
Roots of Equations

Real roots of single variable function.
Closed domain methods (bracketing).

1/21

Examples of nonlinear equations

Equations of a single variable:

x2 − 6x+ 9 = 0

x2 − cos(x) = 0

exp(x) ln(x2)− x cos(x) = 0

Equations of two variables:

y(x3 − 1) = x4

x2 + y2 = 1

2/21

Introduction

Given a continuous non linear function f(x), find the value
x = c such that f(c) = 0.

The non-linear equation f(x) = 0 may be a:
An algebraic equation (roots of polynomials).
A transcendental equation.
...

3/21

Introduction

Given a continuous non linear function f(x), find the value
x = c such that f(c) = 0.

The non-linear equation f(x) = 0 may be a:
An algebraic equation (roots of polynomials).

A transcendental equation.
...

3/21

Introduction

Given a continuous non linear function f(x), find the value
x = c such that f(c) = 0.

The non-linear equation f(x) = 0 may be a:
An algebraic equation (roots of polynomials).
A transcendental equation.

...

3/21

Introduction

Given a continuous non linear function f(x), find the value
x = c such that f(c) = 0.

The non-linear equation f(x) = 0 may be a:
An algebraic equation (roots of polynomials).
A transcendental equation.
...

3/21

Behaviour of non-linear functions

(a) A single root.
(b) No real roots exist (complex roots might).
(c) Two simple roots.
(d) Three simple roots.

4/21

Behaviour of non-linear functions

(e) Two multiple roots.
(f) Three multiple roots.
(g) One simple root and two multiple roots.
(h) Multiple roots.

5/21

Some prelimenaries

All non-linear equations have to be solved iteratively!

We always start out with a guess – an approximate root.
Starting from the guess we iterate – the better the guess,
the better our chances of converging to the solution and
fewer the number of iterations required to converge to the
solution.
So, it is crucial to have a good guess...

6/21

Some prelimenaries

All non-linear equations have to be solved iteratively!
We always start out with a guess – an approximate root.

Starting from the guess we iterate – the better the guess,
the better our chances of converging to the solution and
fewer the number of iterations required to converge to the
solution.
So, it is crucial to have a good guess...

6/21

Some prelimenaries

All non-linear equations have to be solved iteratively!
We always start out with a guess – an approximate root.
Starting from the guess we iterate – the better the guess,
the better our chances of converging to the solution and
fewer the number of iterations required to converge to the
solution.

So, it is crucial to have a good guess...

6/21

Some prelimenaries

All non-linear equations have to be solved iteratively!
We always start out with a guess – an approximate root.
Starting from the guess we iterate – the better the guess,
the better our chances of converging to the solution and
fewer the number of iterations required to converge to the
solution.
So, it is crucial to have a good guess...

6/21

Bounding the solution

Bounding the solution involves finding a rough estimate of
the solution that can be used as in initial guess in an
iterative process that refines the solution to a specified
tolerance.

If possible, the root should be bracketed between two
points at which the value of the non-linear function
changes sign!

7/21

Bounding the solution

Bounding the solution involves finding a rough estimate of
the solution that can be used as in initial guess in an
iterative process that refines the solution to a specified
tolerance.
If possible, the root should be bracketed between two
points at which the value of the non-linear function
changes sign!

7/21

Bounding the solution

Getting a good guess – seems like a chicken and egg
problem – but not so.

GRAPH the functions to get an idea!! This is the best
way to get an idea of the solution and get an approximate
solution. In case of multiple solutions it also ensures that
you have the solution that you want!

People who omit the
sketch throw away the most important problem solving
tool they possess – geometric intuition

.
Incremental search – ie start with different guesses and
search.
Past experience with the problem or a similar one.
Solution of a simplified approximate model.
Previous solution in a sequence of solutions.

8/21

Bounding the solution

Getting a good guess – seems like a chicken and egg
problem – but not so.
GRAPH the functions to get an idea!! This is the best
way to get an idea of the solution and get an approximate
solution. In case of multiple solutions it also ensures that
you have the solution that you want!

People who omit the
sketch throw away the most important problem solving
tool they possess – geometric intuition

.

Incremental search – ie start with different guesses and
search.
Past experience with the problem or a similar one.
Solution of a simplified approximate model.
Previous solution in a sequence of solutions.

8/21

Bounding the solution

Getting a good guess – seems like a chicken and egg
problem – but not so.
GRAPH the functions to get an idea!! This is the best
way to get an idea of the solution and get an approximate
solution. In case of multiple solutions it also ensures that
you have the solution that you want! People who omit the
sketch throw away the most important problem solving
tool they possess – geometric intuition.

Incremental search – ie start with different guesses and
search.
Past experience with the problem or a similar one.
Solution of a simplified approximate model.
Previous solution in a sequence of solutions.

8/21

Bounding the solution

Getting a good guess – seems like a chicken and egg
problem – but not so.
GRAPH the functions to get an idea!! This is the best
way to get an idea of the solution and get an approximate
solution. In case of multiple solutions it also ensures that
you have the solution that you want! People who omit the
sketch throw away the most important problem solving
tool they possess – geometric intuition.
Incremental search – ie start with different guesses and
search.

Past experience with the problem or a similar one.
Solution of a simplified approximate model.
Previous solution in a sequence of solutions.

8/21

Bounding the solution

Getting a good guess – seems like a chicken and egg
problem – but not so.
GRAPH the functions to get an idea!! This is the best
way to get an idea of the solution and get an approximate
solution. In case of multiple solutions it also ensures that
you have the solution that you want! People who omit the
sketch throw away the most important problem solving
tool they possess – geometric intuition.
Incremental search – ie start with different guesses and
search.
Past experience with the problem or a similar one.

Solution of a simplified approximate model.
Previous solution in a sequence of solutions.

8/21

Bounding the solution

Getting a good guess – seems like a chicken and egg
problem – but not so.
GRAPH the functions to get an idea!! This is the best
way to get an idea of the solution and get an approximate
solution. In case of multiple solutions it also ensures that
you have the solution that you want! People who omit the
sketch throw away the most important problem solving
tool they possess – geometric intuition.
Incremental search – ie start with different guesses and
search.
Past experience with the problem or a similar one.
Solution of a simplified approximate model.

Previous solution in a sequence of solutions.

8/21

Bounding the solution

Getting a good guess – seems like a chicken and egg
problem – but not so.
GRAPH the functions to get an idea!! This is the best
way to get an idea of the solution and get an approximate
solution. In case of multiple solutions it also ensures that
you have the solution that you want! People who omit the
sketch throw away the most important problem solving
tool they possess – geometric intuition.
Incremental search – ie start with different guesses and
search.
Past experience with the problem or a similar one.
Solution of a simplified approximate model.
Previous solution in a sequence of solutions.

8/21

Iterative refinement of the solution

Iterative refining the solution involves determining the
solution to a specified tolerance by a systematic
procedure.

There are numerous pitfalls in finding the roots of non
linear equations.
An important question is when to stop the iteration –

Absolute error:|fi+1 − fi|

Relative error:|fi+1 − fi
fi+1

|

9/21

Iterative refinement of the solution

Iterative refining the solution involves determining the
solution to a specified tolerance by a systematic
procedure.
There are numerous pitfalls in finding the roots of non
linear equations.

An important question is when to stop the iteration –

Absolute error:|fi+1 − fi|

Relative error:|fi+1 − fi
fi+1

|

9/21

Iterative refinement of the solution

Iterative refining the solution involves determining the
solution to a specified tolerance by a systematic
procedure.
There are numerous pitfalls in finding the roots of non
linear equations.
An important question is when to stop the iteration –

Absolute error:|fi+1 − fi|

Relative error:|fi+1 − fi
fi+1

|

9/21

Types of Methods

There are two types of methods for finding roots of non linear
equations:

Closed domain (bracketing) methods.
Open domain (non-bracketing) methods.

10/21

Closed domain (bracketing) method

These are methods that start with two values of x, a and
b, which bracket the root in the interval [a, b].

If f(a) and f(b) have opposite signs (and if the function is
continuous), then there must be atleast one root in [a, b].
Most common closed domain methods:

Bisection method – interval halving.
False position method.

In general, bracketing methods are quite robust – ie they
are guaranteed to give a solution as the solution is
bracketted in the interval.

11/21

Closed domain (bracketing) method

These are methods that start with two values of x, a and
b, which bracket the root in the interval [a, b].
If f(a) and f(b) have opposite signs (and if the function is
continuous), then there must be atleast one root in [a, b].

Most common closed domain methods:
Bisection method – interval halving.
False position method.

In general, bracketing methods are quite robust – ie they
are guaranteed to give a solution as the solution is
bracketted in the interval.

11/21

Closed domain (bracketing) method

These are methods that start with two values of x, a and
b, which bracket the root in the interval [a, b].
If f(a) and f(b) have opposite signs (and if the function is
continuous), then there must be atleast one root in [a, b].
Most common closed domain methods:

Bisection method – interval halving.
False position method.

In general, bracketing methods are quite robust – ie they
are guaranteed to give a solution as the solution is
bracketted in the interval.

11/21

Closed domain (bracketing) method

These are methods that start with two values of x, a and
b, which bracket the root in the interval [a, b].
If f(a) and f(b) have opposite signs (and if the function is
continuous), then there must be atleast one root in [a, b].
Most common closed domain methods:

Bisection method – interval halving.
False position method.

In general, bracketing methods are quite robust – ie they
are guaranteed to give a solution as the solution is
bracketted in the interval.

11/21

Bisection Method

This is the simplest and the most robust method!
f(x) a continuous function on [a, b].
f(x) changes sign between a and b ie f(a)f(b) < 0.

Consider an example: f(x) = x3 − 2x− 2

−3 −2 −1 1 2 3

−20

−10

10

x

f(x)

12/21

Bisection Method

This is the simplest and the most robust method!
f(x) a continuous function on [a, b].
f(x) changes sign between a and b ie f(a)f(b) < 0.

Consider an example: f(x) = x3 − 2x− 2

−3 −2 −1 1 2 3

−20

−10

10

x

f(x)

12/21

Bisection Method: Algorithm

Divide [a, b] into two equal parts with c = a+b
2
.

< 0 there is a root in [a, c] =⇒ a = a, b = c

f(a)f(c) > 0 there is a root in [b, c] =⇒ a = c, b = b

= 0 root is at c

Interval halving is an iterative procedure.
Continue iterations till |b−a| < tol or |f(c)| < tol or both

13/21

Bisection Method: Algorithm

Divide [a, b] into two equal parts with c = a+b
2
.

< 0 there is a root in [a, c] =⇒ a = a, b = c

f(a)f(c) > 0 there is a root in [b, c] =⇒ a = c, b = b

= 0 root is at c

Interval halving is an iterative procedure.
Continue iterations till |b−a| < tol or |f(c)| < tol or both

13/21

Bisection Method: Algorithm

Divide [a, b] into two equal parts with c = a+b
2
.

< 0 there is a root in [a, c] =⇒ a = a, b = c

f(a)f(c) > 0 there is a root in [b, c] =⇒ a = c, b = b

= 0 root is at c

Interval halving is an iterative procedure.

Continue iterations till |b−a| < tol or |f(c)| < tol or both

13/21

Bisection Method: Algorithm

Divide [a, b] into two equal parts with c = a+b
2
.

< 0 there is a root in [a, c] =⇒ a = a, b = c

f(a)f(c) > 0 there is a root in [b, c] =⇒ a = c, b = b

= 0 root is at c

Interval halving is an iterative procedure.
Continue iterations till |b−a| < tol or |f(c)| < tol or both

13/21

Bisection Method: Example

−3 −2 −1 1 2 3

−20

−10

10

a

b

x

f(x)

14/21

Bisection Method: Example

−3 −2 −1 1 2 3

−20

−10

10

a

b

c x

f(x)

14/21

Bisection Method: analysis

Each iteration reduces the original interval [a, b] by a
factor of 2. After n iterations, the size of the interval is
(b−a)
2n

.

As a result, the root remains bracketed and the method is
guaranteed to converge.
However, the convergence of the method can be quite
slow.
Notice that this method does not use any information
about the function’s behaviour!

15/21

Bisection Method: analysis

Each iteration reduces the original interval [a, b] by a
factor of 2. After n iterations, the size of the interval is
(b−a)
2n

.
As a result, the root remains bracketed and the method is
guaranteed to converge.

However, the convergence of the method can be quite
slow.
Notice that this method does not use any information
about the function’s behaviour!

15/21

Bisection Method: analysis

Each iteration reduces the original interval [a, b] by a
factor of 2. After n iterations, the size of the interval is
(b−a)
2n

.
As a result, the root remains bracketed and the method is
guaranteed to converge.
However, the convergence of the method can be quite
slow.

Notice that this method does not use any information
about the function’s behaviour!

15/21

Bisection Method: analysis

Each iteration reduces the original interval [a, b] by a
factor of 2. After n iterations, the size of the interval is
(b−a)
2n

.
As a result, the root remains bracketed and the method is
guaranteed to converge.
However, the convergence of the method can be quite
slow.
Notice that this method does not use any information
about the function’s behaviour!

15/21

Bisection method: Example

Consider an example: f(x) = x− cos(x)

−3 −2 −1 1 2 3

−2

2

x

f(x)

16/21

Bisection method: example

i a f(a) b f(b) c f(c)
1 0.000000 -1.000000 4.000000 4.653644 2.000000 2.416147
2 0.000000 -1.000000 2.000000 2.416147 1.000000 0.459698
3 0.000000 -1.000000 1.000000 0.459698 0.500000 -0.377583
4 0.500000 -0.377583 1.000000 0.459698 0.750000 0.018311
5 0.500000 -0.377583 0.750000 0.018311 0.625000 -0.185963
6 0.625000 -0.185963 0.750000 0.018311 0.687500 -0.085335
7 0.687500 -0.085335 0.750000 0.018311 0.718750 -0.033879
8 0.718750 -0.033879 0.750000 0.018311 0.734375 -0.007875
9 0.734375 -0.007875 0.750000 0.018311 0.742188 0.005196

10 0.734375 -0.007875 0.742188 0.005196 0.738281 -0.001345
11 0.738281 -0.001345 0.742188 0.005196 0.740234 0.001924
12 0.738281 -0.001345 0.740234 0.001924 0.739258 0.000289
13 0.738281 -0.001345 0.739258 0.000289 0.738770 -0.000528
14 0.738770 -0.000528 0.739258 0.000289 0.739014 -0.000120
15 0.739014 -0.000120 0.739258 0.000289 0.739136 0.000085
16 0.739014 -0.000120 0.739136 0.000085 0.739075 -0.000017
17 0.739075 -0.000017 0.739136 0.000085 0.739105 0.000034
18 0.739075 -0.000017 0.739105 0.000034 0.739090 0.000008
19 0.739075 -0.000017 0.739090 0.000008 0.739082 -0.000005
20 0.739082 -0.000005 0.739090 0.000008 0.739086 0.000002
21 0.739082 -0.000005 0.739086 0.000002 0.739084 -0.000001
22 0.739084 -0.000001 0.739086 0.000002 0.739085 0.000000

Root is: 0.739085197449

17/21

False Position Method

In this method, the function f(x) is assumed to be a
linear function g(x) in the interval [a, b].

The root of the linear function g(x), x = c is taken to be
the next approximation of the root of the original function
f(x).
The root of the linear function, g(x), x = c is not the
root of the non linear function f(x). It is a false position
and hence the name.
Unlike bisection, this method uses some information
about the function f(x).

18/21

False Position Method

In this method, the function f(x) is assumed to be a
linear function g(x) in the interval [a, b].
The root of the linear function g(x), x = c is taken to be
the next approximation of the root of the original function
f(x).

The root of the linear function, g(x), x = c is not the
root of the non linear function f(x). It is a false position
and hence the name.
Unlike bisection, this method uses some information
about the function f(x).

18/21

False Position Method

In this method, the function f(x) is assumed to be a
linear function g(x) in the interval [a, b].
The root of the linear function g(x), x = c is taken to be
the next approximation of the root of the original function
f(x).
The root of the linear function, g(x), x = c is not the
root of the non linear function f(x). It is a false position
and hence the name.

Unlike bisection, this method uses some information
about the function f(x).

18/21

False Position Method

In this method, the function f(x) is assumed to be a
linear function g(x) in the interval [a, b].
The root of the linear function g(x), x = c is taken to be
the next approximation of the root of the original function
f(x).
The root of the linear function, g(x), x = c is not the
root of the non linear function f(x). It is a false position
and hence the name.
Unlike bisection, this method uses some information
about the function f(x).

18/21

False position method: Algorithm

The slope of linear function, g′(x), is given by:

g′(x) =
f(b)− f(a)

b− a

Assuming f(c) = 0, one can also write g′(x) as:

g′(x) =
f(b)− f(c)

b− c
=⇒ c = b− f(b)

g′(x)

Combining with the first equation:

c = b− f(b) ∗ b− a

f(b)− f(a)

c =
a ∗ f(b)− b ∗ f(a)

f(b)− f(a)

Then just like the bisection method:

if f(a) ∗ f(c) < 0 a = a, b = c

if f(a) ∗ f(c) > 0 a = c, b = b
19/21

False position method: Example

−3 −2 −1 1 2 3

−20

−10

10

a

b

x

f(x)

20/21

False position method: Example

−3 −2 −1 1 2 3

−20

−10

10

a

b

c x

f(x)

20/21

False position method: example

i a f(a) b f(b) c f(c)
1 0.000000 -1.000000 4.000000 4.653644 0.707508 -0.052475
2 0.707508 -0.052475 4.000000 4.653644 0.744221 0.008605
3 0.707508 -0.052475 0.744221 0.008605 0.739049 -0.000061
4 0.739049 -0.000061 0.744221 0.008605 0.739085 -0.000000

Root is: 0.739085092149

False position used 4 iterations compared to 22 in bisection!
Generally false position converges much faster than bisection.

21/21

