
Parallel Programming

Overview
Parallel programming models
MPI/OpenMP examples

1/8

What is parallel computing?

Parallel computing: use of multiple processors or
computers working together on a common task.

Each processor works on part of the problem.
Processors can exchange information.

Data parallelism – The program models a physical object,
which gets partitioned and divided over the processors.
Task parallelism – There is a list of tasks (for instance
runs of a small program) and processors cycle through this
list until it is exhausted.

2/8

What is parallel computing?

Parallel computing: use of multiple processors or
computers working together on a common task.

Each processor works on part of the problem.
Processors can exchange information.

Data parallelism – The program models a physical object,
which gets partitioned and divided over the processors.

Task parallelism – There is a list of tasks (for instance
runs of a small program) and processors cycle through this
list until it is exhausted.

2/8

What is parallel computing?

Parallel computing: use of multiple processors or
computers working together on a common task.

Each processor works on part of the problem.
Processors can exchange information.

Data parallelism – The program models a physical object,
which gets partitioned and divided over the processors.
Task parallelism – There is a list of tasks (for instance
runs of a small program) and processors cycle through this
list until it is exhausted.

2/8

Why do parallel computing?

Limits of single CPU computing
performance
available memory

Parallel computing allows one to:

solve problems that don’t fit on a single CPU
solve problems that can’t be solved in a reasonable time

We can solve

larger problems
faster
more cases

3/8

Why do parallel computing?

Limits of single CPU computing
performance
available memory

Parallel computing allows one to:
solve problems that don’t fit on a single CPU
solve problems that can’t be solved in a reasonable time

We can solve

larger problems
faster
more cases

3/8

Why do parallel computing?

Limits of single CPU computing
performance
available memory

Parallel computing allows one to:
solve problems that don’t fit on a single CPU
solve problems that can’t be solved in a reasonable time

We can solve
larger problems
faster
more cases

3/8

Speedup and parallel efficiency

Speedup is defined as

Sp =
Ts

Tp

where Ts is the time required for a serial run and Tp is the
time required for a parallel run on p processors

Parallel efficiency:

Ep =
Sp

p

4/8

Speedup and parallel efficiency

Speedup is defined as

Sp =
Ts

Tp

where Ts is the time required for a serial run and Tp is the
time required for a parallel run on p processors
Parallel efficiency:

Ep =
Sp

p

4/8

Limits of parallel computing

Theoretical Upper Limits – Amdahl’s Law

Practical Limits

Load balancing
Non-computational sections

Other Considerations – time to re-write code

5/8

Limits of parallel computing

Theoretical Upper Limits – Amdahl’s Law
Practical Limits

Load balancing
Non-computational sections

Other Considerations – time to re-write code

5/8

Limits of parallel computing

Theoretical Upper Limits – Amdahl’s Law
Practical Limits

Load balancing
Non-computational sections

Other Considerations – time to re-write code

5/8

Amdahl’s law

All parallel programs contain:
parallel sections (we hope!)
serial sections (unfortunately)

Serial sections limit the parallel effectiveness
Suppose we have a sequential code and that a fraction f
of its computation is parallelized and run on N processing
units working in parallel, while the remaining fraction
(1− f) cannot be parallelized. Amdahl’s law states that
the speedup achieved by parallelization is

SN =
1

(1− f) + f
N

In reality, the situation is even worse than predicted by
Amdahl’s law due to:

Load balancing (waiting)
Scheduling (shared processors or memory)
Cost of Communications
I/O

6/8

Amdahl’s law

All parallel programs contain:
parallel sections (we hope!)
serial sections (unfortunately)

Serial sections limit the parallel effectiveness

Suppose we have a sequential code and that a fraction f
of its computation is parallelized and run on N processing
units working in parallel, while the remaining fraction
(1− f) cannot be parallelized. Amdahl’s law states that
the speedup achieved by parallelization is

SN =
1

(1− f) + f
N

In reality, the situation is even worse than predicted by
Amdahl’s law due to:

Load balancing (waiting)
Scheduling (shared processors or memory)
Cost of Communications
I/O

6/8

Amdahl’s law

All parallel programs contain:
parallel sections (we hope!)
serial sections (unfortunately)

Serial sections limit the parallel effectiveness
Suppose we have a sequential code and that a fraction f
of its computation is parallelized and run on N processing
units working in parallel, while the remaining fraction
(1− f) cannot be parallelized. Amdahl’s law states that
the speedup achieved by parallelization is

SN =
1

(1− f) + f
N

In reality, the situation is even worse than predicted by
Amdahl’s law due to:

Load balancing (waiting)
Scheduling (shared processors or memory)
Cost of Communications
I/O

6/8

Amdahl’s law

All parallel programs contain:
parallel sections (we hope!)
serial sections (unfortunately)

Serial sections limit the parallel effectiveness
Suppose we have a sequential code and that a fraction f
of its computation is parallelized and run on N processing
units working in parallel, while the remaining fraction
(1− f) cannot be parallelized. Amdahl’s law states that
the speedup achieved by parallelization is

SN =
1

(1− f) + f
N

In reality, the situation is even worse than predicted by
Amdahl’s law due to:

Load balancing (waiting)
Scheduling (shared processors or memory)
Cost of Communications
I/O

6/8

Gustafson’s law

Amdahl’s point of view is focused on a fixed computation problem
size as it deals with a code taking a fixed amount of sequential
calculation time.

A parallel platform does more than speeding up the execution of a
code: it enables dealing with larger problems.
Suppose to have an application taking a time ts to be executed on
N processing units. Of that computing time, a fraction (1− f)
must be run sequentially. Accordingly, this application would run
on a fully sequential machine in a time t equal to

t = ts(1− f) +Ntsf

If we increase the problem size, we can increase the number of
processing units to keep the fraction of time the code is executed
in parallel equal to fts. In this case, the sequential execution time
increases with N which now becomes a measure of the problem
size. The speedup then becomes

SN = (1− f) +Nf

7/8

Gustafson’s law

Amdahl’s point of view is focused on a fixed computation problem
size as it deals with a code taking a fixed amount of sequential
calculation time.
A parallel platform does more than speeding up the execution of a
code: it enables dealing with larger problems.

Suppose to have an application taking a time ts to be executed on
N processing units. Of that computing time, a fraction (1− f)
must be run sequentially. Accordingly, this application would run
on a fully sequential machine in a time t equal to

t = ts(1− f) +Ntsf

If we increase the problem size, we can increase the number of
processing units to keep the fraction of time the code is executed
in parallel equal to fts. In this case, the sequential execution time
increases with N which now becomes a measure of the problem
size. The speedup then becomes

SN = (1− f) +Nf

7/8

Gustafson’s law

Amdahl’s point of view is focused on a fixed computation problem
size as it deals with a code taking a fixed amount of sequential
calculation time.
A parallel platform does more than speeding up the execution of a
code: it enables dealing with larger problems.
Suppose to have an application taking a time ts to be executed on
N processing units. Of that computing time, a fraction (1− f)
must be run sequentially. Accordingly, this application would run
on a fully sequential machine in a time t equal to

t = ts(1− f) +Ntsf

If we increase the problem size, we can increase the number of
processing units to keep the fraction of time the code is executed
in parallel equal to fts. In this case, the sequential execution time
increases with N which now becomes a measure of the problem
size. The speedup then becomes

SN = (1− f) +Nf

7/8

Gustafson’s law

Amdahl’s point of view is focused on a fixed computation problem
size as it deals with a code taking a fixed amount of sequential
calculation time.
A parallel platform does more than speeding up the execution of a
code: it enables dealing with larger problems.
Suppose to have an application taking a time ts to be executed on
N processing units. Of that computing time, a fraction (1− f)
must be run sequentially. Accordingly, this application would run
on a fully sequential machine in a time t equal to

t = ts(1− f) +Ntsf

If we increase the problem size, we can increase the number of
processing units to keep the fraction of time the code is executed
in parallel equal to fts. In this case, the sequential execution time
increases with N which now becomes a measure of the problem
size. The speedup then becomes

SN = (1− f) +Nf
7/8

Scaling: Strong vs. Weak

We want to know how quickly we can complete analysis
on a particular data set by increasing the processor count

Amdahl’s law
Known as ’strong scaling’

We want to know if we can analyze more data in
approximately the same amount of time by increasing the
processor count

Gustafson’s law
Known as ’weak scaling’

8/8

Scaling: Strong vs. Weak

We want to know how quickly we can complete analysis
on a particular data set by increasing the processor count

Amdahl’s law
Known as ’strong scaling’

We want to know if we can analyze more data in
approximately the same amount of time by increasing the
processor count

Gustafson’s law
Known as ’weak scaling’

8/8

Hardware in parallel computing

Memory access

• Shared memory
– SGI Altix

– Cluster nodes

• Distributed memory
– Uniprocessor clusters

• Hybrid
– Multi-processor clusters

Processor type
• Single core CPU

– Intel Xeon (Prestonia, Wallatin)
– AMD Opteron (Sledgehammer,

Venus)
– IBM POWER (3, 4)

• Multi-core CPU (since 2005)
– Intel Xeon (Paxville, Woodcrest,

Harpertown…)
– AMD Opteron (Barcelona,

Shanghai, Istanbul,…)
– IBM POWER (5, 6…)

• GPU based
– Tesla systems

Shared and distributed memory

• All processors have access to a

pool of shared memory

• Access times vary from CPU to
CPU in NUMA systems

• Example: SGI Altix, IBM P5
nodes

• Memory is local to each
processor

• Data exchange by message
passing over a network

• Example: Clusters with single-
socket blades

P

Memory

P P P P

P P P P P

M M M M M

Network

Hybrid systems

• A limited number, N, of processors have access to a common pool
of shared memory

• To use more than N processors requires data exchange over a
network

• Example: Cluster with multi-socket blades

Memory

Network

Memory Memory Memory Memory

Multi-core systems

• Extension of hybrid model

• Communication details increasingly complex
– Cache access
– Main memory access
– Quick Path / Hyper Transport socket connections
– Node to node connection via network

Memory

Network

Memory Memory Memory Memory

GPGPU Systems

• Calculations made in both CPUs and Graphical Processing Unit

• No longer limited to single precision calculations

• Load balancing critical for performance

• Requires specific libraries and compilers (CUDA, OpenCL)

Network

G P U

Memory

G P U

Memory

G P U

Memory

G P U

Memory

Parallel programming models

• Data Parallelism
– Each processor performs the same task on

different data

• Task Parallelism
– Each processor performs a different task on the

same data

• Most applications fall between these two

Single Program Multiple Data

• SPMD: dominant programming model for shared and
distributed memory machines.
– One source code is written

– Code can have conditional execution based on which processor is
executing the copy

– All copies of code start simultaneously and communicate and sync
with each other periodically

• MPMD: more general, and possible in hardware, but no
system/programming software enables it

SPMD Model

source.c

processor 3 processor 2 processor 1 processor 0

source.c source.c source.c source.c

Network

Data Parallel Programming Example

• One code will run on 2 CPUs

• Program has array of data to be operated on by 2 CPUs so array is split
into two parts.

program:

…

if CPU=a then

 low_limit=1

 upper_limit=50

elseif CPU=b then

 low_limit=51

 upper_limit=100

end if

do I = low_limit,

upper_limit

 work on A(I)

end do

...

end program

CPU A CPU B

program:

…

low_limit=1

upper_limit=50

do I= low_limit,

upper_limit

 work on A(I)

end do

…

end program

program:

…

low_limit=51

upper_limit=100

do I= low_limit,

upper_limit

 work on A(I)

end do

…

end program

Task Parallel Programming Example

• One code will run on 2 CPUs

• Program has 2 tasks (a and b) to be done by 2 CPUs

program.f:

…

initialize

...

if CPU=a then

 do task a

elseif CPU=b then

 do task b

end if

….

end program

CPU A CPU B

program.f:

…

initialize

…

do task a

…

end program

program.f:

…

initialize

…

do task b

…

end program

Shared Memory Programming: OpenMP

• Shared memory systems (SMPs, cc-NUMAs) have a single
address space:

– applications can be developed in which loop iterations (with no

dependencies) are executed by different processors

– shared memory codes are mostly data parallel, ‘SPMD’ kinds of
codes

– OpenMP is the standard for shared memory programming
(compiler directives)

– Vendors offer native compiler directives

Accessing Shared Variables

• If multiple processors want to write to a
shared variable at the same time, there could
be conflicts :
– Process 1 and 2
– read X
– compute X+1
– write X

• Programmer, language, and/or architecture
must provide ways of resolving conflicts

Shared variable X

in memory

X+1 in proc1 X+1 in proc2

OpenMP Example #1: Parallel Loop

!$OMP PARALLEL DO

 do i=1,128

 b(i) = a(i) + c(i)

 end do

!$OMP END PARALLEL DO

• The first directive specifies that the loop immediately following should be
executed in parallel.

• The second directive specifies the end of the parallel section (optional).

• For codes that spend the majority of their time executing the content of
simple loops, the PARALLEL DO directive can result in significant parallel
performance.

OpenMP Example #2: Private Variables

!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)

do I=1,N

 TEMP = A(I)/B(I)

 C(I) = TEMP + SQRT(TEMP)

end do

!$OMP END PARALLEL DO

• In this loop, each processor needs its own private copy of the variable
TEMP.

• If TEMP were shared, the result would be unpredictable since multiple
processors would be writing to the same memory location.

Distributed Memory Programming: MPI

• Distributed memory systems have separate address spaces
for each processor

– Local memory accessed faster than remote memory

– Data must be manually decomposed

– MPI is the standard for distributed memory programming

(library of subprogram calls)

– Older message passing libraries include PVM and P4; all vendors
have native libraries such as SHMEM (T3E) and LAPI (IBM)

Data Decomposition
• For distributed memory systems, the ‘whole’ grid or sum

of particles is decomposed to the individual nodes
– Each node works on its section of the problem

– Nodes can exchange information

Grid of Problem to be solved

Node #1 works on this area

of the problem

Node #3 works on this area

of the problem

 Node #4 works on this area

of the problem

 Node #2 works on this area

of the problem

y

x

exchange

exchange

exchange

exchange

MPI Example #1
• Every MPI program needs these:

#include “mpi.h”

int main(int argc, char *argv[])

{

 int nPEs, iam;

 /* Initialize MPI */

 ierr = MPI_Init(&argc, &argv);

 /* How many total PEs are there */

 ierr = MPI_Comm_size(MPI_COMM_WORLD, &nPEs);

 /* What node am I (what is my rank?) */

 ierr = MPI_Comm_rank(MPI_COMM_WORLD, &iam);

 ...

 ierr = MPI_Finalize();

}

MPI Example #2

#include “mpi.h”

int main(int argc, char *argv[])

{

 int numprocs, myid;

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 /* print out my rank and this run's PE size */

 printf("Hello from %d of %d\n", myid, numprocs);

 MPI_Finalize();

}

MPI: Sends and Receives

• MPI programs must send and receive data between the
processors (communication)

• The most basic calls in MPI (besides the three initialization
and one finalization calls) are:
– MPI_Send

– MPI_Recv

• These calls are blocking: the source processor issuing the
send/receive cannot move to the next statement until the
target processor issues the matching receive/send.

Message Passing Communication
• Processes in message passing programs communicate

by passing messages

• Basic message passing primitives

• Send (parameters list)

• Receive (parameter list)

• Parameters depend on the library used

A B

MPI Example #3: Send/Receive
#include “mpi.h”

int main(int argc,char *argv[])
{
 int numprocs,myid,tag,source,destination,count,buffer;
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 tag=1234;
 source=0;
 destination=1;
 count=1;

 if(myid == source){
 buffer=5678;
 MPI_Send(&buffer,count,MPI_INT,destination,tag,MPI_COMM_WORLD);
 printf("processor %d sent %d\n",myid,buffer);
 }
 if(myid == destination){
 MPI_Recv(&buffer,count,MPI_INT,source,tag,MPI_COMM_WORLD,&status);
 printf("processor %d got %d\n",myid,buffer);
 }
 MPI_Finalize();
}

