calculation. One of the
main computational bottlenecks of the traditional ab intio GW

method3 is the cost to generate the large number of empty
orbitals needed to converge the Coulomb-hole summation term
of the self-energy.

Within the conventional GW approach, the quasiparticle
energies and wave functions (i.e., the one-particle excitations)
are computed by solving the following Dyson equation2,3 (in
atomic units):
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where � is the nonlocal, energy-dependent, self-energy oper-
ator within the GW approximation and E

QP
nk and ψ

QP
nk are the

quasiparticle energies and wave functions, respectively. In the
typical GW approach, density functional theory (DFT) within
the Kohn-Sham formulation8 is often chosen as the starting
point for a subsequent calculation of the electron self-energy:
the Kohn-Sham8 wave functions and eigenvalues are used
here as a first guess for their quasiparticle counterparts. In
principle, Eq. (1) is a matrix equation, where � should be
constructed in an appropriate basis. In many cases, only the
diagonal elements are sizable within the basis spanned by
the Kohn-Sham mean-field orbitals. We assume this to be
the case for the rest of the paper. The effects of � can thus
be treated within first-order perturbation theory in the form
� = Vxc + (� − Vxc), where Vxc is the exchange-correlation
potential of the Kohn-Sham system.8

Within the GW approximation, the self-energy opera-
tor is expressed as � = iGW , where G is the electronic

Green’s function and W is the dynamically screened Coulomb
interaction. In the GW and the static Coulomb-Hole +
Screened Exchange limit of GW (static-COHSEX) (the static
limit of GW ) approximations for the self-energy, the self-
energy operator � can be broken into two parts,2,3 � = �SX +
�CH, where �SX is the screened-exchange operator and �CH is
the Coulomb-hole operator. The screened-exchange operator is
similar to the Fock operator in Hartree-Fock theory, except the
bare Coulomb interaction is replaced by the screened Coulomb
interaction: WGG′(q ; ω) = ε−1

GG′(q ; ω)v(q + G′), where v is the
bare Coulomb interaction. When G and W are constructed
in a non-self-consistent way from the DFT orbitals and
eigenvalues, the GW approach is referred to as being within
the G0W0 approximation. In this paper, all results are presented
within this approximation.

In a conventional GW calculation within the generalized
plasmon-pole approximation,3 both the calculation of the
Coulomb-hole self-energy term,
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and the calculation of the dielectric screening matrix, ε =
1 + 4πχ , at ω = 0,

εGG′(q; 0)

= δGG′ − v(q+G)
occ∑
n

N∑
n′

∑
k

〈nk + q|ei(q+G)·r|n′k〉

× 〈n′k|e−i(q+G′)·r′ |nk + q〉 × 1

Enk+q − En′k
, (3)

involve a summation over empty orbitals. Here N is the
number of empty orbitals in the truncated sum, nk is a Bloch
orbital with a given crystal momentum k, band index n, and
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energy Enk, v(q + G) is the bare Coulomb interaction in
reciprocal space, and �GG′ (q) and ω̃GG′(q) are plasmon-pole
parameters.3

There has been much research effort invested in recent
years to reduce the need for empty orbitals in the GW
formalism.9–17 The approaches by Umari et al.10 and Giustino
et al.11 eliminate the need for empty states entirely by
constructing the dielectric response and self-energy from only
occupied states within a linear-response Sternheimer equation
approach.11 While these approaches eliminate the need for
empty orbitals, they are conceptually more complicated as well
as more complicated to implement and optimize. It is therefore
still of great value to address the computational cost of the
empty-orbital generation within the traditional GW approach
laid out above.

One approach to addressing the problem of the cost asso-
ciated with empty orbitals in the traditional GW approach is
to approximate the true DFT empty orbitals with approximate
orbitals that are computationally cheaper to generate.14,16,17 In
the recent work of Samsonidze et al.,14 the authors proposed
replacing the expensive step of constructing the exact Kohn-
Sham empty orbitals from a traditional DFT package with
a computationally inexpensive process of constructing the
empty orbitals from a reduced basis set consisting of plane
waves and resonant orbitals (generated in SIESTA18) orthogo-
nalized to the real occupied Kohn-Sham orbitals. While it was
shown that this approach vastly reduces the cost of generating
the required empty orbitals, the approach adds significantly to
the complication of the GW process. In particular, one now
must run a traditional plane-wave DFT calculation, a local or-
bital DFT calculation, and a postprocessing orthogonalization
step in order to generate the required electron orbitals needed
to proceed to the GW calculation. Additionally, the explicit
sums in Eqs. (2) and (3) must still be performed over these
orbitals.

Another approach to the empty state problem was proposed
by Tiago and Chelikowsky:13 a truncation of the sum over
empty orbitals in Eq. (2) can be achieved with minimal loss of
accuracy by adding the contribution of the remaining orbitals
within the static (COHSEX) approximation.2,3 The idea relies
on the fact that, in static-COHSEX, unlike GW , the Coulomb-
hole energy can be written in a simple closed form (see next
section) as well as in a sum over empty states, as the static
limit of Eq. (2). It was proposed that one may approximate the
missing Coulomb-hole contribution when truncating the sum
after N (i.e., the contribution to the sum from the empty orbitals
with index between N and ∞) in a GW calculation by their
contribution to the Coulomb-hole energy in a static-COHSEX
calculation.

This static approximation, however, was shown to be of
limited use by Bruneval et al.,12 where, instead of using the
static approximation for the remaining part of the Coulomb-
hole sum, the authors proposed using an approach based on a
common nonzero-energy denominator in Eq. (2). If a constant
denominator is assumed, than one may use the completion
relation

∞∑
n=N+1

|nk〉〈nk| = 1 −
N∑

n=1

|nk〉〈nk| (4)

to replace the sum over the missing empty orbitals with a sum
over the available orbitals. In order to apply this directly to
Eqs. (2) and (3), one must replace the n-dependent denomina-
tor with a constant. The main drawback of this common energy
denominator approximation (CEDA) approach (known also as
the extrapolar method) is that the energy denominator is not
uniquely defined and is often treated as a somewhat ad hoc
parameter, and the quasiparticle energy convergence is not
monotonic with this parameter.

Recent studies by Kang and Hybertsen19 have shown that a
modified static COHSEX approach can be used to accurately
minimize the empty-orbital problem in the Coulomb-hole
summation of Eq (2). In that work, the authors propose
completely replacing the GW Coulomb-hole operator with
a closed-form static operator (similar to that used by Tiago
and Chelikowsky13) with a q-dependent coefficient f (q) fit to
match the GW result. This approach has the advantage of being
completely closed form but can be improved if one relaxes
the requirement that the modified operator is used to replace
the true GW contributions not only from high-energy empty
orbitals but also from valence and low-energy conduction
orbitals.

In this paper, we propose a modified static remainder
approach based on Tiago and Chelikowsky’s results13 that is
more fully justified by the recent Kang-Hybertsen result.19

This approach yields accurate GW Coulomb-hole absolute
energies (to within 100 meV) with less than 10% of the
traditionally necessary empty orbitals. Furthermore, unlike
simple implementations of the extrapolar method of Bruneval
et al.,12 this approach yields an easy-to-implement procedure
with no parameters requiring tuning or extra computation.
For simplicity of presentation, we shall discuss our approach
within the generalized plasmon-pole model for the dielectric
matrix. This approach can be straightforwardly applied to any
existing GW computational package.

II. TRADITIONAL GW CONVERGENCE WITH
EMPTY ORBITALS

As mentioned in the Introduction, the band convergence of
absolute energy levels in �CH with the number of empty or-
bitals is extremely slow. In principle, one must converge a GW
calculation with respect to the number of empty orbitals in both
Eqs. (3) and (2). However, for many systems, the quasiparticle
energy dependence on the number of empty orbitals in the
dielectric screening [e.g., Eq. (3)] converges much faster than
with the number of empty orbitals in Eq. (2). For example, re-
cent calculations for ZnO show that the Coulomb-hole contri-
bution to the electronic band gap does not converge until 3000+
empty orbitals are included in the summation in Eq. (2).20 In
Fig. 1, we demonstrate the slow convergence of Eq. (2) in ZnO.
The situation is even worse for nanosystems, where absolute
energies are often required for applications involving inter-
faces over which absolute energy-level alignment is needed,
such as the cases for molecular electronics or photovoltaic
applications.

From the bottom panel of Fig. 1, it is immediately evident
that the quasiparticle energy converges much more slowly
with respect to the number of empty orbitals included in the
Coulomb-hole summation [Eq. (2)] than from the ε summation
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FIG. 1. (Color online) (top) The convergence of the Coulomb-
hole contribution to the self-energy [Eq. (2)], with respect to the
number of orbitals included in the summation N , using a dielectric
matrix calculated with 1000 empty bands. For all calculations on ZnO,
a 5 × 5 × 4 k-point grid is used. (bottom) The convergence of the
quasiparticle energy EQP with respect to empty states in the polariz-
ability sum [Eq. (3)] and with respect to empty states in the Coulomb-
hole sum [Eq. (2)]. The red curve shows the valence band maximum
(VBM) EQP in ZnO using a fixed 3000 bands in the Coulomb-hole
summation and varying the number of bands included in the polar-
izability summation. The black curve shows the VBM EQP in ZnO
using a fixed 1000 bands in the polarizability summation and varying
the number of bands included in the Coulomb-hole summation. ZnO
calculations were carried out within the GPP approximation.

[Eq. (3)]. Additionally, one may compute Eq. (3) in an
alternative density functional perturbation theory approach
that avoids the sum over empty orbitals. Similar techniques11,21

to avoid the empty orbitals for Eq. (2) have been proposed, but
they are more difficult to implement and use. Therefore, any
reduction in the summation in Eq. (2) over large numbers of
empty orbitals can greatly reduce the cost of calculation for
standard GW approaches.

III. METHODOLOGY

The static COHSEX method is the static limit of the
GW approximation for the self-energy, where everywhere
ε(G,G′,ω) is replaced by ε(G,G′,0). The static remainder
approach is based on the fact that the expectation value of
the static COHSEX Coulomb-hole operator can be expressed

either in a closed form or as a sum over empty orbitals:

�
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CH (n,k)

= 1

2

N∑
n′′

∑
qGG′

〈nk|ei(q+G)·r|n′′k−q〉〈n′′k−q|e−i(q+G′)·r′ |nk〉

× {[
ε−1

GG′(q ; 0) − δGG′
]
v(q + G′)

}
(5)

and

�
Coh/∞
CH (n,k)

= 1

2

∑
qGG′

〈nk|ei(G−G′)·r|nk〉[ε−1
GG′(q ; 0) − δGG′

]
v(q + G′),

(6)

where N and ∞ denote a truncated empty state summation and
closed-form expression, respectively. Equation (5) is equal
to Eq. (2) in the limit of static dielectric screening. In the
work of Kang and Hybertsen,19 the authors propose using
a modified static-COHSEX operator that mimics the GW

operator to entirely remove the need for empty orbitals. In
our current approach, we include the full GW contribution
from the low-energy orbitals and add a single correction
for the high-energy orbitals, where the static approximation
is expected to perform well. One advantage of the present
approach is that it can be, in principle, used in conjunction with
a full-frequency [as opposed to a generalized plasmon-pole
(GPP) model] screening approach to both calculate the fine
structure of the energy dependence of the self-energy �(ω),
as well as converging the absolute value with respect to
empty orbitals. In our modified static remainder approach,
we calculate both the GW �CH partial sum [Eq. (2)] and the
COHSEX �CH partial sum [Eq. (5)] up to the number of DFT
bands available. We then add a modified static correction to
the GW Coulomb-hole energies:

〈nk|�∞
CH(r,r′; E)|n′k〉

= 〈nk|�N
CH(r,r′; E)|n′k〉

+ 1

2

(〈nk|�Coh/∞
CH (r,r′)|n′k〉 − 〈nk|�Coh/N

CH (r,r′)|n′k〉).
(7)

The factor of 1/2 in Eq. (7) is justified from the recent work of
Kang and Hybertsen,19 where the authors show that the GW

contribution of high-energy bands (corresponding to large G
vectors) to the Coulomb-hole self-energy approaches to one
half of the equivalent static COHSEX band contribution.

One may qualitatively derive this result from Eq. (2) if
one assumes that we are interested in a state n with energy
E near zero and that, for a given high n′′, the sum over the
matrix elements is dominated by a small set of q + G such
that |h̄(q + G)|2/2m ≈ En′′ and that the plasma frequency for
large q and G obeys a homogeneous gas dispersion ω̃G,G(q) ≈
|h̄(q + G)|2/2m. In this case, the contribution to Eq. (2) from
a high-energy empty orbital n′′ reduces to

〈nk|�N
CH(r,r′; E)|n′k〉

= 1

2

∑
qGG′

〈nk|ei(q+G)·r|n′′k−q〉〈n′′k−q|e−i(q+G′)·r′ |n′k〉

165124-3



DESLIPPE, SAMSONIDZE, JAIN, COHEN, AND LOUIE PHYSICAL REVIEW B 87, 165124 (2013)

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

 20  40  60  80  100  120  140

Σ C
H

 P
ar

tia
l S

um
 (

eV
)

# of Bands in Partial Sum

Si

VBM GW
VBM 1/2 COHSEX

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 500  1000  1500  2000  2500

Σ C
H

 P
ar

tia
l S

um
 (

eV
)

# of Orbitals in Partial Sum

SiH4

HOMO GW
HOMO 1/2 COHSEX

FIG. 2. (Color online) Comparison between the contributions to the Coulomb-hole sum for the full GW operator vs results from one half
the static COHSEX Coulomb-hole operator for orbitals beyond the number of real DFT bands/orbitals used: 12 in silicon and 100 in silane. A
5 × 5 × 5 k-point grid is used in Si. The plotted quantity is

∑N

n′′=nDFT +1

∑
qGG′ 〈nk|ei(q+G)·r|n′′k−q〉〈n′′k−q|e−i(q+G′)·r′ |n′k〉 × ICH

GG′ (q,n,n′,n′′),
where ICH is the term in braces in Eqs. (2) and (5).

×
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}
, (8)

which, when compared to Eq. (5), confirms the factor of 1
2 .

The Coulomb-hole self-energy contribution to the conver-
gence of energy levels in bulk silicon (using a 5 × 5 × 5
k-point grid) and the silane (SiH4) molecule (in a supercell
calculation) are shown in Fig. 2 as a function of the band
cutoff N in Eq. (2). The convergence on energy levels in
silane is significantly slower than that in silicon22 because
of the large number of free-electron-like vacuum states. The
silicon calculations were done with a 25-Ry wave-function
cutoff and a 10-Ry dielectric matrix cutoff. The silane

calculations were done with a 75-Ry wave-function cutoff
and a 6-Ry dielectric matrix cutoff. The needed volume of
the supercell used, (25au)3, and the corresponding number of
vacuum states are minimized by using a truncated Coulomb
interaction.23 Despite this, the largest computational cost in
the GW calculation on silane is the DFT generation of the
empty orbitals, representing more than 50% of the total
computational expense. The calculation of the polarizability
and the evaluation of the self-energy require less computa-
tional time, and they scale nearly linearly to thousands of
CPUs.

IV. RESULTS

A comparison between the convergence of the residual
value of the GW expression [Eq. (2)] and one half of the
static COHSEX approximation [Eq. (5)] for the Coulomb-
hole contribution to the electron self-energy starting at some
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FIG. 3. (Color online) Coulomb-hole energies of the valence band maximum in (left) Si and (right) ZnO in the modified static remainder
approach compared to the energies from the standard approach of truncating the Coulomb-hole summation in Eq. (2) as a function of the
number of DFT bands. In the static remainder approach the summation is also truncated at the same number of bands, but the modified static
remainder is added to the sum. A 5 × 5 × 5 and a 5 × 5 × 4 k-point grid is used in Si and ZnO, respectively. The gray lines represent the result
using the maximum number of bands and having the static remainder included.
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TABLE I. Convergence of the EQP (in eV) within the G0W0 approximation with respect to the number of DFT orbitals used in the
Coulomb-hole summation for several material systems. Here n refers to the band index, D. Gap is the direct gap at the 
 point and SR refers
to the addition of the static remainder.

Si-
 10 Bands 40 Bands 80 Bands 160 Bands

n = 1 −5.99 −6.30 −6.47 −6.53
n = 1 (SR) −6.56 −6.55 −6.55 −6.55
n = 4 6.19 5.62 5.30 5.15
n = 4 (SR) 4.99 4.99 5.04 5.08
n = 5 9.46 8.90 8.60 8.48
n = 5 (SR) 8.35 8.33 8.39 8.41
n = 10 15.23 14.48 14.10 13.94
n = 10 (SR) 13.76 13.73 13.80 13.84
D. Gap 3.27 3.28 3.30 3.33
D. Gap (SR) 3.36 3.34 3.35 3.33

ZnO-
 100 Bands 500 Bands 1500 Bands 3000 Bands

n = 26 6.11 4.48 4.00 3.90
n = 26 (SR) 3.88 3.73 3.80 3.82
n = 27 7.97 7.32 7.22 7.21
n = 27 (SR) 7.22 7.19 7.20 7.21
D. Gap 1.86 2.84 3.22 3.31
D. Gap (SR) 3.34 3.46 3.40 3.39

MgO-
 50 Bands 200 Bands 450 Bands 900 Bands

n = 4 −2.09 −2.86 −2.95 −2.96
n = 4 (SR) −3.15 −3.02 −2.97 −2.97
n = 5 5.10 4.81 4.78 4.78
n = 5 (SR) 4.70 4.77 4.78 4.78
D. Gap 7.19 7.67 7.73 7.74
D. Gap (SR) 7.85 7.79 7.75 7.75

Ar-
 50 Bands 150 Bands 375 Bands 750 Bands

n = 4 −7.64 −8.19 −8.39 −8.42
n = 4 (SR) −8.52 −8.50 −8.43 −8.43
n = 5 5.26 5.38 5.41 5.42
n = 5 (SR) 5.45 5.43 5.42 5.42
D. Gap 12.9 13.57 13.8 13.84
D. Gap (SR) 13.97 13.93 13.85 13.85

nDFT is shown in Fig. 2 for the valence band maximum
(VBM) in silicon and the highest occupied molecular orbital
(HOMO) in the silane molecule. Figure 2 shows the cumulative
contributions of the high-energy orbitals to �CH for both the
GW operator and the 1/2 static COHSEX operator for orbitals
above 12 and 100 for silicon and silane, respectively. The
residual value of the 1/2 static COHSEX results reproduce the
equivalent GW curves extremely well. Therefore, replacing
the GW operator with the modified static remainder in Eq. (7)
yields very good agreement with a fully converged GW

calculation. This justifies the truncation of the partial sum
in Eq. (2) and the addition of the modified static remainder
correction. For both silicon and silane, one can get a converged
�CH to within 100 meV with less than 10% of the original
number of empty orbitals required. This is a very high level of
accuracy considering the modified static correction in both
cases is greater than 1 eV. Even higher accuracy may be
reached if one increases the number of actual DFT empty
orbitals used. In the case of Si, an accurate �CH (within
100 meV) can be reached with the use of only ten empty
bands when a 5 × 5 × 5 k-point grid is used. Figure 3 shows

the convergence of the modified static remainder corrected
�CH and the uncorrected GW �CH as a function of DFT
empty bands used for Si an ZnO; the gray line corresponds
the “best guess” final value using the static remainder on top
of the largest number of real DFT bands.

In Table I, we show the convergence behavior with respect
to empty orbitals of our GW + static remainder approach
compared to a traditional GW approach for bulk Si, MgO,
ZnO, and solid Ar. In all cases, the modified static remainder
approach significantly improves the convergence rates. An
accuracy of less than 100 meV in the absolute energies can
typically be reached with only a few conduction bands.

To test the modified static reminder approach on a large
molecular system, we compute the Coulomb-hole contribution
to the self-energy for the bithiophene naphthalene diimide
(BND) molecule containing 46 atoms.24 The supercell was
set to 76.93 × 36.31 × 20.18 atomic units. The calculations
were done with a 60-Ry wave function cutoff and a 6-Ry
dielectric matrix cutoff. The polarizability was computed with
953 orbitals (78 occupied + 875 empty orbitals up to 1-Ry
cutoff in DFT eigenvalues), and the Coulomb-hole part of the
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FIG. 4. (Color online) Coulomb-hole part of the self-energy, with
and without the static remainder, for the highest occupied molecular
orbital of the BND (shown in the inset) molecule as a function of the
number of DFT orbitals included in the Coulomb-hole sum. The gray
line represents the result using the maximum number of bands and
having the static remainder included.

self-energy was evaluated as a function of the number of
orbitals, as shown in Fig. 4. One can see that the Coulomb-hole
term computed with 953 orbitals without the addition of the
remainder is only converged to within 1 eV. Including the
static remainder correction improves the convergence to better
than 0.1 eV.

In conclusion, we have presented a modified static remain-
der approach that reduces the number of empty states involved
in evaluating �CH by over an order of magnitude. Admittedly,

this is partially due to the fact that convergence with empty
states in the static remainder approach is nonmonotonic. This
approach is particularly useful when applying the GW method
to molecules and other nanostructures where absolute energies,
as opposed to just energy gaps, are desired. A limitation of
this method is that it does not address the problem of the
sum over empty states required in evaluating the dielectric
matrix [Eq. (3)]. However, the dielectric matrix converges
faster than the absolute energies of �CH for many solids20 and
can more easily be replaced by calculation using the density
functional perturbation theory approaches. Our approach here
shows faster convergence towards the converged GW �CH

values and can be implemented in a simple and automatic
way in standard GW computer codes. This approach has been
included, for example, in the BerkeleyGW package.25
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