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Mechanism for optical initialization of spin in NV− center in diamond
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Optical initialization of the negatively charged nitrogen-vacancy (NV−) center in diamond makes it one of the
best candidates for realization of addressable spins in the solid state for quantum computing and other studies.
However, its exact mechanism was not clear. We show that exact diagonalization of a many-electron Hamiltonian
with parameters derived from ab initio GW calculations puts strong constraints on the mechanism. The energy
surfaces of the low-energy many-body states and the relaxation processes of photoexcitation responsible for the
optical initialization are calculated. Intersystem crossings are shown to be essential.

DOI: 10.1103/PhysRevB.86.041202 PACS number(s): 71.15.Qe, 61.72.jn, 71.10.Fd, 71.15.Mb

The negatively charged nitrogen-vacancy (NV−) center in
diamond is a defect complex composed of a substitutional
nitrogen atom and an adjacent carbon vacancy1,2 as shown
in Fig. 1(a). The NV− center has emerged as one of the
candidates for realization of individually addressable spins
in the solid state for quantum computing and other studies.3–12

The interest in this system in large part stems from an optical
initialization process under ambient conditions, which results
in a state with long spin coherence time of up to ∼1 ms.13

The optical initialization of the NV− center, which starts
with a degenerate mixed triplet ground state, involves optical
transition to an excited state and subsequent relaxations to
the ground state with an unentangled pure spin of ms = 0. The
electronic structure of the low-energy excited states, especially
the placement of possible singlet defect levels with respect to
the ground (3A2) and first excited triplet (3E) levels, is crucial
in explaining the optical initialization mechanism. However,
up to now there is no consensus. It is reported experimentally
that two singlet levels (1A1 and 1E) are near the ground and the
first excited triplet levels, but the character and ordering of the
two singlet levels are not determined.14,15 Various theoretical
studies also failed to agree with each other.16–22 The most
widely used picture, where one singlet level (1A1) is assumed
to lie in between the two lowest-lying triplet levels,23–25 has not
been confirmed. There exist two different “two active singlet
level” models15–17 involving an intermediate step of radiative
decay between two singlet levels of 1A1 and 1E before the
system decays to the ground state. However these models
are in contradiction with the experimental findings that after
the initially excited triplet level decayed to a singlet state, the
system decays nonradiatively.14,15

The theoretical difficulty in determining the nature of this
system arises from the fact that the NV− center is a deep-level
center in the band gap of diamond with multiple localized,
interacting electrons. Such systems are not appropriate for the
mean-field type of calculations because of strong electron-
electron interaction. Mimicking the system as a small isolated
diamond cluster with a NV− center is also expected to be not
so appropriate because it does not include the large screening
effects from the bulk and because of issues with possible
spurious boundary effects. Furthermore, this defect is prone
to large excited-state structural relaxation.16,19,26 An effective
model Hamiltonian with reliable interaction parameters for

the electrons, such as an extended Hubbard model, offers
an efficient way to evaluate the excited-state level structure
which could include many-electron interactions fully if solved
exactly. In such models, the electron-electron interaction and
screening effect of the host material must be accurately
incorporated using effective Coulomb interaction parameters.
The effects of structural relaxation should also be taken into
account through the parameters. Such approaches had been
hindered in the past by the difficulty in getting physically
grounded model parameters.

In this study, we employ an extended Hubbard model
Hamiltonian with structure-dependent interaction parameters
that are derived from ab intio quasiparticle energy levels.
These parameters are put on physical grounds by fitting the
quasiparticle energies of the model system to those of the real
system, both calculated within the same GW approximation
to the electron self-energy operator.27,28 The idea is to use
relevant physical quantities, and a sufficient number of them,
to determine the effective interactions.

For the real system, we calculated from first principles
the ground state using density functional theory in the local
spin density approximation (DFT-LSDA) and the low-energy
excited-state quasiparticle levels using the ab initio GW
method.29 Our ab initio GW quasiparticle level diagram at the
ground-state equilibrium geometry (GEG) of the NV− center
is shown in Fig. 1(b). There are 8 quasiparticle defect states
near the band gap. These defect states, which are localized at
the defect site, should form an efficient basis set for describing
the low-energy charge-conserved excitations that are of the
main interest of the present study.

We chose the Hilbert space for the effective model system to
be spanned by the 8 dangling-bond spin orbitals at the 3 carbon
atoms and the one nitrogen atom nearest to the vacancy site.30

To ensure that such a basis would describe the lowest lying
excitations well, we constructed maximally localized Wannier
functions (MLWFs) from the above mentioned ab initio 8
defect states.31 As is evident from Fig. 2, the MLWFs are
strongly localized at the atoms nearest to the vacancy, showing
dangling bond characteristics. It also shows that hybridization
of the u states and the extended state in the valence band is
small. Simple electron counting dictates that 6 electrons be
shared among these 8 spin orbitals for the NV− center: 3 from
the 3 carbon atoms, 2 from the nitrogen atom, and 1 from
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FIG. 1. (Color online) (a) Ground-state structure. Carbon (nitro-
gen) atoms nearest to the vacancy site (V) are marked by atomic
symbol C (N). (b) Quasiparticle energy levels near the band gap, from
ab initio GW calculation (solid line) of a NV− center and from GW
calculation of the extended Hubbard model (dotted line). The filled
and open arrows correspond to quasihole and quasiparticle state (i.e.,
removing and adding an electron to the system), respectfully. For each
spin, these levels belong to the two A1 and one E representation in
C3v symmetry group. We label them as u(ū), v (v̄), ex (ēx), and ey (ēy)
for up (down) spin states, marked by upward arrows and downward
arrows.

the defect being negative charged. The effective Hamiltonian
hence is taken as

H =
∑
iσ

Einiσ +
∑
i �= j

σ

tij c
†
iσ cjσ +

∑
i

Uni↑ni↓

+
∑
i > j

σσ ′

V niσ njσ ′ (1)

where c
†
iσ , ciσ , and n

†
iσ are creation, annihilation, and number

operators at the site i with spin σ . It should be noted that
while this model does not include all possible electron-electron
interaction terms in the exact many-body Hamiltonian, it
includes the two dominant terms when the Hilbert space
is spanned by an atom-centered basis set,32 namely, the
on-site Coulomb repulsion (U) as well as the nearest-neighbor
Coulomb repulsion (V) term. Further simplifications have been
made. As shown in Fig. 2, the Wannier functions centered
at the carbon atoms and the nitrogen atom are all similar

FIG. 2. (Color online) Defect-state Wannier functions. Isos-
uface plot of spin-up Wannier functions at amplitude W (�r) =
± |W (�r)|max × 0.5, constructed from the 4 spin-up defect states in
Fig. 1(b). Yellow or light-gray (green or dark gray) color denotes
plus (minus) sign of the amplitude. The Wannier functions centered
at each carbon are equivalent, so only one of them is shown.

TABLE I. Extended Hubbard model parameters at the ground-
state equilibrium geometry (GEG) and the optically excited-state
equilibrium geometry (EEG).

Parameters (eV) EC − EN tNC tCC U V

GEG 2.56 −0.68 −1.03 3.43 0.83
EEG 2.86 −0.75 −0.90 3.45 0.67

in shape and size. Their mean radii, which are defined as√
〈W | |�r|2 |W 〉 − |〈W |�r|W 〉|2 where �r is the position operator,

are within 5% of one another. The mean radius is 2.0 Å for
the up-spin orbital of nitrogen, 1.9 Å for the up-spin orbital of
carbon, 1.9 Å for the down-spin orbital of nitrogen, and 1.8 Å
for the down-spin orbital of carbon.

Based on this, we constrain that U for carbon and nitrogen
are the same, and that the carbon-nitrogen V and carbon-carbon
V are also all the same. We determined the parameters in
Eq. (1) by comparing the quasiparticle energies calculated
within the ab initio GW approach to those from a GW
calculation of our model Hamiltonian at the GEG. To calculate
the quasiparticle energies for the extended Hubbard model,
we use the DFT-LSDA as the mean-field starting point.33–35

We calculated the quasiparticle self-energy correction to the
mean-field solution within the GW approximation. This is
exactly the same level of approximation as the ab initio GW
quasiparticle calculation for the real system. We tuned the
model parameters until we minimize the differences between
the model Hamiltonian quasiparticle energies and the ab initio
quasiparticle energies. As seen in Fig. 1(b), the quasiparticle
energies from our extended Hubbard model match the ab initio
values to within 0.1 eV.

The parameters in Table I are physically well determined
because the two Hamiltonians (model and real) are treated in
equal footing with important self-energy effects incorporated.
Because nitrogen has a larger atomic number than carbon,
as expected, EC − EN > 0. tNC and tCC are close to a value
from a MLWF analysis (∼−0.7 eV). U is also reasonable; the
bare on-site Coulomb repulsion of π electrons in the carbon
nanotube is ∼16 eV36 but for the NV− center it is screened by
the diamond dielectric constant of 5.5.37

To understand the optical initialization process, it is impor-
tant to include geometrical relaxation around the NV− center
in an excited state. To account for this Frank-Condon effect,
we first calculated the excited-state equilibrium geometry
(EEG) for the 3E state of the NV− center within an ab initio
constrained DFT framework by depopulating the v̄ level and
populating either the ēx or ēy level.29 At the EEG, N moves
toward the vacancy by 0.05 Å while the three C nearest to
the vacancy move outwards from the vacancy by 0.06 Å.
We reevaluated the model parameters following the same
procedure as for the GEG. Because the structural change
between GEG and EEG is small [Fig. 3(a)], we may assume
that the minimum-energy path between the two geometries can
be explored by using parameters that are linear interpolations
of the values from the two end points (GEG and EEG). The
parameters at EEG are given in Table I.

Having parameterized the model Hamiltonian, we calcu-
lated the many-body eigenstates and their energies by exact

041202-2



RAPID COMMUNICATIONS

MECHANISM FOR OPTICAL INITIALIZATION OF SPIN . . . PHYSICAL REVIEW B 86, 041202(R) (2012)

FIG. 3. (Color online) (a) Relaxation path taken between the
GEG and EEG. (b) Energy surfaces from exact diagonalization of
the extended Hubbard model. (c) Energy surfaces from a GW-BSE
calculation of the extended Hubbard model. (d) Optical spin initial-
ization mechanism supported by results from exact diagonalization
of the extended Hubbard model.

diagonalization (or, in quantum chemistry language, a full CI
calculation) of the Hamiltonian in the basis of all possible
6-electron Slater determinants spanned by the 8 spin orbitals.
It is worth pointing out that exact diagonalization includes all
many-electron correlation effects within our restricted Hilbert
space. This is important because U/t > 3 in this system.

Figure 3(b) shows the energy surfaces of the ground and
excited states of the extended Hubbard model. As discussed
in Ref. 29, in the range of generalized coordinates considered,
the many-body states listed in Table II are ordered (from
low to high energies) as 3A2, 1E, and 1A1 in the e2 hole
configuration, and 3E and 1E in the v1e1 hole configuration.21,22

Without any free parameters, our calculated many-body
energy level differences for the triplet states match very well

with experimental findings: (i) E
3E

GEG − E
3A2

GEG = 2.1 eV, as
compared to experimental vertical absorption energy of 2.2 eV.

(ii) E
3E

EEG − E
3A2

EEG = 1.8 eV, as compared to experimental
vertical emission energy of 1.8 eV. (iii) A zero phonon line

E
3E

EEG − E
3A2

GEG = 2.0 eV, as compared to the experimental
value of 1.945 eV.1

Figure 3(b) shows that the ordering of 3E and 1A1 levels
is inverted as the system relaxes beyond EEG. This inversion
of the ordering allows for the possibility of an intersystem
crossing between these states. If intersystem crossing is
mediated by spin-orbit coupling, which is known as the
only mechanism to couple many-body states of different
spin multiplicities in this system,21,22 only the 3E state with
A1 representation (ms = ±1) can couple to 1A1 as shown
in Table II. These findings explain the observed optical
initialization from the ms = ±1 excited triplet state. Our
results are distinctly different from those from a recent ab initio
GW-BSE study,16 where a level crossing between the 3E

and 1E′ levels is reported and there is no crossing between
the 3E and 1A1 levels. We also computed the excited-state
energies within the same GW-BSE approximation for the
extended Hubbard model in the same 8-spin-orbital Hilbert
space. Our GW-BSE results for the extended Hubbard model
in Fig. 3(c) show that the 3E and 1E′ levels are very close
within the GW-BSE approach, reproducing the ab initio
GW-BSE results. The difference between the results from

TABLE II. Low-lying many-body states of the NV− center denoted by hole occupations and their symmetry
representations (degenerate representation without spin-orbit coupling and corresponding spin-orbit split representations).
Instead of electron occupation of single-particle orbitals, one can equivalently express a many-body state by hole occupation.
Each ket vector represents a 6-orbital Slater determinant in second-quantized notation, for example, cacb|f 〉 = |ab〉, where
|f 〉 is the 8-orbital Slater determinant.

Sym. Rep.

Hole Occ. w/o SO SO Many-body States

v1e1 1E′ Ex 1/
√

2|vēx〉 − 1/
√

2|v̄ex〉
Ey 1/

√
2|vēy〉 − 1/

√
2|v̄ey〉

3E Ex 1/2|vex〉 − 1/2|v̄ēx〉 − i/2|vey〉 + i/2|v̄ēy〉
Ey −1/2|vex〉 + 1/2|v̄ēx〉 + i/2|vey〉 + i/2|v̄ēy〉
Ex 1/

√
2|vēy〉 + 1/

√
2|v̄ey〉

Ey 1/
√

2|vēx〉 + 1/
√

2|v̄ex〉
A2 1/2|vex〉 − 1/2|v̄ēx〉 + i/2|vey〉 + i/2|v̄ēy〉
A1 1/2|vex〉 + 1/2|v̄ēx〉 + i/2|vey〉 − i/2|v̄ēy〉

e2 1A1 A1 1/
√

2|ex ēx〉 + 1/
√

2|ey ēy〉
1E Ex 1/

√
2|ex ēx〉 − 1/

√
2|ey ēy〉

Ey 1/
√

2|ex ēy〉 − 1/
√

2|ēxey〉
3A2 Ex 1/

√
2|exey〉 − 1/

√
2|ēx ēy〉

Ey 1/
√

2|exey〉 + 1/
√

2|ēx ēy〉
A1 1/

√
2|ex ēy〉 + 1/

√
2|ēxey〉
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conventional GW-BSE and exact diagonalization arises from
(i) the number of configurations (Slater determinants) to de-
scribe the many-electron states, and (ii) how these two methods
treat electron-electron interaction. The conventional GW-BSE
approach takes only one, e.g., the |exey〉 configurations out of
the threefold degenerate ground state (3A2) configurations of
|exey〉, |ēx ēy〉, and 1/

√
2|exēy〉 + 1/

√
2|ēxey〉 in Table II. Then

it considers single-electron-hole excitation and deexcitation
from them. Due to this less complete description, the number
of configurations composing a particular state within the
GW-BSE calculation is smaller than the actual number of
configurations from an exact diagonalization calculation. For
instance, if one considers the 3E representation in Table II,
exact diagonalization would give rise to states mixing all
6 configurations (|vex〉, |v̄ēx〉, |vey〉, |v̄ēy〉, 1/

√
2|vēy〉 +

1/
√

2|v̄ey〉, 1/
√

2|vēx〉 + 1/
√

2|v̄ex〉). However, within GW-
BSE, the 3E states would consist of two configurations
(|vex〉 and |vey〉) and are twofold degenerate. As for the
treatment of interactions, standard GW-BSE method being a
perturbative approach is an approximation to exact diagonal-
ization in several ways for a given Hamiltonian. Conceptually,
it does not include the vertex contribution in evaluating
the electron self-energy, and the electron-hole interaction
kernel in the Bethe-Salpeter equation is taken at the GW
level.

While knowing the excited-state level positions is a nec-
essary requirement of any model that would explain optical
initialization, they are of themselves not sufficient. To have
a complete understanding of the process, it is also important
to calculate the transition rate between the many-body states.
Our calculations lead to the following optical initialization
mechanism shown in Fig. 3(d). First, an electron is excited
radiatively from the 3A2 ground-state level to the 3E level;
both are spin triplet states. Second, the 1A1(ms = ±1) state in
the 3E level is deexcited to the 1A1 level by an intersystem
crossing mediated by spin-orbit coupling. For the last step,
two paths are possible. One possible transition path to the
final ground state is an intersystem crossing mediated by
spin-orbit interaction21,22 from 1A1 to the ms = 0 state of
the ground-state 3A2 level. The other possible path to the
final ground state is first a nonradiative transition from 1A1 to
1E by electron–multiple-phonon interaction and a subsequent
intersystem crossing transition from the 1E level to the ms = 0
state of 3A2 by spin-orbit coupling, enabled by dynamic-Jahn-
Teller-effect-assisted symmetry lowering of the structure from
C3V to C1h.22

The proposed mechanism is supported by agreement of the
calculated transition rates with the corresponding measured
values. The 3E → 3A2 radiative deexcitation lifetime is cal-
culated to be 20 ns using our calculated many-body states
and within the electric dipole approximation, as compared to
the experimental value of 13 ns.29 The intersystem crossing
rate between 3E and 1A1, mediated by spin-orbit coupling, is
calculated to be ∼50 ns within a displaced harmonic oscillator
model (similar to the Marcus theory for electron transfer
reaction29), as compared to the experimental value of 30 ns.25

Radiative deexcitation from the 1A1 state to the lower singlet
state of 1E is calculated to be ∼70 ns, which is much larger
than the reported lifetime of 1 ns.14 It is consistent with the ex-
perimental observation that deexcitation from the singlet level
(that the system in the initially optically excited triplet state
decayed nonradiatively to; in our model it is 1A1) is dominated
by nonradiative transition.14,15 We therefore assign that the
deexcitation from 1A1 is dominated by nonradiative transition.
A definitive calculation of the rate of the last step of this
mechanism is beyond our current model. The overall process
nevertheless explains all the steps consistently with experi-
ments in the optical initialization to the ms = 0 ground state.

To conclude, we have constructed a theoretical model
to understand the physical mechanism for the optical ini-
tialization of spin of the NV− center in diamond. Using
exact diagonalization of an extended Hubbard Hamiltonian
determined from ab initio GW calculations, we incorporated
full electron-electron interactions, the diamond host screening,
and geometrical relaxation effects in the calculation. The
computed ground- and excited-state energy surfaces and
transition rates between them provided a consistent picture
with experiments in support of an optical initialization path of
3A2→3E→1A1→3A2 or 3A2→3E→1A1→1E→3A2 in which
intersystem crossings play a crucial role. Our method should
be applicable to other deep centers in large band gap materials.
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