Open domain methods

Newton's iteration.
Method of secants.
Muller's method.
Fixed point iteration.
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closed interval.

2/23



Open domain methods

m Methods do not restrict the root to remain trapped in a
closed interval.

m As a result, these methods are not as robust as bracketing
methods — these methods may not converge at all.

2/23



Open domain methods

m Methods do not restrict the root to remain trapped in a
closed interval.

m As a result, these methods are not as robust as bracketing
methods — these methods may not converge at all.

m They use information about the non linear function to
refine the estimates of the root — can be considerably
more efficient than bracketing methods.
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Newton's method

m This method is also called the Newton—Raphson method.
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Newton's method

m This method is also called the Newton—Raphson method.

m This method uses the derivatives f'(z) of the function
f(z) to accelerate convergence for solving f(x) = 0.

m It always converges if the initial approximation is
sufficiently close to the root. Its rate of convergence is
quadratic!

m However, it not only needs f(x), it also needs the
derivative f'(z).
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Newton's method: Key idea

A continuous function f(x) can be expanded around a point x
is terms of a Taylor's series:

(x — x0)?

Flw) = Flwo) + (& = 2) (o) +

f”(ZL'()) + e
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(x — x0)?

Flw) = Flwo) + (& = 2) (o) +
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As we want the solution for f(x) = 0, we can write the
following:

f(@) = 0= f(zo) + (z — x0) f'(w0)

neglecting higher order terms.
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Newton's method: Key idea

A continuous function f(x) can be expanded around a point x
is terms of a Taylor's series:

(x — x0)?

Flw) = Flwo) + (& = 2) (o) +

f”(ZL'()) + e

As we want the solution for f(x) = 0, we can write the
following:

f(@) = 0= f(zo) + (z — x0) f'(w0)

neglecting higher order terms.
Using this we can write:

~ [(=o)
" F(wo)

r=x
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Newton's method: Algorithm

The iterations use f(z) and f’(z) to proceed in the following

way:
_ J(=)
f'(z:)

Tit1 = T
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Newton's method: Example

Consider an example: f(z) =z — cos(z)

f(z)

A TN

Initial guess = = 1.0.
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Newton's method: example

i x_i f(x_1i)

1 1.000000 0.459698
2 0.750364 0.018923
3 0.739113 0.000046

Root is: 0.739085133385

£7(x_1)
1.841471
1.681905
1.673633

x_{i+1} fx_{i+1}H
0.750364 0.018923
0.739113 0.000046
0.739085 0.000000

m False position used 4 iterations and bisection — 22 iterations!

m Newton's method has excellent local convergence properties.

m However, global convergence properties can be quite poor — due to
neglect of higher order terms in the Taylor series expansion.
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Possible problems

{6

i

(a) Very slow approach to the root — f/(z) — 0 near the root.
(b) Difficulty with local minima — may send the next iteration
x;41 very far from the root.

(c) Lack of convergence for asymmetric functions:

fla+z)=—fla—x)
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Newton's method: General comments

m It is an excellent method for polishing roots obtained from
other methods!
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Newton's method: General comments

m It is an excellent method for polishing roots obtained from
other methods!

m The method not only requires the function, but also its
derivative. Besides being an additional computational
expense, in some cases, it might not be possible to
calculate the derivative easily...

m If the derivative becomes small — the method may end up
not converging — as the next step might be far away from
the root.
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Method of secants

m The secant method is a variant of Newton's method — for
the case when the evalulation of the derivative is
difficult /impossible.
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Method of secants

m The secant method is a variant of Newton's method — for
the case when the evalulation of the derivative is
difficult /impossible.

m The non linear function f(z) is aproximated locally by the
linear function g(z), which is the secant to f(x), and the
root of g(x) is taken as an improved approximation to the

root of f(x).
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Method of secants: Algorithm

The derivative of the function f(z) at point z; can be
approximated as:
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Then using Newton's method:

f@i) (@ — 1)

f(@:) = f(@ie1)

_ ﬂfi—lf(%) - l"if(l"i—l)
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Tiy1 = Ty —
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Method of secants: Algorithm

The derivative of the function f(z) at point z; can be
approximated as:

Then using Newton's method:

f@i) (@ — 1)

f(xz) - f(%-l)

_ ﬂfi—lf(%) - l"if(l"i—l)
f(xi) = f(zia)

Tiy1 = Ty —

m Needs two initial points to start.

m Same as False position method — except for the points
used!
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Method of secants: Algorithm

1 1
Ty Tj
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Method of secants: Algorithm
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Method of secants: example

i x_1i

1 1.000000
2 0.762936
3 0.740264
4 0.739091

f(x_1i)
0.459698
0.040126
0.001974
0.000010

Root is: 0.73908513481

x_{i-1} £f(x_{i-1}) =x_{i+1} f(x_{i+1})

1.500000
1.000000
0.762936
0.740264

1.429263
0.459698
0.040126
0.001974

0.762936
0.740264
0.739091
0.739085

m False position used 4 iterations and bisection — 22 iterations!

m Newton's method took 3 iterations.

0.040126
0.001974
0.000010
0.000000

m However, the question as to which method is more efficient depends
not just on the number of iterations — as in the Newton's iteration,
one also has to evaluate the derivative!
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Muller's method

m The Muller's method is a variant of method of secants.
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Muller's method

m The Muller's method is a variant of method of secants.

m The non linear function f(z) is aproximated locally by the
quadratic function g(z), and the root of g(x) is taken as
an improved approximation to the root of f(x).

m The only difference between Muller's method and method
of secants is that the g(x) is quadratic function in
Muller's method and linear function in secant method!

m Three initial approximations are required to start the
algorithm (as opposed to two in secant method).

14/23



Muller's method: Algorithm

1 I
— Ty Ti—1 Ti—2
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Muller's method: Algorithm
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Fixed point iteration

Suppose that you can bring an equation g(x) = 0 in the form
x = f(x). This fixed point equation, under certain conditions,
can be solved using iteration.
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m Start with an approximation z of the root.
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Fixed point iteration

Suppose that you can bring an equation g(x) = 0 in the form
x = f(x). This fixed point equation, under certain conditions,
can be solved using iteration.

m Start with an approximation z of the root.
m Calculate zg, 21 ... x, such that

r1 = f(x0)
Ty = f(z1)
r3 = f(72)

m If the sequence xy, 7 ... x,, belongs to an interval |,
where |f'(z)] < k < 1 then the sequence has a limit L
and L is the only root of x = f(x) in the interval I.
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Fixed point iteration: example

Consider an example: f(x) =2+ w
f@)] = [=52] < 1.
3 -
f(z)

1 1

L x‘

-3 -2 1 1 2 3
11
9
3l

Initial guess = = 2.0.
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Fixed point iteration: example

i x_1i f(x_1i)

1 2.000000 2.454649
2 2.454649 2.317089
3 2.317089 2.367106
4 2.367106 2.349675
5 2.349675 2.355851
6 2.355851 2.353675
7 2.353675 2.354443
8 2.354443 2.354172
9 2.354172 2.354268
10 2.354268 2.354234
11 2.354234 2.354246
12 2.354246 2.354242
13 2.354242 2.354243

Root is: 2.35424314498
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Fixed point iteration: Example

Consider an example: f(z) =z — cos(z)

f(z)

A TN

Initial guess = = 1.0.
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Fixed point iteration: example

i x_i £(x_1i)
1 1.000000 0.540302
2 0.540302 0.857553
3 0.857553 0.654290
4 0.654290 0.793480
5 0.793480 0.701369
6 0.701369 0.763960
7 0.763960 0.722102
8 0.722102 0.750418
9 0.750418 0.731404
10 0.731404 0.744237
11 0.744237 0.735605
12 0.735605 0.741425
13 0.741425 0.737507
14 0.737507 0.740147
15 0.740147 0.738369
16 0.738369 0.739567
17 0.739567 0.738760
18 0.738760 0.739304
19 0.739304 0.738938
20 0.738938 0.739184
21 0.739184 0.739018
22 0.739018 0.739130
23 0.739130 0.739055
24 0.739055 0.739106
25 0.739106 0.739071
26 0.739071 0.739094
27 0.739094 0.739079
28 0.739079 0.739089
29 0.739089 0.739082
30 0.739082 0.739087
31 0.739087 0.739084
32 0.739084 0.739086
33 0.739086 0.739085

Root is: 0.739084549575 20/23



Fixed point iteration

m We want a root of the function g(z) = 0 and we know a
first approximation z( of the root.
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Fixed point iteration

m We want a root of the function g(z) = 0 and we know a
first approximation z( of the root.

m We write z = x + rg(x)

m We choose an r-value such that 1 4 r¢’(zg) ~ 0. Let
ro = the chosen value.

m We apply iteration on x = x + rog(x) starting with
Tr = Xo.
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Fixed point iteration: example

We rewrite our function as © = x — 0.54 % (x — cos(z)).

i x_1i f(x_1i)

1 1.000000 0.751763
2 0.751763 0.740273
3 0.740273 0.739199
4 0.739199 0.739096
5 0.739096 0.739086
6 0.739086 0.739085

Root is: 0.73908523492

m Huge difference in terms of the efficiency!!! From 33 iterations to 6
iterations.

m Careful choice/massaging of the equation can yield remarkable
gains.
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Open domain methods: General remarks

m All these methods converge rapidly in the vicinity of the
root. When the derivative is difficult to compute or is
time-consuming, the secant method is very efficient.
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Open domain methods: General remarks

m All these methods converge rapidly in the vicinity of the
root. When the derivative is difficult to compute or is
time-consuming, the secant method is very efficient.

m In sensitive cases, all these methods may misbehave! It
may be required to use bracketing methods.

m Plotting of the functions can help in indetifying such
cases.

m All of these methods can find complex roots simply by
using complex arithmetic!
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