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Real-space pseudopotential method for computing the electronic properties of periodic systems
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We present a real-space method for electronic-structure calculations of periodic systems. Our method is
based on the self-consistent solution of the Kohn-Sham equations on a uniform three-dimensional grid. A
higher-order finite-difference method is combined vathinitio pseudopotentials. The kinetic energy operator,
the nonlocal term of the ionic pseudopotential, and the Hartree and exchange-correlation potentials are set up
directly on the real-space grid. The local contribution to the ionic pseudopotential is initially obtained in
reciprocal space and is then transferred to the real-space grid by Fourier transform. Our method enjoys the
main advantages of real-space grid techniques over traditional plane-wave representations for density-
functional calculations, i.e., improved scaling and easier implementation on parallel computers. We illustrate
the method by application to liquid silicon.
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I. INTRODUCTION accurately, since spurious interactions between replicated im-
ages of the system must be avoided. A periodic representa-

Calculating the ionic and electronic structures of materialgion also complicates the study of charged systems: the peri-
from first principles remains a formidable task. Although theodicity makes the system infinitely charged, so that an
Hohenberg-Kohn-Sham density-functional theoffpFT) artificial uniform compensating charge must be inseftaul
(Refs. 1 and 2simplifies the problem enormously, the size subtracteglin order to prevent divergence of the total energy.
of systems susceptible to current quantum computatioFurthermore, since FFTs involve nonlocal operations, the ef-
methods is limited. As such, the development of efficientficiency of their implementation on parallel computer archi-
DFT-based methods is crucial for solving large-scale probtectures is diminished by the need for global communica-
lems in condensed-matter physics. tions among processors.

Plane-wave pseudopotential methods have been widely During the past decade, there has been increasing interest
used for electronic-structure calculatich®seudopotential in developing real-space pseudopotential metfo&sich
theory allows one to focus on the chemically active valencenethods have a number of points in their favor. First, imple-
electrons by replacing the strong all-electron atomic potentialentation of these approaches is simple: there is no “for-
by a weak pseudopotential which effectively reproduces thenal” basis, with calculations being performed directly on a
effects of the core electrons on the valence states. This apeal-space grid that does not depend on ion positions. The
proximation significantly reduces the number of eigenpairspacing of the grid is refined until the calculation converges;
to be handled, especially for heavier elements. Moreovethe grid spacing plays the role of the cutoff energy in the
since the core wave functions and the core oscillatory regioplane-wave approach. Secondly, since the Hamiltonian ma-
of the valence wave functions are removed, the use of simplgix is sparse quadratic scaling of matrix-vector multiplica-
basis functions such as plane waves is straightforward. Repion is attainable. Thirdly, there is no need to introduce arti-
resenting the electronic wave functions with respect to #icial periodicity in dealing with nonperiodic systems.
plane-wave basis offers a number of advantages, includinginally, real-space methods are inherently local, which facili-
(i) that the basis does not depend on atomic positiGins; tates implementation on parallel computers. In short, real-
that only one parameter, the wavelength of the highest Fouspace methods not only share the main advantages of plane-
rier mode used in the expansion, need be refined to contralave representations, but they can also have improved
convergence; andii) that matrix-vector multiplication be- scaling and they can be easily parallelized, which makes
tween the Hamiltonian matrix and the trial wave vectors,them highly attractive for computation of the electronic
which is the crucial computational step in modern pseudopoground states of large, complex systems.
tential codes, can be efficiently performed using the fast Fou- Although one of the advantages of real-space methods is
rier transform (FFT), which improves scaling from the their application to localized systems, there is no reason to
“standard”Ngto Ngln N, (whereN, is the number of atoms limit their use to such system$. Here we present a real-
involved in the calculations space pseudopotential method for calculation of the elec-

Also, plane waves have both “physical” and computa- tronic properties ofperiodic systems. Our method can be
tional drawbacks. In a plane-wave representation, the bounaonsidered as an extension of the real-space method devel-
ary conditions must be periodic. If one wants to study aoped by our group for the study of isolated systérirs Sec.
nonperiodic system such as a molecule or a cluster, norlt we describe the main characteristics of the new method, in
trivial precautions must be taken to reproduce the vacuun$ec. Il we illustrate its performance by presenting the results
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of its use in a molecular-dynami¢sD) simulation of liquid  finite domain by &i.yj.z), with the integers, j, andk
silicon (as far as we know, this is the firsb initio MD  haying values from 1 tNgig=L/h. The system is made
simulation of a liquid to have employed a real-space techperiodic by replicating the unit cell and the atoms it contains
nique, and in Sec. IV we summarize our main conclusmns.(the basis throughout space. We assume that all the atoms
belong to the same species.
In order to model Eq(2) on a real-space grid, we use a

Il. DESCRIPTION OF THE METHOD higher-order finite-difference expansfofor the Laplacian

operator. We approximate the partial derivatives of the wave

H 1,2
ACC.OFO"”Q to DFT, thg o energ)_/Etot of a SYSteM  fnction at a given point of the grid by a weighted sum over
comprising electrons and iorithe latter in positiongR,}) its values at that and neighboring points.

can be written as a unique functional of the electron density - e ach iteration of the algorithm for self-consistent solu-

P tion of the Kohn-Sham equations, the Hartree and exchange-
E —T[p]+E({R.} +E co_rrela_tlon potentlals_ are set up directly on the_ real-space
ol P1=TLp1+ Eionl{Rah.[p]) + Enilp] grid using the approximation to the electron density obtained

+Eyd p]+ Eion-ion({Ra}), (1) in the previous iteration. FoY,., we use the local-density

approximation, according to which the value 9f; at a
given point is a function of the electron density at that point.
To constructVy,, we solve the Poisson equatipf 2V (r)

where T[p] is the kinetic energy,E,,(Ra.[p]) is the
electron-ion energygy[ p] is the electron-electron Coulomb

energy or Hartree potential enerdy,d p] is the exchange- _ —4ap(r)] using the matrix formalism corresponding to

correlation energy, anlionion(Ra) is the classical electro- o higher-order finite-difference methbdirst setting the
static energy among the ions. Finding the electron densit¥

that minimi th funetional | alent t Wi otal charge in the supercell to zero in order to prevent the
at minimizes the energy functional 1S equivalent to SolViNgqy stem from becoming infinitely charged due to the required
the set of one-particle Schaimger (Kohn-Sham equations

periodicity.

v2 The remaining potential term in E(R), the ionic term, is

— =+ Vion(N V(1) + V(1) [n(r)=€,4,(r) (2)  determined using pseudopotential theory. We employ nonlo-

2 cal norm-conserving ionic pseudopotentials cast in the
and setting Kleinman-Bylander fornt’ The ionic contribution due to
one atom of the systenV,, is obtained as the sum of a
local term and a nonlocal term, the latter corresponding to an
angular-momentum-dependent projectidfilts effect on the
wave function in Eq(2) is

2, )

p(r)= 2 | n(r)

where the sum runs over the occupied statgs.andVy are

the ionic and Hartree potentials, respectivel\,,

= 0E,c/ 8p. Here and in the rest of the text, we use atomic V2 (r)gm(r)=Vod(ra) én(r)+ >, Gh imUim(ra)AV|(ry,),
units e=m=#=1) unless otherwise stated. Solving Egs. Im

(2) and(3) requires finding a self-consistent solution for the ®)
charge density, and constitutes the most computationally in- _ ) ) )
tensive part of the electronic-structure calculation. wherer,=r—R,; Uy is the atomic pseudopotential wave

Molecular-dynamics simulations and the extraction of dy-function corresponding to the angular momentum quantum
namical properties therefrom require accurate calculation ofumbersl andm; AV,=V,—V,, is the difference between
the ionic forces|F,}. If the system has been brought to the Vi (the | component of the ionic pseudopotentiaind the
Born-Oppenheimer surfadge., if the single-particle wave l0cal potentialVi,:; and the projection coefficient§y ),
functions are very close to the exact eigensiatie® forces  given by

can be calculated from the Hellmann-Feynman thedtem,
1
JE Gp, :—f Uim(F2) AV (1 5) ¢hn(r)dr (6)
F,=— aR“’t. (4) MT(AVE)
a

include the normalization factor

A. Solving the Kohn-Sham equations

We represent wave functions, the electron density, and (AVi,) = f Uim(T2) AV (F ) Uy (r2)dr . (7
potentials on a uniform orthogonal three-dimensional real-
space grid. For simplicity, we assume the grid to be cubic, The local and nonlocal terms in E¢b) must in principle
but the extension to a general orthorhombic grid is straightbe evaluated and accumulated for all the atoms in the system,
forward. In order to construct the grid, only two parametersi.e., for both the atoms in the basis and their periodic images.
need be specified, namely the grid spacin¢the distance However, the summation of nonlocal terms is actually lim-
between adjacent points in each of the three Cartesian direited to the basis, because at distances greater than the
tions) and the sizé. of the unit cell or supercell described by pseudopotential core radigs fraction of a bond lengjtV, is
the cubic grid. The points of the grid are then described in a-Z/r for all |, whereZ is the number of electrons acting as
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valence electrons in the pseudopotenttahis makesAV, B. Calculation of the forces

short-ranged, so that the nonlocal terms need only be evalu- the total ground-state energyEq. (1)] is given
ated for atoms belonging to the basis. Furthermore, the intgs

grals in Egs(6) and(7) can be efficiently calculated in real

space by direct summation over the grid points surrounding 3
each atom. Ewlp]=Tlp]+ j (") Vionjod 1)dr + 2 (AVi,
The situation is different for the local contribution to the
ionic potential, which involves a divergent summation of the X[G | m]?>+Enlp]+Exd p1+ Eionion{Ra}) + a,

long-range Coulomb term-Z/r. However, this divergence
can be avoided by making use of the fact that the pseudopo- (11)
tentials are short-ranged functions in reciprocal spadée  where the sum on is over the occupied states andis the
local ionic potentialViy, oc Can be calculated efficiently in contribution of the non-Coulomb part of the pseudopotential
reciprocal space and transferred to the real-space grid by ait q=0,
FFT. We obtain the local ionic potential in reciprocal space
as in a plane-wave calculation with an energy cutoff of ZN§1
212h?, the cutoff for which FFTs of the wave functions and =3
potentials require a grid of suhégnd 12\ first calculate the
structure factor Sy,(q) at wave vector q=(27/L) By Eg. (4), the force on iora is
X(ny,ny,n,) (wheren,, ny, andn, are integers

4qrr2dr. (12)

Z
(Vloc(r)+?

a

oclla 3Gy im
Fa= fp() ocl ! ) 22 <AV nImR—;l

_ aEion-ion

R
where the sum is taken over the positions of all the atoms in :
a single unit cell® Vi, . is then calculated as The first term on the right-hand side of E3.3) is the con-
' tribution from the local ionic potentiak, |,.. It involves the

B integral of a long-range functiorZ{r?), but is easily calcu-
Vion,tod @) = Sion(@) Vioc(d) )  |ated in reciprocal space, where there is no long-rangé%ail,

Son(Q) = g explig-Ry), ®)
(13)

and transferred to the real-space grid by FFT. Note that we 3 ,

need to perform this transformation once, just before we en- Faoc= ~IL Eq qexpiq-Ra)Vieda)p(a),
ter the loop for self-consistent solution of the Kohn-Sham

equations; since the local ionic potential is determined by th&vherep(q) is obtained by an FFT from the solution of the
positions of the ions, it does not change during the process dfohn-Sham equations on the real-space grid. The other elec-

(14)

finding a self-consistent solution far. tronic contribution to the force is due to the nonlocal com-
When discretized as above, Hg) adopts the form ponents of the pseudopotential. Taking advantage of its short
range, we calculate this term in real space, in which its com-
N putation scales as the square of the system (sibereas in
2 C, i//n(X +nsh,y; .2 reciprocal space it scales st).” The remaining term in
2 n=— Eqg. (13) is the force exerted on the ion by other ions. As
N usual for periodic systemswe evaluate this term by per-

forming two convergent summations, one over lattice vectors

+ + . . .
2 Cﬂzl’/’”(x' Y+ N2z and the other over reciprocal-lattice vectors, using Ewald’s

np=—

N method.
The procedure we use to evaluate the expression given in
+ an Chgthn(Xi Y 2zt n3h) Eq. (13) gives very accurate values of the ionic forces, as we
demonstrate in Sec. lll. Note that Ed.3) contains no term
[ Vion(Xi Y121 + Viu(Xi 1Y 12 + Vi Xi 1Y, 2 ] representing the derivative of the basis set with respect to the

e . “ ”1

X (% Y1 280 = €nt(Xs Y 20)- (10 position of the ion(the “Pulay force 8).
N is the order of the finite-difference expansion. Typically, Ill. APPLICATION TO LIQUID SILICON
we useN=6. SinceAV, differs from zero only inside the As a test of our method, we performed an MD simulation
pseudopotential core radius and the Laplacian operator exf liquid silicon at a temperature of 1800 K and a density of
tends only to a few neighbors around each grid point, the.59 g/cni, a thermodynamic state that is close to the ex-
matrix representation of Eq.10) is very sparse Conse- perimental melting pointT,,=1680 K, and density. This
quently, highly efficient diagonalization procedures can besimulation constitutes a severe test because silicon is one of
employed to extract the required eigenvalue/eigenfunctioithe most complex elemental liquids. Upon melting, silicon
pairs*1® undergoes a transition from a semiconducting covalent struc-
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FIG. 1. Time courses of the kinetic, potential, and total energies L
of liquid silicon during our microcanonical real-space MD simula-
tion. The equations of motion of the ions were integrated for a time Lr
step of 165 a.u. using the Beeman algorittRef. 35. No velocity
rescaling was performed. The potential and total energies have been
shifted by a constant so that the total energy averages zero. 0.5

S(q)

ture to a rather unusual metallic phase that, in spite of the 0
coordination number having increased from 4 to over 6 dur- 0
ing the transition, still has a very loosely packed structure q@A™h
when compared with more usual liquid metals, which have
coordination numbers of about 1Ref. 19. The existence of FIG. 2. Radial distribution functioriupper pangl and static
covalent bonds in the metallic phase is indicative of thestructure factor(lower panel of liquid silicon. The continuous
“many-body” nature of the interactions in liquid silicon, a Ccurves represent our real-space MD results, the dashed curves ex-
realistic description of which requires a quantum-mechanicaperimental data from Ref. 26.
treatment. We compare the results of our simulation with
available experimental data and with results obtained fronshows that there is no such error in our simulation. The ki-
previous MD simulations based on well-established planenetic and potential energies perform bounded oscillations
wave methods. around stable mean values, and the oscillations of one almost
We considered a system of 64 atoms in a cubic supercetlancel those of the other, resulting in very good conservation
with L=19.80 a.u. The real-space grid was constructed witlof the total energy. The rms noise in the energy conservation
a spacing ofh=0.71 a.u. The core electrons were repre-is less than 0.003 eV/at. No drift in the total energy was
sented by norm-conserving pseudopotentials generated fobserved. Highly accurate forces imply more than the valid-
the reference configuratidiNe]3s?3p? using the Troullier- ity of the scheme used in their calculati¢®ec. Il B. Since
Martins prescriptiort! with a radial cutoff of 2.5 a.u. for errors in the Hellmann-Feynman forces are first-order with
both s and p. The potential was made separable by the profespect to errors in the wave functions, accurate forces can
cedure of Kleinman and Byland&twith thes potential cho-  only be obtained when the wave functions are very nearly
sen to be the local component. The local-density functionaéxact eigenstates, which implies that the procedure used to
of Ceperley and AldéP was used as parameterized by Per-discretize and solve the Kohn-Sham equatit®ec. Il A is
dew and Zunget! and the singld” point was employed in also very accurate.
sampling the Brillouin zoné? It should be noted that we were able to use relatively long
We initially simulated the melting of solid silicon with a time steps in integrating the equations of motion. This is a
simple cubic structure. The temperature of the system washaracteristic o&b initio MD methods that restrict the simu-
controlled by coupling to a virtual heat bath via a Langevinlation to the Born-Oppenheimer surfa@OMD). The phi-
equation of motiorf® The time step was 165 a.(4 fs). After  losophy is different in the Car-Parrinello metht@PMD).?*
the temperature had stabilized at the desired value, the sybi CPMD, the construction of a fully self-consistent field at
tem was gradually decoupled from the virtual heat bath, aneach time step is avoided by using fictitious dynamics for the
a microcanonical MD simulation was performed over 750electrons, but accurate integration of the equations of motion
time stepg3 p9. Only the microcanonical data were used for requires the use of time steps more than an order of magni-
our analysis of the properties of liquid silicon. tude smaller than those employed in BOMD.
A microcanonical MD run constitutes a stringent test of ~ Figure 2 shows results on the static structtief liquid
the accuracy of calculated ionic forces because the trajectorsilicon obtained from the simulation and by experimnt.
of the system through configuration space is deterministicThe two sets of data for the radial distribution functigfr)
Any systematic error in the force calculations will preventagree welllupper panel the simulation results give the cor-
conservation of the total energy of the system. Figure Irect position of the principal peak of the function, 2.43 A,
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FIG. 3. Normalized velocity autocorrelation functidgt)/Z(0)
and mean-square displaceménR?(t)) (insed of liquid silicon as
obtained from our real-space MD simulation.

FIG. 4. Electronic density of states of liquid silicon as obtained
from our real-space MD simulation. The histogram is from a pre-
vious plane-wave MD simulatiofRef. 33. Fermi levels are set to

L. . Zero.
and exhibit the correct trend at greater distant@sugh

without dispersiop Integratingg(r) up to the position of the negative values; this contrasts with the typical behavior of

first minimum determined by experiment, 3.10 A, affords asimple liquid metals, which near the melting point, exhibit

value for the average coordination number that is identical téhe so-called “cage effecfthe atoms surrounding any given

experimental estimates; 6.4 (Ref. 26. atom allow the latter to move over short distances but then
Comparison between the results of simulation and experiteflect it, causingZ(t) to change sigh®>*° The absence of

ment for the static structure facts(q) (Fig. 2, lower panel such backscattering_in I_iquid silicon is likely related to its

is a stronger test than comparisongtf) results because it Small average coordination number. _ o

is S(q) that is obtained directly from experimental measure-  Like (AR%(t)), the velocity autocorrelation function is

ments.g(r) is obtained by Fourier transform & q), and is related to the self-diffusion coefficieft,

more susceptible to numerical erroS(q) was calculated jw

D j—

from the simulation results using the expreséton . Z(t)dt. (17)
1 The values oD obtained from our simulation data via Eqgs.
S(Q)= 1 > > exi—igq-(Ri—R)]), (15 (16) and(17) are both the same, 2.1 Alps. This value is
T

a consistent with those afforded by previoais initio calcula-

tions using plane-wave representations: BOMD results for

where the sums are taken over the ions in the unit cell andAR?(t)) have given a value ob=1.9 A?/ps?*? and a
the angular brackets denote averaging over both the traject@PMD study has yielded values of 2.3%ps [from
ries of the particles during the microcanonical MD run and(ARZ(t»] and 2.0 A?/ps[from Z(t)].3* A simulation based
over all the wave vectorg with the same modulug (we  on interatomic potentials gav@= 1.0 A /ps3* a value sig-
assume that liquid silicon is macroscopically isotropitn nificantly smaller than the quantum-mechanical estimates.
terms of$(q), the agreement between simulation and experi-  Figure 4 shows the electronic density-of-states distribu-
ment is very good, the simulation results correctly predictingion for liquid silicon. This distribution was obtained by con-
all the successive maxima and minima of the function. NOteStructing a histogram of the eigenvalues every 10 time steps
in particular, the successful prediction of the shoulder to thejuring the microcanonical MD run and averaging these re-
right of the first peak, which is not shown by t8gq) func-  sults. For comparison, the density of states obtained in an
tions of simple liquid metal§’?® earlier CPMD study? of the same thermodynamic state is

As examples of time-dependent functions, we calculategiiso shown(both studies only considered the Kohn-Sham
the mean-square displaceme(WR*(t)), and the velocity states at the singlE point). The agreement between the two
autocorrelation functionz(t) (Fig. 3.*> Except for very approaches is quite good, bearing in mind the technical dif-
small values oft, (AR?(t)) is perfectly linear, in keeping ferences between BOMD and CPMD calculations. Both
with the theoretical expressith studies clearly show liquid silicon to be a good metal with a

large density of states at the Fermi level.
(AR?(t))~6Dt+c as t—oe, (16)

in which D is the self-diffusion coefficient and is a con-

stant. Z(t) tends to zero with increasing time due to the

absence of correlation between the velocity of each particle This paper presents a method for self-consisédninitio

and its initial value. It is interesting thai(t) does not take calculation of electronic structures of periodic systems. Our

IV. SUMMARY AND CONCLUSIONS
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