
Gaussian quadrature.
Adaptive Integration.
Special cases.
Multiple integrals.
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Gaussian quadrature

In general, in gaussian quadrature, the points are placed
non-uniformly.

10 point quadrature 100 point quadrature

More points closer to the edges than in the middle.
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Gaussian Quadrature

∫ 2

1

1

x2
= 0.5

n integral
1 0.4444444444444447
2 0.4970414201183431
3 0.4998740236835472
4 0.4999951475626201
5 0.4999998234768075
6 0.4999999938120432
7 0.4999999997886506
8 0.4999999999929189
9 0.4999999999997659

10 0.4999999999999911

To reach close to machine accuracy with double precision, Romberg
integration needs 64 intervals, while Simpson’s rule would need about

1900 intervals, and the trapezium rule would need no less than 3.8× 106

Gaussian quadrature needs 10 points.
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Adaptive integration

Non-adaptive quadrature: We continue to subdivide all
subintervals, say by half, until overall error estimate falls
below desired tolerance.

This method – although unbiased – may often be very
inefficient if the function is not equally smooth
throughout the domain of integration.
Adaptive quadrature: The domain of integration is
selectively refined. This reflects the behavior of particular
integrand function on a specific subinterval
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Adaptive integration

Integrand is sampled densely in regions where it is difficult to
integrate and sparsely in regions where it is easy.
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Adaptive integration

It is a very practical way to approach the problem of
having an integrand which has some "interesting"
behaviour.

Can be quite efficient – uses 1384 sampling points.
However, if interval of integration is very wide but
"interesting" behavior of integrand is confined to narrow
range, sampling by automatic routine may miss interesting
part of integrand behavior, and resulting value for integral
may be completely wrong.
Plot to see the interesting part..
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Special cases

Integrals with oscillating integrands:∫ b

a

f(x) cosn(ωx)dx

Use methods or programs specially designed to calculate
integrals with oscillating functions:

Filon’s method
Clenshaw-Curtis method
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Special Cases: Improper Integrals

Improper integrals integrals whose integrand is unbounded in
the range of integration.

Change of variable
Elimination of the singularity
Ignoring the singularity
Truncation of the interval
Numerical evaluation of the Cauchy Principal Value
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Change of variable

Sometimes it is possible to find a change of variable that
eliminates the singularity.

I =

∫ 1

0

x−
1
n g(x)dx

substituting x = tn, the integral becomes:

I = n

∫ 1

0

tn−2g(tn)dt

which is proper!
But one has to be careful to not trade one problem for another:

I =

∫ 1

0

log(x)f(x)dx

substituting t = − log(x),

I = −
∫ ∞
0

te−tf(e−t)dt
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Elimination of the singularity

General idea: Subtract from the singular integrand f(x) a
function, g(x).

g(x) integral is known in closed form.
f(x)− g(x) is no longer singular.

This means that g(x) has to mimic the behaviour of closely to
its singular point.

∫ 1

0

cosx√
x
dx =

∫ 1

0

1√
x
dx+

∫ 1

0

cos(x)− 1√
x

dx

=2 +

∫ 1

0

cos(x)− 1√
x

dx

But cos(x)− 1 ≈ −x2

2
near x = 0 making the new integrand

proper that can be integrated easily.
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Ignoring the singularity

It is also possible to avoid the integrand singularities and
apply the standard quadrature formulae. If we want to
compute: ∫ 1

0

f(x)dx

where f(x) is unbounded in the neighbourhood of x = 0

Then we set f(0) = 0 (or any other value) and use any
sequence of quadrature methods.
Another option: use a sequence of quadrature methods
that do not involve the value of f(x) at x = 0.
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Proceeding to the limit

1 > r1 > r2 > . . . is a sequence of points that converges to 0
(For e.g. if rn = 2−n, then∫ 1

0

f(x)dx =

∫ 1

r1

f(x)dx+

∫ r1

r2

f(x)dx+

∫ r2

r3

f(x)dx+ . . .

Each of the above integrals is a proper integral.
The evalulation can be terminated if∣∣∣∣ ∫ rn+1

rn

f(x)dx

∣∣∣∣ ≤ ε
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Truncation of the interval

∫ 1

0

f(x)dx =

∫ r

0

f(x)dx+

∫ 1

r

f(x)dx

then if ∣∣∣∣ ∫ r

0

f(x)dx

∣∣∣∣ ≤ ε,

we can simply evaluate ∫ 1

r

f(x)dx

For example, assume |g(x)| < 1∀x ∈ (0, 1], then∣∣∣∣ g(x)

x
1
2 + x

1
3

∣∣∣∣ ≤ 1

2x
1
2

=⇒
∣∣∣∣ ∫ r

0

g(x)

x
1
2 + x

1
3

dx

∣∣∣∣ ≤ ∫ r

0

dx

2x
1
2

= r
1
2

If we chose r ≤ 10−8. we get an accuracy of 10−4.
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Numerical Evaluation of the Cauchy Principal Value

Reduction of the CPV to one-sided improper integral is
possible.
Consider f(x) unbounded in x = c with a < c < b.
Suppose that P

∫ b

a
f(x)dx exists:

P
∫ b

a

f(x)dx = lim
r→0

[ ∫ c−r

a

f(x)dx+

∫ b

c+r

f(x)dx

]

Consider c = 0 and b = −a
Decompose f(x) into its odd and even parts:

g(x) =
1

2
[f(x)− f(−x)] h(x) =

1

2
[f(x) + f(−x)]
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Numerical Evaluation of the Cauchy Principal Value

∫ −r
−a

f(x)dx+

∫ a

+r

f(x)dx =∫ −r
−a

g(x)dx+

∫ a

+r

g(x)dx+

∫ −r
−a

h(x)dx+

∫ a

+r

h(x)dx =

2

∫ a

+r

h(x)dx

Therefore:

P
∫ a

−a
f(x)dx = 2 lim

r→0+

∫ a

r

h(x)dx
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Numerical Evaluation of the Cauchy Principal Value

P
∫ 1

−1

1

x
dx = 0

P
∫ 1

−1

ex

x
dx = 2

∫ 1

0

sinh(x)

x
dx
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Numerical Evaluation of the Cauchy Principal Value

The method of subtracting the singularity may also be used.

I(x) = P
∫ b

a

f(t)

t− x
dt a < x < b

I(x) =

∫ b

a

f(t)− f(x)
t− x

dt+ f(x)P
∫ b

a

dt

t− x

=

∫ b

a

f(t)− f(x)
t− x

dt+ f(x) log
b− x
x− a

Consider the function:

φ(t, x) =
f(t)− f(x)

t− x
t 6= x

φ(x, x) = f ′(x) t = x

and solve ∫ b

a

φ(t, x)dt
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Numerical Evaluation of the Cauchy Principal Value

It maybe useful to consider:∫ x+h

x−h
φ(t, x)dt =

∫ h

−h

f(t+ x)− f(x)
t

dt

If f(t+ x) can be expanded in a Taylor series:∫ x+h

x−h
φ(t, x)dt =

∫ h

−h

(
f ′(x) +

tf ′′(x)

2!
+
t2f ′′′(x)

3!
+ . . .

)
=2hf ′(x) +

h3f ′′′(x)

9
+ . . .
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Special cases: Indefinite integrals

∫ ∞
a

f(x)dx

∫ ∞
−∞

f(x)dx

Change of variables (common one is):

z =
x− a

1 + x− a

then ∫ ∞
a

f(x)dx =

∫ 1

0

1

(1− z)2
f
( z

1− z
+ a
)
dz

For
∫∞
−∞ use

x =
z

1− z2
or x = tan z

19/22



Special cases: Indefinite integrals

∫ ∞
a

f(x)dx

∫ ∞
−∞

f(x)dx

Replace infinite limits of integration by carefully chosen
finite values. Use asymptotic behaviour to evaluate "tail"
contribution! (For a� 1):∫ ∞

0

√
x

x2 + 1
dx =

∫ a

0

√
x

x2 + 1
dx+

∫ ∞
a

√
x

x2 + 1
dx

≈
∫ a

0

√
x

x2 + 1
dx+

∫ ∞
a

1

x3/2
dx

=

∫ a

0

√
x

x2 + 1
dx+

2√
a

Use nonlinear quadrature rules designed for infinite range
intervals.
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Multiple Integrals

Use automatic one-dimensional quadrature routine for
each dimension, one for outer integral and another for
inner integral.
Monte-Carlo method (effective for large dimensions)∫ 1

0

dx1

∫ 1

0

dx2 · · ·
∫ 1

0

dx7(x1 + x2 + . . .+ x7)
2
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Conclusions

Analyze the integrand and plot it to see any potential
pitfalls.

For smooth functions all methods work well.
For oscillating functions, functions with singularities,
functions with high and narrow peaks, etc., one should
use special methods and programs.
Very good set of quadrature methods available through
SciPy called QUADPACK. For your projects, use these
whenever possible.
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