m Lagrange interpolation.

m Newton forward difference polynomials.
m Trapezoidal rule (revisited).

m Simpson's rule (revisited).

m Simpson's 3/8 rule.

m Integration error.
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Lagrange Interpolation

Let us assume a set of numbers xg, ..., z, and the
corresponding function’s (f(x)) values fo,..., fu.
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Lagrange Interpolation

Let us assume a set of numbers xg, ..., z, and the
corresponding function’s (f(x)) values fo,..., fu.

There exist a unique polynomial P, (x) of degree n such that
P, (z;) = fiforalli=0,..., n.

P.(z) = z": Cya’
i=0

:ZaiH(x — ;)

i=0 i)
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Lagrange Interpolation

But as P, (x;) = f; forall i =0,...,n.
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Lagrange Interpolation

But as P, (x;) = f; forall i =0,...,n.

Ji
[T (@i — )

a; =

This polynomial is the Lagrange interpolation polynomial
whose expression is given by :
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Lagrange Interpolation

Lagrange method is mostly a theoretical tool used for proving
theorems. Not only it is not very efficient when a new point is
added (which requires computing the polynomial again, from
scratch), it is also numerically unstable.
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Newton's divided differences Interpolation

If one writes the Lagrange interpolation polynomial slightly
different basis functions, one obtains the Newton's
interpolation formula given by:

P, (z) =ap + oy (x —x0) + g (x —x1) (T — o) + ...

+an (@ —xp1)...(x—21) (z — 20)
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Newton's divided differences Interpolation

If one writes the Lagrange interpolation polynomial slightly
different basis functions, one obtains the Newton's
interpolation formula given by:

P, (z) =ap + oy (x —x0) + g (x —x1) (T — o) + ...

+an (@ —xp1)...(x—21) (z — 20)

For i = 0:
foZPn(Io):Oéo
For i =1:

fi=Pu(21) = g + a1 (21 — x0)
A=

1 — Zo

aq
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Newton's divided differences Interpolation

For i = 2:

fo= P, (x2) = g + a1 (z2 — x0) + az(z2 — 21) (22 — 20)

(fo = fi)/(za — 1) = (f1 = fo)/ (21 — 20)

To — Xo

Similarly we can find as.....c,_1.
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Newton's divided differences Interpolation

For i = 2:

fo= P, (x2) = g + a1 (z2 — x0) + az(z2 — 21) (22 — 20)
(fz - f1)/($2 - 1'1) - (fl - fo)/(iUl - IL’O)

To — X
Similarly we can find as.....c,_1.

To express «;,i = 0.....n — 1 in a compact manner let us first
define the following notation called divided differences:

fler] = fi
xr — flz
flar, 2ri] = flzks1] — [l
Tt1 — Tk
flxr, Trs1, Toyo] = flers1, Thao] — fleg, Tri]
T2 — Tk
f[xk’xk+17"‘7xi;xi+1] — f[ k+1, s H—l] f[ ks , Z]
Ti+1 — Tk
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Newton's divided differences Interpolation

With this notation:

ag = f[zo]

oy = flxg, 7]

ay = flzo, 1, To]

an = flro, 1, .., Ty
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Newton's divided differences Interpolation

With this notation:

ag = f[zo]

oy = flxg, 7]

ay = flzo, 1, To]

an = flro, 1, .., Ty

Now the polynomial can be rewritten as:

n k—1
:Zf[a;o,..., HSC—%
k=0 =0

This is called as Newton's Divided Difference interpolation

polynomial.
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Newton's divided differences Interpolation

Sometimes in practice the data points x; are equally spaced
points:
{L’ZZLIJQ—FZh, i:0,1,2,...,n

where xg is the starting point and h is the step size.
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Newton's divided differences Interpolation

Sometimes in practice the data points x; are equally spaced
points:
[L’ZZLL'Q—FZh, i:0,1,2,...,n

where xg is the starting point and h is the step size.

In this case, it is enough to calculate simple differences rather
than the divided differences as in the non-uniformly placed
data set case.

These simple differences can be forward differences (Af;) or
backward differences (V f;). We will first look at forward
differences and the interpolation polynomial based on forward
differences.
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Newton's divided differences Interpolation

The first order forward difference Af; is defined as

Afz = fi—i—l - fz
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Newton's divided differences Interpolation

The first order forward difference Af; is defined as
Afi= fix1— fi
The second order forward difference A?f; is defined as

A’fi = Afip — Af;
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Newton's divided differences Interpolation

The first order forward difference Af; is defined as
Afi= fix1— fi
The second order forward difference A?f; is defined as

A’fi = Afip — Af;

The k' order forward difference A*f; is defined as

Akfi — Ak_lfi—H . Ak_lfi
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Newton's divided differences Interpolation

Then the first divided difference f[xg, z1],

f[x(),xl] _ fl;fo _ Ahfo

AfO = h,f[l’o, xl]
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Newton's divided differences Interpolation

Then the first divided difference f[xg, z1],

A
f[x07‘/1“1] fl h fO - ]:Lfo
AfO = h,f[l’o, 113'1]
By the definition of second order forward difference A%f,, we

get
A’fo=Afi —Afy
= M flz1, 22] — flwo, 71]}
= h* 2h{(f 21, x2] — flzo, 21]) /(22 — 20)}
= 2h? f[x0, 71, T3]
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Newton's divided differences Interpolation

Then the first divided difference f[xg, z1],

A
f[x(),xl] fl th _ f.LfO
o Afo = hflxg, z]
By the definition of second order forward difference A%f,, we
get
Afo=Af—Afy

= h{flz1, x2] — flwo, 2]}

= hox 20{(flz1, z2] — flwo, 21]) /(22 — 20)}

= 2h2f[l'[), xy, 33'2]
In general,

Akfi = k!hkf[:vi, Lit1, Tig2--- Ttk
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Newton's divided differences Interpolation

The Newton forward difference interpolation polynomial may
be written as follows:

n Akf k—1
k=0 i

=0
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Newton's divided differences Interpolation

The Newton forward difference interpolation polynomial may
be written as follows:

n Akf k—1
k=0 i

=0

We can rewrite the above in a simpler way:

$:x0+8h7 pn(s> :Pn(x)
T = o + kh
r—xp=(s—k)h
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Newton's divided differences Interpolation

Then
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Error in interpolation

When interpolating a given function f by a polynomial of
degree n at the nodes x, ..., x, we get the error

n

f(@) = Pu(x) = flxo,. .., zn 2] [ [ (z — 22)

i=0
If fis n+ 1 times continuously differentiable then for each z
in the interval there exists £ in that interval such that

FE () £

f(*r)_pn(x — n+1 ' H.T—Iz
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The Trapezoidal Rule (revisited)

A first degree polynomial for a single interval (two points):

1

1 52
Al = h/ (fo+sAfo)ds = h{sfo + EAJCO}
0

0
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The Trapezoidal Rule (revisited)

A first degree polynomial for a single interval (two points):

1

1 52
Al = h/ (fo+sAfo)ds = h{sfo + EAJCO}
0

0
1 h
AT = h(fo+ §Afo) = §(f0 + f1)

Applying over all intervals:

n—1 n—1

I = ZAL‘ = Z g(fi+fi+1> = g(f0+2f1+- A2 it 1)

=0 1=0
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The Trapezoidal Rule (revisited)

The error estimation can be done by integrating the error
term. For a single interval:

1

SHf(E) ~ O(R?)

_ ! 8(8 B 1) "
E_h/o SR (€)ds
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The Trapezoidal Rule (revisited)

The error estimation can be done by integrating the error
term. For a single interval:

Ls(s—1 1
E = h/o %fﬁf”(g)ds = —S () ~ O()
Total error:
n—1
Br =Y B, =~ (a0 — 2ol () ~ O(R?)
=0

where 2o < £ < x,,.
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The Simpson's Rule (revisited)

A second degree polynomial for two intervals (three points):

s(s—1)

9 AQf())dS

2
AT =h [ (ot sifo+
0
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9 AQf())dS

2
AT =h [ (ot sifo+
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The Simpson's Rule (revisited)

A second degree polynomial for two intervals (three points):

s(s—1)
2

2
A[:h/(f0+sAfo+ A%fy)ds
0

h
Al = g(fo +4f1+ f2)
Applying over all intervals:

]:g(f0+4f1+2f2+4f3++4fn—1+fn)
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The Simpson's Rule (revisited)

The error estimation can be done by integrating the error
term. For an interval:

o 2 S(S - 1)(3 __ 2) 3 o
E_h/o 2= gy = 0
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The Simpson's Rule (revisited)

The error estimation can be done by integrating the error
term. For an interval:

o 2 S(S - 1)(3 __ 2) 3 o
E_h/o 2= gy = 0

1

4 prn _ "
WA (€)ds = — g5 (€)

Z5(s—1)(s —2)(s — 3)
E:h/o =

Total error:
ET ~ O(h4)
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The Simpson’s 3/8 Rule

A third degree polynomial for three intervals (four points):

s(s—1)
2

A2}(_,0_’_3(3 — lé(s —2)

3
Al = h/ (f0+SAf0+ A3f0)d8
0
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s(s—1)
2

A2}(_,0_’_3(3 — lé(s —2)

3
Al = h/ (f0+SAf0+ A3f0)d8
0
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The Simpson’s 3/8 Rule

A third degree polynomial for three intervals (four points):

Al = h/g(fo+sAfo+S(82_ D azgq 86 = 1()),(8 =2 A3 f)ds
0

Al = 3Tsh(fo +3f1+3f2+ f3)

Applying over all intervals:

I = 3h(fo+3f1+3fz+2f3 3 far+ f)
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The Simpson’s 3/8 Rule

The error estimation can be done by integrating the error
term. For an interval:

E:h/3s(s—1)(s—2)(s—3) 3

o h4f””(§>d8 — _%h5f”/,(§)
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The Simpson’s 3/8 Rule

The error estimation can be done by integrating the error
term. For an interval:

E:h/3s(s—1)(s—2)(s—3) 3

o h4f””(§>d8 — _%h5f””(§)

Total error:
ET ~ O(h4)

Same order as Simpson's 1/3 rule!
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Other view on numerical quadrature

Quadrature isa weighted sum of finite number of sample
values of the intergrand.

[ s = Z Flzw,

name degree Weights

Trapezoid 1 (h/2, h/2)

Simpson's 2 (h/3, 4h/3, h/3)

3/8 3 (3h/8, 9h/8, 9h/8, 3h/8)

Milne 4 (14h/45, 64h/45, 24h/45, 64h/45, 14h/45)
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Integration error

m The best numerical evaluation of an integral can be done
with relatively small number of sub-intervals
(n ~ 1000 — 10000).

m It is possible to get errors close to machine precision with
Simpson's rule and other higher order methods.
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