m Richardson Extrapolation.
m Romberg Integration.
m Gaussian quadrature.
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Richardson Extrapolation

Richardson extrapolation is a sequence acceleration method,
used to improve the rate of convergence of a sequence.
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Richardson extrapolation is a sequence acceleration method,
used to improve the rate of convergence of a sequence.

Let A(h) be an approximation of A that depends on a positive
step size h with an error formula of the form

A — A(h) = aohko + alhkl + Clghk2 + -

where the a; are unknown constants and the k; are known
constants such that h¥ > hFi+1,
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Richardson Extrapolation

Richardson extrapolation is a sequence acceleration method,
used to improve the rate of convergence of a sequence.

Let A(h) be an approximation of A that depends on a positive
step size h with an error formula of the form
A - A<h) - aohko + alhkl + Clghk2 + -

where the a; are unknown constants and the k; are known
constants such that h¥ > hFi+1,

The exact value sought can be given by

A= A(h) + agh® + ayhF* 4 agh*? 4 - -
= A(h) + aph™ + O(h™)
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Richardson Extrapolation

Using the step sizes h and h/t for some ¢, the two formulas for
A are:

A =A(h) + agh™ + O(h*")
ko
aa(M) v (B)" o0
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Richardson Extrapolation

Using the step sizes h and h/t for some ¢, the two formulas for
A are:

A =A(h) + agh™ + O(h*")
ko
aa(M) v (B)" o0

Multiplying the second equation by % and subtracting the
first equation gives

(t — 1)A = 1" 4 (%) — A(R) + O(M)
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Richardson Extrapolation

Using the step sizes h and h/t for some ¢, the two formulas for
A are:

A =A(h) + agh® + O(h*)
h h\ "
Multiplying the second equation by % and subtracting the

first equation gives

@%—UA:ﬁm<%)_mm+owh)

which can be solved for A to give
thA (L) — A(h)
tho — 1

A= +O(n")
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Richardson Extrapolation

By this process, we have achieved a better approximation of A
by subtracting the largest term in the error which was O(h*o).
This process can be repeated to remove more error terms to

get even better approximations.
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Richardson Extrapolation

By this process, we have achieved a better approximation of A
by subtracting the largest term in the error which was O(h*o).
This process can be repeated to remove more error terms to
get even better approximations.

A general recurrence relation beginning with A = A(h) can
be defined for the approximations by

thi A; (&) — Ai(h)

where k; 1 satisfies

A= Aipr(h) + O(hF)
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Romberg Integration

m Romberg’s method is used to estimate the definite integral

I:/abf(z)da:

by applying Richardson extrapolation repeatedly on the
trapezium rule.
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m Romberg’s method is used to estimate the definite integral

b
I:/ f(z)dx
by applying Richardson extrapolation repeatedly on the
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m The estimates generate a triangular array.
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Romberg Integration

m Romberg’s method is used to estimate the definite integral

I:/abf(z)da:

by applying Richardson extrapolation repeatedly on the
trapezium rule.

m The estimates generate a triangular array.

m Romberg's method evaluates the integrand at equally
spaced points.
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Romberg Integration

As already discussed in previous lecture, trapezoidal rule:
0) 1 1
I :h[§f0+f1+---+fn—l+§fn]

Whereh:b’T“, x; = x9 +ih, o = a, T, = b.
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Romberg Integration

As already discussed in previous lecture, trapezoidal rule:

1 1
LY =hifot+ frt ot fama + 51l

Whereh:b’Ta, x; = x9 +ih, o = a, T, = b.

Error for this rule (O(h?)) only has even powers of h:
I=19 4+ Ah? + Bh* + Ch® + ...

where A, B, C' are related to derivatives of f(z) at the end
points and numerical weights. The exact expressions are called
Euler-Maclaurin formula.
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Romberg Integration

To obtain a more accurate estimate for I, we will eliminate the
leading contribution to the error the term of order h?, by
taking n to be even and determining the trapezoidal rule for %
intervals as well as for n intervals.
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Romberg Integration

To obtain a more accurate estimate for I, we will eliminate the
leading contribution to the error the term of order h?, by
taking n to be even and determining the trapezoidal rule for %
intervals as well as for n intervals.

Since the width of one interval is now 2k we have

1 1
1 =2h5 fo+ fi 4o+ fumr + 5 i)
[ =1 + A(2h)* + B(2h)" + C(2h)° + ..
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Romberg Integration

To obtain a more accurate estimate for I, we will eliminate the
leading contribution to the error the term of order h?, by
taking n to be even and determining the trapezoidal rule for %
intervals as well as for n intervals.

Since the width of one interval is now 2k we have

1 1
1 =2h5 fo+ fi 4o+ fumr + 5 i)
[ =1 + A(2h)* + B(2h)" + C(2h)° + ..

Combining and eliminating the leading h? term:

470 — 1)
1:75—4Bh4—200h6+...
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Romberg Integration

As a result the next level of approximation becomes:

410 — 1O
2

7 —
" 3
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Romberg Integration

As a result the next level of approximation becomes:

410 — 1O
2

7 —
" 3

The integral I can be written as:
I=IV+Br*+Che+ ...

with B’ = —4B and C' = —20C.
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Romberg Integration

As a result the next level of approximation becomes:

an — 1
2

7 —
" 3

The integral I can be written as:
I=I"+Bhr+Ch+...

with B’ = —4B and C' = —20C.

In terms of the weighted sum, this expression reduces to:

h
= §[f0+4f1—1—2f2—|—...+2fn_1+fn]

which is the Simpson’s rule!
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Romberg Integration

One can keep repeating this to get the next approximation to
I. Formulae differ from the Newton-Cotes. In general,

4;6[7(116—1) B I(ﬂk—l)

) — 2
" 4k — 1

for k =1,2,3,... which will have an error O(h?*+2).
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Romberg Integration

One can keep repeating this to get the next approximation to
I. Formulae differ from the Newton-Cotes. In general,

for k =1,2,3,... which will have an error O(h?*+2).

As a result better approximations can be found by using the

table:

I

n

k)

4k]'r(zk_l) _ I(k_l)

n

2

4k — 1

n k-] 0 1 2 3
!

1 10

2 AR

4 1 VoY

8 1
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Romberg Integration

nk 0

1 0.62500000000
2 0.53472222222
4 0.50899376417
8 0.50227085033
16 0.50056917013
32  0.50014238459

.50462962963
.50041761149
.50002987904
.50000194339
.50000012275

0.50013681028
0.50000403021
0.50000008102
0.50000000137

0.50000192259
0.50000001833 0.50000001086
0.50000000010 0.50000000003 0.50000000002

To reach close to machine accuracy with double precision,
Romberg integration needs 64 intervals, while Simpson’s rule
would need about 1900 intervals, and the trapezium rule
would need no less than 3.8 x 10° intervals
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Gaussian Quadrature

m Newton-Cotes Formulae
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m Use evenly-spaced functional values.
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Gaussian Quadrature

m Newton-Cotes Formulae

m Use evenly-spaced functional values.
m Did not use the flexibility we have to select the quadrature
points

m In fact a quadrature has several degrees of freedom.

m

1f] =) eif(x)

=1

A formula with m function evaluations requires 2m
numbers to be specified, ¢; and z;
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Gaussian Quadrature

m Select both these weights and locations so that a higher
order polynomial can be integrated.
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m Price: functional values must now be evaluated at

nonuniformly distributed points to achieve higher
accuracy.
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Gaussian Quadrature

m Select both these weights and locations so that a higher
order polynomial can be integrated.

m Price: functional values must now be evaluated at
nonuniformly distributed points to achieve higher
accuracy.

m Weights are no longer simple numbers.
m Usually derived for an interval such as [-1,1].
m Other intervals [a,b] determined by mapping to [-1,1].
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Gaussian Quadrature on [-1,1]

n

I[f1= /_1 f(z)dz = Z cif(z;) = cifitcafot. . Aen1 fumitcnfn

i=1
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Gaussian Quadrature on [-1,1]

n

I[f1= /_1 f(z)dz = Z cif(z;) = cifitcafot. . Aen1 fumitcnfn

i=1

Two function evaluations: Choose (c1, ¢2, 21, x2) such that the
method yields “exact integral" for f(z) = 2%, 2!, 2% 2*
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Gaussian Quadrature on [-1,1]

n

I[f1= /_1 f(z)dz = Z cif(z;) = cifitcafot. . Aen1 fumitcnfn

i=1

Two function evaluations: Choose (c1, ¢2, 21, x2) such that the
method yields “exact integral" for f(z) = 2%, 2!, 2% 2*

For n = 2, the method is accurate up to 2n — 1 = 3 degree
polynomial.

13/19



Finding quadrature nodes and weights

m One way is through the theory of orthogonal polynomials.
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integrated exactly.

m In general process is non-linear:

m Involves a polynomial function involving the unknown point
and its product with unknown weight.
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Finding quadrature nodes and weights

m One way is through the theory of orthogonal polynomials.
m Here we will do it via brute force.

m Set up equations by requiring that the 2m points
guarantee that a polynomial of degree 2m — 1 is
integrated exactly.

m In general process is non-linear:

m Involves a polynomial function involving the unknown point
and its product with unknown weight.

m Can be solved by using a multidimensional nonlinear solver

m Alternatively can sometimes be done step by step

14/19



Gaussian Quadrature on [-1,1]

1
Forn=2 [ flo)ds = erfian) + of ()
—1
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Gaussian Quadrature on [-1,1]

1
Forn =2 / f(x)dx = c1f(z1) + c2f(2)
1

Integral for f(x) = 2° z', 2% 2> = Four equations, four

unknowns
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Gaussian Quadrature on [-1,1]

1
Forn =2 / f(x)dx = c1f(z1) + c2f(2)
1

Integral for f(x) = 2° z', 2% 2> = Four equations, four

unknowns

1 )
f=1 = 1dx—2—01+02

2

a:da: =0=cx1 + 2712
{
2ala: == =177 + o7

—
||
\\\

3dyc = 0= 12} + co1}
7
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Gaussian Quadrature on [-1,1]

1
Forn =2 / f(x)dx = c1f(z1) + c2f(2)
1

0 .1 .2 .3

Integral for f(x) =2 2! 2% x
unknowns
1
f=1 = 1dx—2—01+02
f= / zdx =0 = cix1 + CoTa
f= / v de = = = cj2? + o1
f==z / wdr =0 = 12} + cp1}

]_/f

— Four equations, four

61202:1

Tl = —T9 =

al-

Ve
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Gaussian Quadrature on [-1,1]

1
For n =3 / f(x)dx = c1 f(x1) + cof (x2) + c3f(xs)
-1
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Gaussian Quadrature on [-1,1]

f=1
f=ux
f=a?
f=2a°
f=a'
f=a°

Forn =3

HHMMH

l

-1
1

-1
1

ldr =2=1c¢ + ¢+ c3

= (11 + CaT2 + C1X3

22d _ 2 2 2
T = 3= 177 + oy + 313

2?dr = 0 = c12% + oy + 373

4 24 4 4
T = 5= C1x] + CoTy + C323

2’dr =0 = 127 + coxh + c37)

)

B f(x)dx = c1f(x1) + cof (x2) + c3f(x3)

©Olut©loo ©lut

(&)
Cy =
xr =
To =

T3 =

[S2Y[eN]
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Gaussian Quadrature on [-1,1]
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Gaussian drature o

from numpy import ones,copy,cos,tan,pi,linspace

def

X,W

gaussxw (N):

# Initial approzimation to roots of the Legendre polynomial

a = linspace (3,4*N-1,N)/(4%N+2)
x = cos(pixa+1/(8xNxNx*tan(a)))

# Find roots using Newton’s method
epsilon = le-15
delta = 1.0
while delta>epsilon:
p0 = ones(N,float)
pl = copy(x)
for k in range(1,N):
p0,pl = pl,((2xk+1)*x*pl-k*p0)/(k+1)
dp = (N+1)*(pO-x*pl)/(1-x%*x)
dx = pl/dp
x -= dx
delta = max(abs(dx))

# Calculate the weights
w = 2%x(N+1)*(N+1)/(N*N*(1-x*x)*dp*dp)

return x,w
gaussxwab(N,a,b):
x,w = gaussxw(N)

return 0.5%(b-a)*x+0.5*(b+a),0.5%(b-a)*w

= gaussxw (3)

print x
print w
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Gaussian Quadrature on [a,b]

Define:
. b—a +b+a
= T
2 2

Atz=—-1,t=aandx=1,t=0b.
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Gaussian Quadrature on [a,b]

Define:
. b—a +b+a
= T
2 2

Atz=—-1,t=aandx=1,t=0b.

[_/ /f —a_ b+a)b;adx:/_1lg<x)dm
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