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Real-space pseudopotential method for computing the electronic properties of periodic systems
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We present a real-space method for electronic-structure calculations of periodic systems. Our method is
based on the self-consistent solution of the Kohn-Sham equations on a uniform three-dimensional grid. A
higher-order finite-difference method is combined withab initio pseudopotentials. The kinetic energy operator,
the nonlocal term of the ionic pseudopotential, and the Hartree and exchange-correlation potentials are set up
directly on the real-space grid. The local contribution to the ionic pseudopotential is initially obtained in
reciprocal space and is then transferred to the real-space grid by Fourier transform. Our method enjoys the
main advantages of real-space grid techniques over traditional plane-wave representations for density-
functional calculations, i.e., improved scaling and easier implementation on parallel computers. We illustrate
the method by application to liquid silicon.
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I. INTRODUCTION

Calculating the ionic and electronic structures of mater
from first principles remains a formidable task. Although t
Hohenberg-Kohn-Sham density-functional theory~DFT!
~Refs. 1 and 2! simplifies the problem enormously, the siz
of systems susceptible to current quantum computa
methods is limited. As such, the development of efficie
DFT-based methods is crucial for solving large-scale pr
lems in condensed-matter physics.

Plane-wave pseudopotential methods have been wi
used for electronic-structure calculations.3 Pseudopotentia
theory allows one to focus on the chemically active valen
electrons by replacing the strong all-electron atomic poten
by a weak pseudopotential which effectively reproduces
effects of the core electrons on the valence states. This
proximation significantly reduces the number of eigenpa
to be handled, especially for heavier elements. Moreo
since the core wave functions and the core oscillatory reg
of the valence wave functions are removed, the use of sim
basis functions such as plane waves is straightforward. R
resenting the electronic wave functions with respect to
plane-wave basis offers a number of advantages, includ
~i! that the basis does not depend on atomic positions;~ii !
that only one parameter, the wavelength of the highest F
rier mode used in the expansion, need be refined to con
convergence; and~iii ! that matrix-vector multiplication be
tween the Hamiltonian matrix and the trial wave vecto
which is the crucial computational step in modern pseudo
tential codes, can be efficiently performed using the fast F
rier transform ~FFT!, which improves scaling from the
‘‘standard’’ Na

3 to Na
2 ln Na ~whereNa is the number of atoms

involved in the calculations!.
Also, plane waves have both ‘‘physical’’ and comput

tional drawbacks. In a plane-wave representation, the bou
ary conditions must be periodic. If one wants to study
nonperiodic system such as a molecule or a cluster, n
trivial precautions must be taken to reproduce the vacu
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accurately, since spurious interactions between replicated
ages of the system must be avoided. A periodic represe
tion also complicates the study of charged systems: the p
odicity makes the system infinitely charged, so that
artificial uniform compensating charge must be inserted~and
subtracted! in order to prevent divergence of the total energ
Furthermore, since FFTs involve nonlocal operations, the
ficiency of their implementation on parallel computer arc
tectures is diminished by the need for global communi
tions among processors.

During the past decade, there has been increasing inte
in developing real-space pseudopotential methods.4 Such
methods have a number of points in their favor. First, imp
mentation of these approaches is simple: there is no ‘‘f
mal’’ basis, with calculations being performed directly on
real-space grid that does not depend on ion positions.
spacing of the grid is refined until the calculation converg
the grid spacing plays the role of the cutoff energy in t
plane-wave approach. Secondly, since the Hamiltonian
trix is sparse, quadratic scaling of matrix-vector multiplica
tion is attainable. Thirdly, there is no need to introduce a
ficial periodicity in dealing with nonperiodic system
Finally, real-space methods are inherently local, which fac
tates implementation on parallel computers. In short, re
space methods not only share the main advantages of p
wave representations, but they can also have impro
scaling and they can be easily parallelized, which ma
them highly attractive for computation of the electron
ground states of large, complex systems.

Although one of the advantages of real-space method
their application to localized systems, there is no reason
limit their use to such systems.5,6 Here we present a real
space pseudopotential method for calculation of the e
tronic properties ofperiodic systems. Our method can b
considered as an extension of the real-space method d
oped by our group for the study of isolated systems.7 In Sec.
II we describe the main characteristics of the new method
Sec. III we illustrate its performance by presenting the res
©2004 The American Physical Society01-1
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of its use in a molecular-dynamics~MD! simulation of liquid
silicon ~as far as we know, this is the firstab initio MD
simulation of a liquid to have employed a real-space te
nique!, and in Sec. IV we summarize our main conclusio

II. DESCRIPTION OF THE METHOD

According to DFT,1,2 the total energyEtot of a system
comprising electrons and ions~the latter in positions$Ra%)
can be written as a unique functional of the electron den
r,

Etot@r#5T@r#1Eion~$Ra%,@r#!1EH@r#

1Exc@r#1Eion-ion~$Ra%!, ~1!

where T@r# is the kinetic energy,Eion(Ra ,@r#) is the
electron-ion energy,EH@r# is the electron-electron Coulom
energy or Hartree potential energy,Exc@r# is the exchange-
correlation energy, andEion-ion(Ra) is the classical electro
static energy among the ions. Finding the electron den
that minimizes the energy functional is equivalent to solv
the set of one-particle Schro¨dinger ~Kohn-Sham! equations

F2
¹2

2
1Vion~r !1VH~r !1Vxc~r !Gcn~r !5encn~r ! ~2!

and setting

r~r !5 (
n

ucn~r !u2, ~3!

where the sum runs over the occupied states.Vion andVH are
the ionic and Hartree potentials, respectively;Vxc
5dExc /dr. Here and in the rest of the text, we use atom
units (e5m5\51) unless otherwise stated. Solving Eq
~2! and ~3! requires finding a self-consistent solution for t
charge density, and constitutes the most computationally
tensive part of the electronic-structure calculation.

Molecular-dynamics simulations and the extraction of d
namical properties therefrom require accurate calculation
the ionic forces$Fa%. If the system has been brought to th
Born-Oppenheimer surface~i.e., if the single-particle wave
functions are very close to the exact eigenstates!, the forces
can be calculated from the Hellmann-Feynman theorem,8

Fa52
]Etot

]Ra
. ~4!

A. Solving the Kohn-Sham equations

We represent wave functions, the electron density,
potentials on a uniform orthogonal three-dimensional re
space grid. For simplicity, we assume the grid to be cub
but the extension to a general orthorhombic grid is straig
forward. In order to construct the grid, only two paramet
need be specified, namely the grid spacingh ~the distance
between adjacent points in each of the three Cartesian d
tions! and the sizeL of the unit cell or supercell described b
the cubic grid. The points of the grid are then described i
07510
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finite domain by (xi ,yj ,zk), with the integersi , j , and k
having values from 1 toNgrid5L/h. The system is made
periodic by replicating the unit cell and the atoms it conta
~the basis! throughout space. We assume that all the ato
belong to the same species.

In order to model Eq.~2! on a real-space grid, we use
higher-order finite-difference expansion9 for the Laplacian
operator. We approximate the partial derivatives of the wa
function at a given point of the grid by a weighted sum ov
its values at that and neighboring points.

In each iteration of the algorithm for self-consistent so
tion of the Kohn-Sham equations, the Hartree and exchan
correlation potentials are set up directly on the real-sp
grid using the approximation to the electron density obtain
in the previous iteration. ForVxc , we use the local-density
approximation, according to which the value ofVxc at a
given point is a function of the electron density at that poi
To constructVH , we solve the Poisson equation@¹2VH(r )
524pr(r )# using the matrix formalism corresponding
the higher-order finite-difference method,7 first setting the
total charge in the supercell to zero in order to prevent
system from becoming infinitely charged due to the requi
periodicity.

The remaining potential term in Eq.~2!, the ionic term, is
determined using pseudopotential theory. We employ non
cal norm-conserving ionic pseudopotentials cast in
Kleinman-Bylander form.10 The ionic contribution due to
one atom of the system,Vion

a , is obtained as the sum of
local term and a nonlocal term, the latter corresponding to
angular-momentum-dependent projection.7,10 Its effect on the
wave function in Eq.~2! is

Vion
a ~r !cn~r !5Vloc~r a!cn~r !1 (

lm
Gn,lm

a ulm~ra!DVl~r a!,

~5!

where ra5r2Ra ; ulm is the atomic pseudopotential wav
function corresponding to the angular momentum quant
numbersl and m; DVl5Vl2Vloc is the difference between
Vl ~the l component of the ionic pseudopotential! and the
local potentialVloc ; and the projection coefficientsGn,lm

a

given by

Gn,lm
a 5

1

^DVlm
a &

E ulm~ra!DVl~r a!cn~r !d3r ~6!

include the normalization factor

^DVlm
a &5 E ulm~ra!DVl~r a!ulm~ra!d3r . ~7!

The local and nonlocal terms in Eq.~5! must in principle
be evaluated and accumulated for all the atoms in the sys
i.e., for both the atoms in the basis and their periodic imag
However, the summation of nonlocal terms is actually lim
ited to the basis, because at distances greater than
pseudopotential core radius~a fraction of a bond length! Vl is
2Z/r for all l, whereZ is the number of electrons acting a
1-2
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REAL-SPACE PSEUDOPOTENTIAL METHOD FOR . . . PHYSICAL REVIEW B69, 075101 ~2004!
valence electrons in the pseudopotential;11 this makesDVl
short-ranged, so that the nonlocal terms need only be ev
ated for atoms belonging to the basis. Furthermore, the i
grals in Eqs.~6! and ~7! can be efficiently calculated in rea
space by direct summation over the grid points surround
each atom.

The situation is different for the local contribution to th
ionic potential, which involves a divergent summation of t
long-range Coulomb term2Z/r . However, this divergence
can be avoided by making use of the fact that the pseudo
tentials are short-ranged functions in reciprocal space.11 The
local ionic potentialVion,loc can be calculated efficiently in
reciprocal space and transferred to the real-space grid b
FFT. We obtain the local ionic potential in reciprocal spa
as in a plane-wave calculation with an energy cutoff
p2/2h2, the cutoff for which FFTs of the wave functions an
potentials require a grid of sizeNgrid

3 .12 We first calculate the
structure factor Sion(q) at wave vector q5(2p/L)
3(nx ,ny ,nz) ~wherenx , ny , andnz are integers!,

Sion~q!5 (
a

exp~ iq•Ra!, ~8!

where the sum is taken over the positions of all the atom
a single unit cell.13 Vion,loc is then calculated as

Vion,loc~q!5 Sion~q!Vloc~q! ~9!

and transferred to the real-space grid by FFT. Note that
need to perform this transformation once, just before we
ter the loop for self-consistent solution of the Kohn-Sha
equations; since the local ionic potential is determined by
positions of the ions, it does not change during the proces
finding a self-consistent solution forr.

When discretized as above, Eq.~2! adopts the form

2
1

2 F (
n152N

N

Cn1
cn~xi1n1h,yj ,zk!

1 (
n252N

N

Cn2
cn~xi ,yj1n2h,zk!

1 (
n352N

N

Cn3
cn~xi ,yj ,zk1n3h!G

1@Vion~xi ,yj ,zk!1VH~xi ,yj ,zk!1Vxc~xi ,yj ,zk!#

3cn~xi ,yj ,zk!5encn~xi ,yj ,zk!. ~10!

N is the order of the finite-difference expansion. Typical
we useN56. SinceDVl differs from zero only inside the
pseudopotential core radius and the Laplacian operator
tends only to a few neighbors around each grid point,
matrix representation of Eq.~10! is very sparse. Conse-
quently, highly efficient diagonalization procedures can
employed to extract the required eigenvalue/eigenfunc
pairs.14,15
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B. Calculation of the forces

The total ground-state energy@Eq. ~1!# is given
by

Etot@r#5T@r#1 E r~r !Vion,loc~r !d3r 1 (
a,n,lm

^DVlm
a &

3@Gn,lm
a #21EH@r#1Exc@r#1Eion-ion~$Ra%!1a,

~11!

where the sum onn is over the occupied states anda is the
contribution of the non-Coulomb part of the pseudopoten
at q50,

a5
ZNa

2

L3 E S Vloc~r !1
Z

r D4pr 2dr. ~12!

By Eq. ~4!, the force on iona is

Fa52 E r~r !
]Vloc~r a!

]Ra
d3r 22 (

n,lm
^DVlm

a &Gn,lm
a

]Gn,lm
a

Ra

2
]Eion-ion

Ra
. ~13!

The first term on the right-hand side of Eq.~13! is the con-
tribution from the local ionic potential,Fa, loc . It involves the
integral of a long-range function (Z/r 2), but is easily calcu-
lated in reciprocal space, where there is no long-range ta16

Fa, loc52 iL 3 (
q

q exp~ iq•Ra!Vloc~q!r~q!, ~14!

wherer(q) is obtained by an FFT from the solution of th
Kohn-Sham equations on the real-space grid. The other e
tronic contribution to the force is due to the nonlocal co
ponents of the pseudopotential. Taking advantage of its s
range, we calculate this term in real space, in which its co
putation scales as the square of the system size~whereas in
reciprocal space it scales asNa

3).17 The remaining term in
Eq. ~13! is the force exerted on the ion by other ions. A
usual for periodic systems,3 we evaluate this term by per
forming two convergent summations, one over lattice vect
and the other over reciprocal-lattice vectors, using Ewa
method.

The procedure we use to evaluate the expression give
Eq. ~13! gives very accurate values of the ionic forces, as
demonstrate in Sec. III. Note that Eq.~13! contains no term
representing the derivative of the basis set with respect to
position of the ion~the ‘‘Pulay force’’18!.

III. APPLICATION TO LIQUID SILICON

As a test of our method, we performed an MD simulati
of liquid silicon at a temperature of 1800 K and a density
2.59 g/cm3, a thermodynamic state that is close to the e
perimental melting point,Tm51680 K, and density. This
simulation constitutes a severe test because silicon is on
the most complex elemental liquids. Upon melting, silic
undergoes a transition from a semiconducting covalent st
1-3
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ALEMANY et al. PHYSICAL REVIEW B 69, 075101 ~2004!
ture to a rather unusual metallic phase that, in spite of
coordination number having increased from 4 to over 6 d
ing the transition, still has a very loosely packed struct
when compared with more usual liquid metals, which ha
coordination numbers of about 12~Ref. 19!. The existence of
covalent bonds in the metallic phase is indicative of
‘‘many-body’’ nature of the interactions in liquid silicon,
realistic description of which requires a quantum-mechan
treatment. We compare the results of our simulation w
available experimental data and with results obtained fr
previous MD simulations based on well-established pla
wave methods.

We considered a system of 64 atoms in a cubic super
with L519.80 a.u. The real-space grid was constructed w
a spacing ofh50.71 a.u. The core electrons were rep
sented by norm-conserving pseudopotentials generated
the reference configuration@Ne#3s23p2 using the Troullier-
Martins prescription,11 with a radial cutoff of 2.5 a.u. for
both s andp. The potential was made separable by the p
cedure of Kleinman and Bylander,10 with thes potential cho-
sen to be the local component. The local-density functio
of Ceperley and Alder20 was used as parameterized by P
dew and Zunger,21 and the singleG point was employed in
sampling the Brillouin zone.22

We initially simulated the melting of solid silicon with
simple cubic structure. The temperature of the system
controlled by coupling to a virtual heat bath via a Langev
equation of motion.23 The time step was 165 a.u.~4 fs!. After
the temperature had stabilized at the desired value, the
tem was gradually decoupled from the virtual heat bath,
a microcanonical MD simulation was performed over 7
time steps~3 ps!. Only the microcanonical data were used f
our analysis of the properties of liquid silicon.

A microcanonical MD run constitutes a stringent test
the accuracy of calculated ionic forces because the trajec
of the system through configuration space is determinis
Any systematic error in the force calculations will preve
conservation of the total energy of the system. Figure

FIG. 1. Time courses of the kinetic, potential, and total energ
of liquid silicon during our microcanonical real-space MD simu
tion. The equations of motion of the ions were integrated for a ti
step of 165 a.u. using the Beeman algorithm~Ref. 35!. No velocity
rescaling was performed. The potential and total energies have
shifted by a constant so that the total energy averages zero.
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shows that there is no such error in our simulation. The
netic and potential energies perform bounded oscillati
around stable mean values, and the oscillations of one alm
cancel those of the other, resulting in very good conserva
of the total energy. The rms noise in the energy conserva
is less than 0.003 eV/at. No drift in the total energy w
observed. Highly accurate forces imply more than the va
ity of the scheme used in their calculation~Sec. II B!. Since
errors in the Hellmann-Feynman forces are first-order w
respect to errors in the wave functions, accurate forces
only be obtained when the wave functions are very nea
exact eigenstates, which implies that the procedure use
discretize and solve the Kohn-Sham equations~Sec. II A! is
also very accurate.

It should be noted that we were able to use relatively lo
time steps in integrating the equations of motion. This is
characteristic ofab initio MD methods that restrict the simu
lation to the Born-Oppenheimer surface~BOMD!. The phi-
losophy is different in the Car-Parrinello method~CPMD!.24

In CPMD, the construction of a fully self-consistent field
each time step is avoided by using fictitious dynamics for
electrons, but accurate integration of the equations of mo
requires the use of time steps more than an order of ma
tude smaller than those employed in BOMD.

Figure 2 shows results on the static structure25 of liquid
silicon obtained from the simulation and by experiment26

The two sets of data for the radial distribution functiong(r )
agree well~upper panel!; the simulation results give the cor
rect position of the principal peak of the function, 2.43

s

e

en

FIG. 2. Radial distribution function~upper panel! and static
structure factor~lower panel! of liquid silicon. The continuous
curves represent our real-space MD results, the dashed curve
perimental data from Ref. 26.
1-4
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REAL-SPACE PSEUDOPOTENTIAL METHOD FOR . . . PHYSICAL REVIEW B69, 075101 ~2004!
and exhibit the correct trend at greater distances~though
without dispersion!. Integratingg(r ) up to the position of the
first minimum determined by experiment, 3.10 Å, affords
value for the average coordination number that is identica
experimental estimates,;6.4 ~Ref. 26!.

Comparison between the results of simulation and exp
ment for the static structure factorS(q) ~Fig. 2, lower panel!
is a stronger test than comparison ofg(r ) results because i
is S(q) that is obtained directly from experimental measu
ments.g(r ) is obtained by Fourier transform ofS(q), and is
more susceptible to numerical errors.S(q) was calculated
from the simulation results using the expression25

S~q!5
1

Na
K (

i
(

j
exp@2 iq•~Ri2Rj !#L , ~15!

where the sums are taken over the ions in the unit cell
the angular brackets denote averaging over both the traje
ries of the particles during the microcanonical MD run a
over all the wave vectorsq with the same modulusq ~we
assume that liquid silicon is macroscopically isotropic!. In
terms ofS(q), the agreement between simulation and exp
ment is very good, the simulation results correctly predict
all the successive maxima and minima of the function. No
in particular, the successful prediction of the shoulder to
right of the first peak, which is not shown by theS(q) func-
tions of simple liquid metals.27,28

As examples of time-dependent functions, we calcula
the mean-square displacement,^DR2(t)&, and the velocity
autocorrelation functionZ(t) ~Fig. 3!.25 Except for very
small values oft, ^DR2(t)& is perfectly linear, in keeping
with the theoretical expression25

^DR2~ t !&;6Dt1c as t→`, ~16!

in which D is the self-diffusion coefficient andc is a con-
stant. Z(t) tends to zero with increasing time due to t
absence of correlation between the velocity of each part
and its initial value. It is interesting thatZ(t) does not take

FIG. 3. Normalized velocity autocorrelation functionZ(t)/Z(0)
and mean-square displacement^DR2(t)& ~inset! of liquid silicon as
obtained from our real-space MD simulation.
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negative values; this contrasts with the typical behavior
simple liquid metals, which near the melting point, exhib
the so-called ‘‘cage effect’’@the atoms surrounding any give
atom allow the latter to move over short distances but th
reflect it, causingZ(t) to change sign#.29,30 The absence of
such backscattering in liquid silicon is likely related to i
small average coordination number.

Like ^DR2(t)&, the velocity autocorrelation function i
related to the self-diffusion coefficient,25

D5 E
0

`

Z~ t !dt. ~17!

The values ofD obtained from our simulation data via Eq
~16! and ~17! are both the same, 2.1 Å2/ps. This value is
consistent with those afforded by previousab initio calcula-
tions using plane-wave representations: BOMD results
^DR2(t)& have given a value ofD51.9 Å 2/ps,31,32 and a
CPMD study has yielded values of 2.3 Å2/ps @from
^DR2(t)&] and 2.0 Å2/ps @from Z(t)].33 A simulation based
on interatomic potentials gaveD51.0 Å 2/ps,34 a value sig-
nificantly smaller than the quantum-mechanical estimate

Figure 4 shows the electronic density-of-states distri
tion for liquid silicon. This distribution was obtained by con
structing a histogram of the eigenvalues every 10 time st
during the microcanonical MD run and averaging these
sults. For comparison, the density of states obtained in
earlier CPMD study33 of the same thermodynamic state
also shown~both studies only considered the Kohn-Sha
states at the singleG point!. The agreement between the tw
approaches is quite good, bearing in mind the technical
ferences between BOMD and CPMD calculations. Bo
studies clearly show liquid silicon to be a good metal with
large density of states at the Fermi level.

IV. SUMMARY AND CONCLUSIONS

This paper presents a method for self-consistentab initio
calculation of electronic structures of periodic systems. O

FIG. 4. Electronic density of states of liquid silicon as obtain
from our real-space MD simulation. The histogram is from a p
vious plane-wave MD simulation~Ref. 33!. Fermi levels are set to
zero.
1-5



on
un
s
ng
ng
ce
rg
al

ho
d
at
-

n
u

r
ort
tes
ed

en-
ork
m-
e

4,
tion
nt

port
er

ALEMANY et al. PHYSICAL REVIEW B 69, 075101 ~2004!
method employs pseudopotentials to construct the electr
ion potential, and solves the Kohn-Sham equations on a
form real-space grid. The only FFT performed is used to
up the local ionic potential on the real-space grid followi
its calculation in reciprocal space. The efficiency derivi
from inherent parallelizability and the use of sparse matri
makes this method eminently suitable for the study of la
complex systems. Calculation of the forces on ions has
been implemented.

We have successfully tested the accuracy of the met
by performing an MD simulation of liquid silicon an
comparing the results with available experimental d
and with previousab initio results. To the best of our knowl
edge, this simulation constitutes the first application of anab
initio real-space technique to the study of a liquid, a
proves the ability of these approaches to simulate the liq
state.
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~1989!; I. Štich, R. Car, and M. Parrinello, Phys. Rev. B44,
4262 ~1991!.

34P. B. Allen and J. Q. Broughton, J. Phys. Chem.91, 4964~1987!.
35D. Beeman, J. Comput. Phys.20, 130 ~1976!.
1-6


