
Numerical Linear Algebra

GMRES – Generalized Minimal Residual
Conjugate Gradients.
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GMRES – Generalized Minimal Residuals

Arnoldi method can be used to find eigenvalues. GMRES
is its analog for Ax = b problems.

Let Kn denote the Krylov subspace 〈b, Ab, . . . , An−1b〉 –
then GMRES tries to do the following:
At step n, one approximates the exact solution, x∗ (ie
Ax∗ = b), by the vector xn ∈ Kn that minimizes the norm
of the residual, rn = b− Axn.
In other words, the xn is determined by solving a least
squares problem.
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GMRES – Generalized Minimal Residuals

One obvious way to solve this problem would be the
following.

Let Kn be the Krylov matrix so that

AKn =

Ab A2b · · · Anb


The column space of this matrix is AKn. Thus the
problem reduces to finding a vector c ∈ Cn such that

||AKnc− b|| = minimum

This can be achieved by QR factorization of AKn. Once c
is found, we can set xn = Knc.
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GMRES - Generalized Minimal Residuals

The above procedure is numerically unstable!

Instead use Arnoldi iteration to construct a sequence of
Krylov subspace matrices, Qn, whose columns q1, q2, . . .
span the successive Krylov subspaces Kn.
Then one can write xn = Qny instead of xn = Knc.
The least squares problem reduces to finding a vector
y ∈ Cn such that:

||AQny − b|| = minimum
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GMRES - Generalized Minimal Residuals

Using AQn = Qn+1Hn, we get:

||Qn+1Hny − b|| = minimum

Now both vectors inside the norm are in the column space
of Qn+1. So multiplying on the left by Q∗

n+1 does not
change that norm :

||Hny −Q∗
n+1b|| = minimum

As b was the first vector in the column space of Qn+1,
Q∗

n+1b = ||b||e1, where e1 = (1, 0, 0, . . . )∗ So the problem
reduces to:

||Hny − ||b||e1|| = minimum
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GMRES - Generalized Minimal Residuals

Algorithm 1 GMRES
1: q1 = b/||b||
2: for n = 1, 2, 3, . . . do
3: v = Aqn
4: for j = 1 to n do
5: hjn = q∗j v
6: v = v − hjnqj
7: end for
8: hn+1,n = ||v||
9: qn+1 = v/hn+1,n

10: Find y to minimize ||Hny − ||b||e1||
11: xn = Qny
12: end for
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Conjugate gradients

Conjugate gradient iteration is the "original" Krylov
subspace method – and a mainstay of scientific
computing!

Conjugate gradient is to GMRES what Lanczos is to
Arnoldi!
It is applicable to solving Ax = b problems where A is a
real, positive definite, symmetric matrix.
In this case, the GMRES iteration reduces substantially
and no upper Hessenberg matrix has to be constructed.
Conjugate gradient can be described as: It is a system of
recurrence formulas that generates the unique sequence of
iterates {xn ∈ Kn} with the property that at each step n
||en||A is minimized.
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Conjugate gradients

Algorithm 2 Conjugate gradients
1: x0 = 0, r0 = 0, p0 = r0
2: for n = 1, 2, 3, . . . do
3: αn = (rTn−1rn−1/(p

T
n−1Apn−1) {Step length}

4: xn = xn−1 + αnpn−1 {Approximate solution}
5: rn = rn−1 − αnApn−1 {Residual}
6: βn = (rTn rn)/(r

T
n−1rn−1) {Improvement of the step}

7: pn = rn + βnpn−1 {Search direction}
8: end for
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Conjugate gradients

It can be shown that

rTn rj = 0 (j < n)

The search directions:

pTnApj = 0 (j < n)

All the x, p and r belong to the Krylov subspace:

Kn =〈x1, x2, . . . , xn〉 = 〈p0, p1, . . . , pn−1〉
〈r0, r1, . . . , rn−1〉 = 〈b, Ab, . . . An−1b〉
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Conjugate gradients

Let the CG iteration be applied to a symmetric positive
definite matrix problem Ax = b. If the iteration has not
already converged, then xn is the unique point in Kn that
minimizes ||en||A. The convergence is monotonic:

||en||A ≤ ||en−1||A

and en = 0 is achieved for some n ≤ m.
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Conjugate gradients

We know that xn belongs to Kn. To show that it is
unique point that minimizes ||e||A, consider the arbitrary
point, x = xn −∆x ∈ Kn. The error
e = x∗ − x = en + ∆x. Calculate

||e||2A =(en + A)TA(en + A)

=eTnAen + (∆x)TA(∆x) + 2eTnA(∆x)

We know that the final term: 2rTn (∆x) is the inner
product of rn with a vector in Kn which has to be 0.
So,

||e||2A = eTnAen + (∆x)TA(∆x)

and since A is positive definite, this is minimum when
∆x = 0.
The monotonicity follows from the fact that Kn ⊆ Kn+1.
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