
Exact Integration.
Simple numerical methods.
Advanced numerical methods.
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Exact Integration

Standard techniques of integration – substitution,
integration by parts or using identitites etc.

Tables of integrals – consult various books.
Computer Algebra Systems (CAS).
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Computer Algebra Systems

Mathematica
Matlab
Sympy
Magma
Sagemath
etc.
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Numerical integration

Sometimes the integral that one is attempting to do is not
readily available from the Tables of Integrals. Nor does
the Computer Algebra System know how to give us an
analytical result!

The data that we have collected and need to integrate is
discrete data – ie is only known at some points (we may
or maynot know the functional form).
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Numerical integration

Numerical integration can be based on fitting approximating
functions (polynomials) to discrete data and integrating

approximating functions.

I =

∫ b

a

f(x)dx ≈
∫ b

a

Pn(x)dx

a b

x

f(x)

a b

x

f(x)
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Numerical Integration

Function to be integrated is known only at a finite set of
discrete points – ie the functional form of the integrand is
not known.

The only parameter under the users control is the degree
of the approximating polynomial.
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Numerical Integration

Function to be integrated is known ie. the functional form
of the integrand is known.

The parameters under the users control are:

The degree of the approximating polynomial.
The total number of discrete points used in the calculation of
the integral.
The location of the points where the function is discretized.
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Direct fit polynomials

This procedure is based on the idea that one can fit the
data by a direct fit polynomial and integrate that
polynomial:

f(x) ≈ Pn(x) = a0 + a1x + a2x
2 + . . .

then

I =

∫ b

a

f(x)dx ≈
∫ b

a

Pn(x)dx =

[
a0x+a1

x2

2
+a2

x3

3
+. . .

]b
a

This procedure can be applied to data (f(x)) which is
available for x that are equally spaced or unequally spaced.
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Riemann Integral

If f(x) is a continuous function defined for a ≤ x ≤ b and
one divides the interval [a, b] into n subintervals of equal
width, ∆x = b−a

n
then the definite integral

I =

∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆x

where f(x∗i ) is the value of the function at an arbitrary
point, x∗i , in the interval xi and xi + ∆x.

The Riemann integral can be interpreted as the area
under the curve y = f(x) from a to b.
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Simple integration methods

Left end-point Riemann sum

I =

∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi−1)∆x ∆x =
b− a

n

a b

x

f(x)
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Simple integration methods

Mid point Riemann sum

I =

∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(
xi−1 + xi

2
)∆x ∆x =

b− a

n

a b

x

f(x)
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Comparison of left, right and mid point

a b

x

f(x)

a b

x

f(x)

In principle, all three of the methods will converge to the same
result – albiet very slowly!
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Better method: Trapezoidal approximation

The area of the trapezoid that lies above the ith subinterval:

Si =
∆x

2
(f(xi−1) + f(xi))

then

I =

∫ b

a

f(x)dx =
∆x

2
[f(x0) + 2f(x1) + 2f(x2) + . . .

2f(xn−1) + f(xn)]

a b

x

f(x)
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Comparison of mid point and trapezoidal

a b

x

f(x)

a b

x

f(x)

15/17



First order interpolation

First order interpolation for the ith subinterval:

f(x) =f(xi−1) + f ′(xi−1)x + higher order terms

=f(xi−1) +
f(xi) − f(xi−1)

∆x
x + higher order terms.

then the integral for the ith subinterval:

I =

∫ xi

xi−1

f(x)dx =

∫ xi

xi−1

[
f(xi−1) +

f(xi) − f(xi−1)

∆x
x

]
=

∆x

2
(f(xi−1) + f(xi))

Trapezoidal approximation is the application of first order
interpolation for each subinterval.
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Integration with second order interpolation

Using three point interpolation, one may write the Simpson’s
rule for integration:

I =

∫ b

a

f(x)dx =
∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .

2f(xn−1) + 4f(xn−1) + f(xn)]

Number of n intervals should be even – if not then the last
interval should be treated in some other way!
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