Numerical Linear Algebra

m GMRES - Generalized Minimal Residual
m Conjugate Gradients.
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m Arnoldi method can be used to find eigenvalues. GMRES
is its analog for Ax = b problems.

2/11



GMRES - Generalized Minimal Residuals

m Arnoldi method can be used to find eigenvalues. GMRES
is its analog for Ax = b problems.

m Let KC,, denote the Krylov subspace (b, Ab, ..., A"7'b) —
then GMRES tries to do the following:

2/11



GMRES - Generalized Minimal Residuals

m Arnoldi method can be used to find eigenvalues. GMRES
is its analog for Ax = b problems.

m Let KC,, denote the Krylov subspace (b, Ab, ..., A"7'b) —
then GMRES tries to do the following:

m At step n, one approximates the exact solution, x, (ie
Az, =b), by the vector x,, € K,, that minimizes the norm
of the residual, r,, = b — Ax,,.

2/11



GMRES - Generalized Minimal Residuals

m Arnoldi method can be used to find eigenvalues. GMRES
is its analog for Ax = b problems.

m Let KC,, denote the Krylov subspace (b, Ab, ..., A"7'b) —
then GMRES tries to do the following:

m At step n, one approximates the exact solution, x, (ie
Az, =b), by the vector x,, € K,, that minimizes the norm
of the residual, r,, = b — Ax,,.

m In other words, the x,, is determined by solving a least
squares problem.
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GMRES - Generalized Minimal Residuals

m One obvious way to solve this problem would be the
following.

m Let K, be the Krylov matrix so that
AK, = |Ab| A% | --- | A"

m The column space of this matrix is AKC,,. Thus the
problem reduces to finding a vector ¢ € C™ such that

|AK,c — b|| = minimum

m This can be achieved by QR factorization of AK,,. Once ¢
is found, we can set z,, = K,,c.
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GMRES - Generalized Minimal Residuals

m The above procedure is numerically unstable!
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GMRES - Generalized Minimal Residuals

m The above procedure is numerically unstable!

m Instead use Arnoldi iteration to construct a sequence of
Krylov subspace matrices, @,,, whose columns ¢, qa, . ..
span the successive Krylov subspaces IC,,.

m Then one can write x,, = Q,,y instead of x,, = K ,c.

m The least squares problem reduces to finding a vector
y € C™ such that:

|AQ,y — b|| = minimum
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GMRES - Generalized Minimal Residuals

m Using AQ,, = Q.11 H,, we get:

[|Qns1Hypy — bl| = minimum
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m Now both vectors inside the norm are in the column space
of Q1. So multiplying on the left by @}, does not
change that norm :

||H,y — QF1b|| = minimum
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GMRES - Generalized Minimal Residuals

m Using AQ,, = Qni1H,, we get:
[|Qns1Hpy — bl| = minimum

m Now both vectors inside the norm are in the column space
of Q1. So multiplying on the left by @}, does not
change that norm :

||H,y — QF1b|| = minimum

m As b was the first vector in the column space of @, 1,
Q5 1b =[b||e1, where e; = (1,0,0,...)* So the problem
reduces to:

||Hny — ||b]|e1]| = minimum
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GMRES - Generalized Minimal Residuals

Algorithm 1 GMRES

I g1 = b/1[0]

2: forn=1,2,3,...do
3 v=Ag,

4 for j =1 tondo
5 hjn = q;-‘v

6: v =0 — Njngq;
7 end for

8 Pt = |[v]]

9 dn+1 = U/thrl,n

10:  Find y to minimize ||H,y — ||b||e1]|

11: Tn = Qny
12: end for
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Conjugate gradients

m Conjugate gradient iteration is the "original" Krylov
subspace method — and a mainstay of scientific
computing!
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Conjugate gradients

m Conjugate gradient iteration is the "original" Krylov
subspace method — and a mainstay of scientific
computing!

m Conjugate gradient is to GMRES what Lanczos is to
Arnoldi!

m |t is applicable to solving Ax = b problems where A is a
real, positive definite, symmetric matrix.

m In this case, the GMRES iteration reduces substantially
and no upper Hessenberg matrix has to be constructed.

m Conjugate gradient can be described as: It is a system of
recurrence formulas that generates the unique sequence of
iterates {x, € K, } with the property that at each step n
llen||a is minimized.
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Conjugate gradients

Algorithm 2 Conjugate gradients

1:
2:

29g=0,70=0,po =10
forn=1,2,3,... do
an = (rp_17n-1/(Pp—1APn-1)
Ty = Tp—1 + QpPn—1
m =Tpn—1— anApn—l
B = (rara)/(rh_17n-1)
Pn = Tn + BnPn-1
end for

{Step length}
{Approximate solution}
{Residual}

{Improvement of the step}
{Search direction}
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Conjugate gradients

m It can be shown that

rlri=0 (j<n)

n
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Conjugate gradients

m It can be shown that

rar; =0 (j <n)
m The search directions:
PaApj =0 (j <n)
m All the z, p and r belong to the Krylov subspace:

]Cn :<x1,x2, R ,$n> = <p0,p1, . 7pn71>
<T0, T1y. e ,rn71> = <b, Ab, C An71b>
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Conjugate gradients

m Let the CG iteration be applied to a symmetric positive
definite matrix problem Az = b. If the iteration has not
already converged, then z,, is the unique point in C,, that
minimizes ||e,||4. The convergence is monotonic:

llenlla < llen—lla

and ¢,, = 0 is achieved for some n < m.
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Conjugate gradients

m We know that z,, belongs to K,,. To show that it is
unique point that minimizes ||e||4, consider the arbitrary
point, z = x, — Ax € KC,,. The error
e=x,— = ¢, + Ax. Calculate

lell =(en + A)" Alen + A)
=c! Ae, + (Ax)T A(Ax) + 2L A(Ax)
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m We know that the final term: 2rT(Az) is the inner
product of 7, with a vector in IC,, which has to be 0.

m So,
llel|% = eZAen + (A:U)TA(AQL')

and since A is positive definite, this is minimum when
Ax = 0.
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Conjugate gradients

m We know that z,, belongs to K,,. To show that it is
unique point that minimizes ||e||4, consider the arbitrary
point, z = x, — Ax € KC,,. The error
e =z, — 2 = e, +Ax. Calculate

lell =(en + A)" Alen + A)
=c! Ae, + (Ax)T A(Ax) + 2L A(Ax)

m We know that the final term: 2rT(Az) is the inner
product of 7, with a vector in IC,, which has to be 0.

m So,
lle]|3 = el Ae, + (Az)T A(Ax)
and since A is positive definite, this is minimum when
Ar = 0.
m The monotonicity follows from the fact that IC,, C KC,, 1.
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