
Lagrange interpolation.
Newton forward difference polynomials.
Trapezoidal rule (revisited).
Simpson’s rule (revisited).
Simpson’s 3/8 rule.
Integration error.
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Lagrange Interpolation

Let us assume a set of numbers x0, . . . , xn and the
corresponding function’s (f(x)) values f0, . . . , fn.

There exist a unique polynomial Pn (x) of degree n such that
Pn (xi) = fi for all i = 0, . . . , n.

Pn(x) =
n∑

i=0

Cix
i

=
n∑

i=0

ai
∏
i6=j

(x− xj)
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Lagrange Interpolation

But as Pn (xi) = fi for all i = 0, . . . , n.

ai =
fi∏

j 6=i (xi − xj)

This polynomial is the Lagrange interpolation polynomial
whose expression is given by :

Pn (x) =
n∑

i=0

∏
j 6=i (x− xj)∏
j 6=i (xi − xj)

fi.

=
n∏

i=0

(x− xi)
n∑

i=0

fi
(x− xi)

∏
j 6=i (xi − xj)

.
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Lagrange Interpolation

Lagrange method is mostly a theoretical tool used for proving
theorems. Not only it is not very efficient when a new point is
added (which requires computing the polynomial again, from
scratch), it is also numerically unstable.
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Newton’s divided differences Interpolation

If one writes the Lagrange interpolation polynomial slightly
different basis functions, one obtains the Newton’s
interpolation formula given by:

Pn (x) =α0 + α1 (x− x0) + α2 (x− x1) (x− x0) + . . .

+ αn (x− xn−1) . . . (x− x1) (x− x0)

For i = 0:
f0 = Pn (x0) = α0

For i = 1:

f1 = Pn (x1) = α0 + α1(x1 − x0)

α1 =
f1 − f0
x1 − x0
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Newton’s divided differences Interpolation

For i = 2:

f2 = Pn (x2) = α0 + α1(x2 − x0) + α2(x2 − x1)(x2 − x0)

α2 =
(f2 − f1)/(x2 − x1)− (f1 − f0)/(x1 − x0)

x2 − x0
Similarly we can find α3.....αn−1.

To express αi, i = 0......n− 1 in a compact manner let us first
define the following notation called divided differences:

f [xk] = fk

f [xk, xk+1] =
f [xk+1]− f [xk]

xk+1 − xk

f [xk, xk+1, xk+2] =
f [xk+1, xk+2]− f [xk, xk+1]

xk+2 − xk

f [xk, xk+1, . . . , xi, xi+1] =
f [xk+1, . . . , xi+1]− f [xk, . . . , xi]

xi+1 − xk
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Newton’s divided differences Interpolation

With this notation:

α0 = f [x0]

α1 = f [x0, x1]

α2 = f [x0, x1, x2]

αn = f [x0, x1, . . . , xn]

Now the polynomial can be rewritten as:

Pn (x) =
n∑

k=0

f [x0, . . . , xk]
k−1∏
i=0

(x− xi)

This is called as Newton’s Divided Difference interpolation
polynomial.
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Newton’s divided differences Interpolation

Sometimes in practice the data points xi are equally spaced
points:

xi = x0 + i · h, i = 0, 1, 2, . . . , n

where x0 is the starting point and h is the step size.

In this case, it is enough to calculate simple differences rather
than the divided differences as in the non-uniformly placed
data set case.

These simple differences can be forward differences (∆fi) or
backward differences (∇fi). We will first look at forward
differences and the interpolation polynomial based on forward
differences.
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Newton’s divided differences Interpolation

The first order forward difference ∆fi is defined as

∆fi = fi+1 − fi

The second order forward difference ∆2fi is defined as

∆2fi = ∆fi+1 −∆fi

The kth order forward difference ∆kfi is defined as

∆kfi = ∆k−1fi+1 −∆k−1fi
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Newton’s divided differences Interpolation

Then the first divided difference f [x0, x1],

f [x0, x1] =
f1 − f0
h

=
∆f0
h

∴ ∆f0 = hf [x0, x1]

By the definition of second order forward difference ∆2f0, we
get

∆2f0 = ∆f1 −∆f0

= h{f [x1, x2]− f [x0, x1]}
= h ∗ 2h{(f [x1, x2]− f [x0, x1])/(x2 − x0)}
= 2h2f [x0, x1, x2]

In general,

∆kfi = k!hkf [xi, xi+1, xi+2...xi+k]
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Newton’s divided differences Interpolation

The Newton forward difference interpolation polynomial may
be written as follows:

Pn (x) =
n∑

k=0

∆kf0
k!hk

k−1∏
i=0

(x− xi)

We can rewrite the above in a simpler way:

x = x0 + sh, pn(s) = Pn(x)

xk = x0 + kh

x− xk = (s− k)h
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Newton’s divided differences Interpolation

Then

pn(s) =
n∑

k=0

∆kf0
k!hk

k−1∏
i=0

(s− i)h

=
n∑

k=0

∆kf0
k!hk

[s(s− 1).......(s− k + 1)]hk

=
n∑

k=0

(
s

k

)
∆kf0
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Error in interpolation

When interpolating a given function f by a polynomial of
degree n at the nodes x0, . . . , xn we get the error

f(x)− Pn(x) = f [x0, . . . , xn, x]
n∏

i=0

(x− xi)

If f is n+ 1 times continuously differentiable then for each x
in the interval there exists ξ in that interval such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi)

13/21



The Trapezoidal Rule (revisited)

A first degree polynomial for a single interval (two points):

∆I = h

∫ 1

0

(f0 + s∆f0)ds = h

[
sf0 +

s2

2
∆f0

]1
0

∆I = h(f0 +
1

2
∆f0) =

h

2
(f0 + f1)

Applying over all intervals:

I =
n−1∑
i=0

∆Ii =
n−1∑
i=0

h

2
(fi+fi+1) =

h

2
(f0+2f1+. . .+2fn−1+fn)
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The Trapezoidal Rule (revisited)

The error estimation can be done by integrating the error
term. For a single interval:

E = h

∫ 1

0

s(s− 1)

2
h2f ′′(ξ)ds = − 1

12
h3f ′′(ξ) ∼ O(h3)

Total error:

ET =
n−1∑
i=0

Ei = − 1

12
(xn − x0)h2f ′′(ξ) ∼ O(h2)

where x0 ≤ ξ ≤ xn.
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The Simpson’s Rule (revisited)

A second degree polynomial for two intervals (three points):

∆I = h

∫ 2

0

(f0 + s∆f0 +
s(s− 1)

2
∆2f0)ds

∆I =
h

3
(f0 + 4f1 + f2)

Applying over all intervals:

I =
h

3
(f0 + 4f1 + 2f2 + 4f3 + . . .+ 4fn−1 + fn)
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The Simpson’s Rule (revisited)

The error estimation can be done by integrating the error
term. For an interval:

E = h

∫ 2

0

s(s− 1)(s− 2)

6
h3f ′′′(ξ)ds = 0

E = h

∫ 2

0

s(s− 1)(s− 2)(s− 3)

24
h4f ′′′′(ξ)ds = − 1

90
h5f ′′′′(ξ)

Total error:
ET ∼ O(h4)
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The Simpson’s 3/8 Rule

A third degree polynomial for three intervals (four points):

∆I = h

∫ 3

0

(f0+s∆f0+
s(s− 1)

2
∆2f0+

s(s− 1)(s− 2)

6
∆3f0)ds

∆I =
3h

8
(f0 + 3f1 + 3f2 + f3)

Applying over all intervals:

I =
3h

8
(f0 + 3f1 + 3f2 + 2f3 + . . .+ 3fn−1 + fn)
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The Simpson’s 3/8 Rule

The error estimation can be done by integrating the error
term. For an interval:

E = h

∫ 3

0

s(s− 1)(s− 2)(s− 3)

24
h4f ′′′′(ξ)ds = − 3

80
h5f ′′′′(ξ)

Total error:
ET ∼ O(h4)

Same order as Simpson’s 1/3 rule!
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Other view on numerical quadrature

Quadrature isa weighted sum of finite number of sample
values of the intergrand.∫ b

a

f(x)dx =
n∑

i=1

f(xi)wi

name degree Weights
Trapezoid 1 (h/2, h/2)
Simpson’s 2 (h/3, 4h/3, h/3)
3/8 3 (3h/8, 9h/8, 9h/8, 3h/8)
Milne 4 (14h/45, 64h/45, 24h/45, 64h/45, 14h/45)
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Integration error

The best numerical evaluation of an integral can be done
with relatively small number of sub-intervals
(n ∼ 1000− 10000).
It is possible to get errors close to machine precision with
Simpson’s rule and other higher order methods.
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