Parallel Programming

m Overview
m Parallel programming models
m MPI/OpenMP examples

1/8

What is parallel computing?

m Parallel computing: use of multiple processors or
computers working together on a common task.

m Each processor works on part of the problem.
m Processors can exchange information.

2/8

What is parallel computing?

m Parallel computing: use of multiple processors or
computers working together on a common task.

m Each processor works on part of the problem.
m Processors can exchange information.
m Data parallelism — The program models a physical object,
which gets partitioned and divided over the processors.

2/8

What is parallel computing?

m Parallel computing: use of multiple processors or
computers working together on a common task.

m Each processor works on part of the problem.
m Processors can exchange information.
m Data parallelism — The program models a physical object,
which gets partitioned and divided over the processors.

m Task parallelism — There is a list of tasks (for instance
runs of a small program) and processors cycle through this
list until it is exhausted.

2/8

Why do parallel computing?

m Limits of single CPU computing

m performance
m available memory

3/8

Why do parallel computing?

m Limits of single CPU computing

m performance
m available memory

m Parallel computing allows one to:

m solve problems that don't fit on a single CPU
m solve problems that can't be solved in a reasonable time

3/8

Why do parallel computing?

m Limits of single CPU computing

m performance
m available memory

m Parallel computing allows one to:

m solve problems that don't fit on a single CPU
m solve problems that can't be solved in a reasonable time

m We can solve

m larger problems
m faster
B more cases

3/8

Speedup and parallel efficiency

m Speedup is defined as

where T is the time required for a serial run and 7}, is the
time required for a parallel run on p processors

4/8

Speedup and parallel efficiency

m Speedup is defined as

where T is the time required for a serial run and 7}, is the
time required for a parallel run on p processors

m Parallel efficiency:

S
E, ="
p

4/8

Limits of parallel computing

m Theoretical Upper Limits — Amdahl's Law

5/8

Limits of parallel computing

m Theoretical Upper Limits — Amdahl's Law
m Practical Limits

m Load balancing
m Non-computational sections

5/8

Limits of parallel computing

m Theoretical Upper Limits — Amdahl's Law
m Practical Limits

m Load balancing
m Non-computational sections

m Other Considerations — time to re-write code

5/8

Amdahl’s law

m All parallel programs contain:
m parallel sections (we hope!)
m serial sections (unfortunately)

6/8

Amdahl’s law

m All parallel programs contain:
m parallel sections (we hope!)
m serial sections (unfortunately)

m Serial sections limit the parallel effectiveness

6/8

Amdahl’s law

m All parallel programs contain:
m parallel sections (we hope!)
m serial sections (unfortunately)

m Serial sections limit the parallel effectiveness

m Suppose we have a sequential code and that a fraction f
of its computation is parallelized and run on N processing
units working in parallel, while the remaining fraction
(1 — f) cannot be parallelized. Amdahl’s law states that
the speedup achieved by parallelization is

1

TRV

6/8

Amdahl’s law

m All parallel programs contain:
m parallel sections (we hope!)
m serial sections (unfortunately)

m Serial sections limit the parallel effectiveness

m Suppose we have a sequential code and that a fraction f
of its computation is parallelized and run on N processing
units working in parallel, while the remaining fraction
(1 — f) cannot be parallelized. Amdahl’s law states that
the speedup achieved by parallelization is

v
1-f+4

m In reality, the situation is even worse than predicted by
Amdahl’s law due to:
m Load balancing (waiting)
Scheduling (shared processors or memory)
Cost of Communications

/0

Sy =

6/8

Gustafson's law

m Amdahl’s point of view is focused on a fixed computation problem
size as it deals with a code taking a fixed amount of sequential
calculation time.

7/8

Gustafson's law

m Amdahl’s point of view is focused on a fixed computation problem
size as it deals with a code taking a fixed amount of sequential
calculation time.

m A parallel platform does more than speeding up the execution of a
code: it enables dealing with larger problems.

7/8

Gustafson's law

m Amdahl’s point of view is focused on a fixed computation problem
size as it deals with a code taking a fixed amount of sequential
calculation time.

m A parallel platform does more than speeding up the execution of a
code: it enables dealing with larger problems.

m Suppose to have an application taking a time ¢, to be executed on
N processing units. Of that computing time, a fraction (1 — f)
must be run sequentially. Accordingly, this application would run
on a fully sequential machine in a time ¢ equal to

7/8

Gustafson's law

m Amdahl’s point of view is focused on a fixed computation problem
size as it deals with a code taking a fixed amount of sequential
calculation time.

m A parallel platform does more than speeding up the execution of a
code: it enables dealing with larger problems.

m Suppose to have an application taking a time ¢, to be executed on
N processing units. Of that computing time, a fraction (1 — f)
must be run sequentially. Accordingly, this application would run
on a fully sequential machine in a time ¢ equal to

t=1ts(1—f)+ Ntsf
m If we increase the problem size, we can increase the number of
processing units to keep the fraction of time the code is executed
in parallel equal to ft,. In this case, the sequential execution time
increases with N which now becomes a measure of the problem
size. The speedup then becomes
Sy=(1—-f)+Nf

7/8

Scaling: Strong vs. Weak

m We want to know how quickly we can complete analysis
on a particular data set by increasing the processor count

m Amdahl's law
m Known as 'strong scaling’

8/8

Scaling: Strong vs. Weak

m We want to know how quickly we can complete analysis

on a particular data set by increasing the processor count
m Amdahl’s law
m Known as 'strong scaling’

m We want to know if we can analyze more data in
approximately the same amount of time by increasing the
processor count

m Gustafson's law
m Known as 'weak scaling’

8/8

Hardware in parallel computing

Memory access Processor type
* Single core CPU

_ — Intel Xeon (Prestonia, Wallatin)
— SGI Altix — AMD Opteron (Sledgehammer,

— Cluster nodes Venus)
— IBM POWER (3, 4)

* Shared memory

* Distributed memory * Multi-core CPU (since 2005)
— Intel Xeon (Paxville, Woodcrest,

— Uniprocessor clusters Harpertown...)

— AMD Opteron (Barcelona,
Shanghai, Istanbul,...)

e Hybrid — IBM POWER (5, 6...)

— Multi-processor clusters e GPU based

— Tesla systems

TACG TEXAS ADVANCED COMPUTING CENTER

Shared and distributed memory

Network

* All processors have accesstoa ¢ Memory is local to each
pool of shared memory processor

* Accesstimesvary from CPUto ¢ Dataexchange by message

CPU in NUMA systems passing over a network
 Example: SGI Altix, IBM P5 Example: Clusters with single-
nodes socket blades

TACG TEXAS ADVANCED COMPUTING CENTER

Hybrid systems

Network

 Alimited number, N, of processors have access to a common pool
of shared memory

 To use more than N processors requires data exchange over a
network

 Example: Cluster with multi-socket blades

TACG TEXAS ADVANCED COMPUTING CENTER

Multi-core systems

Network

e Extension of hybrid model

« Communication details increasingly complex
— Cache access
— Main memory access
— Quick Path / Hyper Transport socket connections
— Node to node connection via network

TACG TEXAS ADVANCED COMPUTING CENTER

GPGPU Systems

Memory

g [

Network

* Calculations made in both CPUs and Graphical Processing Unit
* No longer limited to single precision calculations
* Load balancing critical for performance

* Requires specific libraries and compilers (CUDA, OpenCL)

TACG TEXAS ADVANCED COMPUTING CENTER

Parallel programming models

e Data Parallelism

— Each processor performs the same task on
different data

 Task Parallelism

— Each processor performs a different task on the
same data

* Most applications fall between these two

TACG TEXAS ADVANCED COMPUTING CENTER

Single Program Multiple Data

e SPMD: dominant programming model for shared and
distributed memory machines.
— One source code is written

— Code can have conditional execution based on which processor is
executing the copy

— All copies of code start simultaneously and communicate and sync
with each other periodically

* MPMD: more general, and possible in hardware, but no
system/programming software enables it

TACC TEXAS ADVANCED COMPUTING CENTER

SPMD Model

source.cC

—/ N\ T
DOOOO

processor O processor 1 processor 2 processor 3

Network

TACG TEXAS ADVANCED COMPUTING CENTER

Data Parallel Programming Example

e One code will run on 2 CPUs

* Program has array of data to be operated on by 2 CPUs so array is split

into two parts.

CPUA

CPUB

program:

if CPU=a then
low limit=1
upper 1imit=50
elseif CPU=b then
low limit=51
upper 1imit=100
end if
do I = low limit,
upper limit
work on A(I)
end do

end program

program:

low limit=1
upper limit=50
do I= low limit,
upper limit

work on A(I)
end do

end program

program:

low limit=51
upper 1imit=100
do I= low limit,
upper limit

work on A(I)
end do

end program

TACG

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Task Parallel Programming Example

* One code will run on 2 CPUs
* Program has 2 tasks (a and b) to be done by 2 CPUs

program. f:
initialize

if CPU=a then
do task a
elseif CPU=b then
do task Db
end 1if

end program

CPUA

CPUB

program. f:
initialize
do task a

end program

program. f:
initialize
do task Db

end program

TACG

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Shared Memory Programming: OpenMP

e Shared memory systems (SMPs, cc-NUMASs) have a single
address space:

— applications can be developed in which loop iterations (with no
dependencies) are executed by different processors

— shared memory codes are mostly data parallel, ‘SPMD’ kinds of
codes

— OpenMP is the standard for shared memory programming
(compiler directives)

— Vendors offer native compiler directives

TACG TEXAS ADVANCED COMPUTING CENTER

Accessing Shared Variables

* |f multiple processors want to write to a
shared variable at the same time, there could

be conflicts :

— Process 1 and 2 Shared variable X
— read X In memory

— compute X+1

— write X

X+1 in procl X+1 in proc2

* Programmer, languz
must provide ways of resolving conflicts

TACG TEXAS ADVANCED COMPUTING CENTER

OpenMP Example #1: Parallel Loop

ISOMP PARALLEL DO
do i=1,128
b(i) =a(i) + c(i)
end do
ISOMP END PARALLEL DO

* The first directive specifies that the loop immediately following should be
executed in parallel.

* The second directive specifies the end of the parallel section (optional).

* For codes that spend the majority of their time executing the content of
simple loops, the PARALLEL DO directive can result in significant parallel
performance.

TACC TEXAS ADVANCED COMPUTING CENTER

OpenMP Example #2: Private Variables

I$SOMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)
do I=1,N
TEMP = A(D/B(])
C(l) = TEMP + SQRT(TEMP)
end do
ISOMP END PARALLEL DO

* In this loop, each processor needs its own private copy of the variable
TEMP.

 |f TEMP were shared, the result would be unpredictable since multiple
processors would be writing to the same memory location.

TACC TEXAS ADVANCED COMPUTING CENTER

Distributed Memory Programming: MPI

e Distributed memory systems have separate address spaces
for each processor

— Local memory accessed faster than remote memory
— Data must be manually decomposed

— MPI is the standard for distributed memory programming
(library of subprogram calls)

— Older message passing libraries include PVM and P4; all vendors
have native libraries such as SHMEM (T3E) and LAPI (IBM)

TACG TEXAS ADVANCED COMPUTING CENTER

Data Decomposition

* For distributed memory systems, the ‘whole’ grid or sum
of particles is decomposed to the individual nodes

— Each node works on its section of the problem

— Nodes can exchange information

Grid of Problem to be solved

Node #1 works on this area Node #2 works on this area
of the problem T of the problem
exchange
exchange f T
¢ v exchange
Node #3 works on thisarea (1 , Node #4 works on this area
of the problem exchange of the problem
< X >

TACG

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

MPI Example #1

* Every MPI program needs these:

#include “mpi.h”
int main(int argc, char *argv([])
{
int nPEs, iam;
/* Initialize MPI */
ierr = MPI Init(&argc, &argv);
/* How many total PEs are there */
ierr = MPI Comm size (MPI_ COMM WORLD, &nPEs);
/* What node am I (what is my rank?) */
ierr = MPI Comm rank (MPI COMM WORLD, &iam);

ierr = MPI Finalize();

TACS TEXAS ADVANCED COMPUTING CENTER

MPI Example #2

#include “mpi.h”
int main(int argc, char *argv([])
{
int numprocs, myid;
MPI Init(&argc, &argv);
MPI Comm size (MPI_ COMM WORLD, &numprocs) ;
MPI Comm rank (MPI _COMM WORLD, &myid) ;
/* print out my rank and this run's PE size */
printf ("Hello from %d of %d\n", myid, numprocs);

MPI Finalize();

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

MPI: Sends and Receives

* MPI programs must send and receive data between the
processors (communication)

 The most basic calls in MPI (besides the three initialization
and one finalization calls) are:
— MPI_Send
— MPI_Recv

* These calls are blocking: the source processor issuing the
send/receive cannot move to the next statement until the
target processor issues the matching receive/send.

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER

Message Passing Communication

* Processes in message passing programs communicate
by passing messages

[

‘ \]
-
<

* Basic message passing primitives

* Send (parameters list)
* Receive (parameter list)

 Parameters depend on the library used

TACC TEXAS ADVANCED COMPUTING CENTER

MPI Example #3: Send/Receive

#include “mpi.h”

int main(int argc,char *argv([])
{

int numprocs,myid, tag,source,destination,count,buffer;
MPI Status status;

MPI Init (&argc, &argv);
MPI Comm ._size (MPI_COMM WORLD, &numprocs) ;
MPI Comm rank(MPI COMM WORLD, &myid) ;

tag=1234;

source=0;
destination=1;
count=1l;

if (myid == source) {

buffer=5678;

MPI Send(&buffer count,MPI INT,destination,tag,MPI_COMM WORLD) ;
printf ("processor %d sent 6d\n" ,myid, buffer),

if (myid == destination) {
MPI Recv(&buffer count,MPI INT, source,tag,MPI COMM WORLD, &status) ;
printf ("processor %d got $d\n" ,myid, buffer),

}
MPI Finalize();

TACS TEXAS ADVANCED COMPUTING CENTER

