

- GMRES – Generalized Minimal Residual
- Conjugate Gradients.

- Arnoldi method can be used to find eigenvalues. GMRES is its analog for $Ax = b$ problems.

- Arnoldi method can be used to find eigenvalues. GMRES is its analog for $Ax = b$ problems.
- Let \mathcal{K}_n denote the Krylov subspace $\langle b, Ab, \dots, A^{n-1}b \rangle$ – then GMRES tries to do the following:

- Arnoldi method can be used to find eigenvalues. GMRES is its analog for $Ax = b$ problems.
- Let \mathcal{K}_n denote the Krylov subspace $\langle b, Ab, \dots, A^{n-1}b \rangle$ – then GMRES tries to do the following:
- At step n , one approximates the exact solution, x_* (ie $Ax_* = b$), by the vector $x_n \in \mathcal{K}_n$ that minimizes the norm of the residual, $r_n = b - Ax_n$.

- Arnoldi method can be used to find eigenvalues. GMRES is its analog for $Ax = b$ problems.
- Let \mathcal{K}_n denote the Krylov subspace $\langle b, Ab, \dots, A^{n-1}b \rangle$ – then GMRES tries to do the following:
- At step n , one approximates the exact solution, x_* (ie $Ax_* = b$), by the vector $x_n \in \mathcal{K}_n$ that minimizes the norm of the residual, $r_n = b - Ax_n$.
- In other words, the x_n is determined by solving a least squares problem.

- One obvious way to solve this problem would be the following.

- One obvious way to solve this problem would be the following.
- Let K_n be the Krylov matrix so that

$$AK_n = \left[\begin{array}{c|c|c|c} \quad & \quad & \quad & \quad \\ Ab & A^2b & \dots & A^n b \\ \hline \quad & \quad & \quad & \quad \end{array} \right]$$

- One obvious way to solve this problem would be the following.
- Let K_n be the Krylov matrix so that

$$AK_n = \left[\begin{array}{c|c|c|c} Ab & A^2b & \dots & A^n b \end{array} \right]$$

- The column space of this matrix is $A\mathcal{K}_n$. Thus the problem reduces to finding a vector $c \in \mathbb{C}^n$ such that

$$\|AK_n c - b\| = \text{minimum}$$

- One obvious way to solve this problem would be the following.
- Let K_n be the Krylov matrix so that

$$AK_n = \left[\begin{array}{c|c|c|c} Ab & A^2b & \dots & A^n b \end{array} \right]$$

- The column space of this matrix is $A\mathcal{K}_n$. Thus the problem reduces to finding a vector $c \in \mathbb{C}^n$ such that

$$||AK_n c - b|| = \text{minimum}$$

- This can be achieved by QR factorization of AK_n . Once c is found, we can set $x_n = K_n c$.

- The above procedure is numerically unstable!

- The above procedure is numerically unstable!
- Instead use Arnoldi iteration to construct a sequence of Krylov subspace matrices, Q_n , whose columns q_1, q_2, \dots span the successive Krylov subspaces \mathcal{K}_n .

- The above procedure is numerically unstable!
- Instead use Arnoldi iteration to construct a sequence of Krylov subspace matrices, Q_n , whose columns q_1, q_2, \dots span the successive Krylov subspaces \mathcal{K}_n .
- Then one can write $x_n = Q_n y$ instead of $x_n = K_n c$.

- The above procedure is numerically unstable!
- Instead use Arnoldi iteration to construct a sequence of Krylov subspace matrices, Q_n , whose columns q_1, q_2, \dots span the successive Krylov subspaces \mathcal{K}_n .
- Then one can write $x_n = Q_n y$ instead of $x_n = K_n c$.
- The least squares problem reduces to finding a vector $y \in \mathbb{C}^n$ such that:

$$||AQ_n y - b|| = \text{minimum}$$

- Using $AQ_n = Q_{n+1}H_n$, we get:

$$\|Q_{n+1}H_n y - b\| = \text{minimum}$$

- Using $AQ_n = Q_{n+1}H_n$, we get:

$$\|Q_{n+1}H_n y - b\| = \text{minimum}$$

- Now both vectors inside the norm are in the column space of Q_{n+1} . So multiplying on the left by Q_{n+1}^* does not change that norm :

$$\|H_n y - Q_{n+1}^* b\| = \text{minimum}$$

- Using $AQ_n = Q_{n+1}H_n$, we get:

$$\|Q_{n+1}H_n y - b\| = \text{minimum}$$

- Now both vectors inside the norm are in the column space of Q_{n+1} . So multiplying on the left by Q_{n+1}^* does not change that norm :

$$\|H_n y - Q_{n+1}^* b\| = \text{minimum}$$

- As b was the first vector in the column space of Q_{n+1} , $Q_{n+1}^* b = \|b\|e_1$, where $e_1 = (1, 0, 0, \dots)^*$ So the problem reduces to:

$$\|H_n y - \|b\|e_1\| = \text{minimum}$$

Algorithm 1 GMRES

```
1:  $q_1 = b/||b||$ 
2: for  $n = 1, 2, 3, \dots$  do
3:    $v = Aq_n$ 
4:   for  $j = 1$  to  $n$  do
5:      $h_{jn} = q_j^* v$ 
6:      $v = v - h_{jn} q_j$ 
7:   end for
8:    $h_{n+1,n} = ||v||$ 
9:    $q_{n+1} = v/h_{n+1,n}$ 
10:  Find  $y$  to minimize  $||H_n y - ||b||e_1||$ 
11:   $x_n = Q_n y$ 
12: end for
```

- Conjugate gradient iteration is the "original" Krylov subspace method – and a mainstay of scientific computing!

- Conjugate gradient iteration is the "original" Krylov subspace method – and a mainstay of scientific computing!
- Conjugate gradient is to GMRES what Lanczos is to Arnoldi!

- Conjugate gradient iteration is the "original" Krylov subspace method – and a mainstay of scientific computing!
- Conjugate gradient is to GMRES what Lanczos is to Arnoldi!
- It is applicable to solving $Ax = b$ problems where A is a real, positive definite, symmetric matrix.

- Conjugate gradient iteration is the "original" Krylov subspace method – and a mainstay of scientific computing!
- Conjugate gradient is to GMRES what Lanczos is to Arnoldi!
- It is applicable to solving $Ax = b$ problems where A is a real, positive definite, symmetric matrix.
- In this case, the GMRES iteration reduces substantially and no upper Hessenberg matrix has to be constructed.

- Conjugate gradient iteration is the "original" Krylov subspace method – and a mainstay of scientific computing!
- Conjugate gradient is to GMRES what Lanczos is to Arnoldi!
- It is applicable to solving $Ax = b$ problems where A is a real, positive definite, symmetric matrix.
- In this case, the GMRES iteration reduces substantially and no upper Hessenberg matrix has to be constructed.
- Conjugate gradient can be described as: It is a system of recurrence formulas that generates the unique sequence of iterates $\{x_n \in \mathcal{K}_n\}$ with the property that at each step n $\|e_n\|_A$ is minimized.

Algorithm 2 Conjugate gradients

```

1:  $x_0 = 0, r_0 = 0, p_0 = r_0$ 
2: for  $n = 1, 2, 3, \dots$  do
3:    $\alpha_n = (r_{n-1}^T r_{n-1}) / (p_{n-1}^T A p_{n-1})$  {Step length}
4:    $x_n = x_{n-1} + \alpha_n p_{n-1}$  {Approximate solution}
5:    $r_n = r_{n-1} - \alpha_n A p_{n-1}$  {Residual}
6:    $\beta_n = (r_n^T r_n) / (r_{n-1}^T r_{n-1})$  {Improvement of the step}
7:    $p_n = r_n + \beta_n p_{n-1}$  {Search direction}
8: end for

```

Conjugate gradients

- It can be shown that

$$r_n^T r_j = 0 \quad (j < n)$$

- It can be shown that

$$r_n^T r_j = 0 \quad (j < n)$$

- The search directions:

$$p_n^T A p_j = 0 \quad (j < n)$$

- It can be shown that

$$r_n^T r_j = 0 \quad (j < n)$$

- The search directions:

$$p_n^T A p_j = 0 \quad (j < n)$$

- All the x , p and r belong to the Krylov subspace:

$$\begin{aligned}\mathcal{K}_n = & \langle x_1, x_2, \dots, x_n \rangle = \langle p_0, p_1, \dots, p_{n-1} \rangle \\ \langle r_0, r_1, \dots, r_{n-1} \rangle = & \langle b, Ab, \dots, A^{n-1}b \rangle\end{aligned}$$

- Let the CG iteration be applied to a symmetric positive definite matrix problem $Ax = b$. If the iteration has not already converged, then x_n is the unique point in \mathcal{K}_n that minimizes $\|e_n\|_A$. The convergence is monotonic:

$$\|e_n\|_A \leq \|e_{n-1}\|_A$$

and $e_n = 0$ is achieved for some $n \leq m$.

- We know that x_n belongs to \mathcal{K}_n . To show that it is unique point that minimizes $\|e\|_A$, consider the arbitrary point, $x = x_n - \Delta x \in \mathcal{K}_n$. The error $e = x_* - x = e_n + \Delta x$. Calculate

$$\begin{aligned}\|e\|_A^2 &= (e_n + \Delta x)^T A (e_n + \Delta x) \\ &= e_n^T A e_n + (\Delta x)^T A (\Delta x) + 2e_n^T A (\Delta x)\end{aligned}$$

- We know that x_n belongs to \mathcal{K}_n . To show that it is unique point that minimizes $\|e\|_A$, consider the arbitrary point, $x = x_n - \Delta x \in \mathcal{K}_n$. The error $e = x_* - x = e_n + \Delta x$. Calculate

$$\begin{aligned}\|e\|_A^2 &= (e_n + \Delta x)^T A (e_n + \Delta x) \\ &= e_n^T A e_n + (\Delta x)^T A (\Delta x) + 2e_n^T A (\Delta x)\end{aligned}$$

- We know that the final term: $2r_n^T(\Delta x)$ is the inner product of r_n with a vector in \mathcal{K}_n which has to be 0.

- We know that x_n belongs to \mathcal{K}_n . To show that it is unique point that minimizes $\|e\|_A$, consider the arbitrary point, $x = x_n - \Delta x \in \mathcal{K}_n$. The error $e = x_* - x = e_n + \Delta x$. Calculate

$$\begin{aligned}\|e\|_A^2 &= (e_n + \Delta x)^T A (e_n + \Delta x) \\ &= e_n^T A e_n + (\Delta x)^T A (\Delta x) + 2e_n^T A (\Delta x)\end{aligned}$$

- We know that the final term: $2r_n^T(\Delta x)$ is the inner product of r_n with a vector in \mathcal{K}_n which has to be 0.
- So,

$$\|e\|_A^2 = e_n^T A e_n + (\Delta x)^T A (\Delta x)$$

and since A is positive definite, this is minimum when $\Delta x = 0$.

- We know that x_n belongs to \mathcal{K}_n . To show that it is unique point that minimizes $\|e\|_A$, consider the arbitrary point, $x = x_n - \Delta x \in \mathcal{K}_n$. The error $e = x_* - x = e_n + \Delta x$. Calculate

$$\begin{aligned}\|e\|_A^2 &= (e_n + \Delta x)^T A (e_n + \Delta x) \\ &= e_n^T A e_n + (\Delta x)^T A (\Delta x) + 2e_n^T A (\Delta x)\end{aligned}$$

- We know that the final term: $2r_n^T(\Delta x)$ is the inner product of r_n with a vector in \mathcal{K}_n which has to be 0.
- So,

$$\|e\|_A^2 = e_n^T A e_n + (\Delta x)^T A (\Delta x)$$

and since A is positive definite, this is minimum when $\Delta x = 0$.

- The monotonicity follows from the fact that $\mathcal{K}_n \subseteq \mathcal{K}_{n+1}$.