Numerical Linear Algebra
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Rayleigh Quotient

m For a given complex Hermitian matrix M and nonzero
vector x, the Rayleigh quotient r(z), is defined as:

*M
r(z) = "Mz

r*r
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r(r) = :
m It addresses the question, given an x, what scalar, «,

"acts most like the eigenvalue" for x in the sense of
minimizing ||Mz — ax||?
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Rayleigh Quotient
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m Calculating the gradient:

r*T

Vr(x) = %(Mx —r(z)x)

xrx

2/13



Rayleigh Quotient

m For a given complex Hermitian matrix M and nonzero
vector x, the Rayleigh quotient r(z), is defined as:
r*Max

r(z) =

m It addresses the question, given an x, what scalar, «,
"acts most like the eigenvalue" for x in the sense of
minimizing ||Mz — ax||?

m Calculating the gradient:

r*r

Vr(z) = i(]\/[x —r(z)x)

T*r
m This shows that the eigenvectors of M are the stationary
points of the function r(z) and the eigenvalues of M are
the values of 7(z) at these stationary points.
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Rayleigh Quotient

m For a given complex Hermitian matrix M and nonzero
vector x, the Rayleigh quotient r(z), is defined as:
r*Max

r(z) =

m It addresses the question, given an x, what scalar, «,
"acts most like the eigenvalue" for x in the sense of
minimizing ||Mz — ax||?

m Calculating the gradient:

r*r

2
Vr(x) = x*x<Mx r(z)x)

m This shows that the eigenvectors of M are the stationary
points of the function r(z) and the eigenvalues of M are
the values of 7(z) at these stationary points.

m The Rayleigh quotient is a quadratically accurate estimate
of the eigenvalue!
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Power lteration

m Suppose v(¥ is a normalized vector. The following is
expected to produce a sequence v that converges to an
eigenvector corresponding to the largest eigenvalue of A.
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Power lteration

m Suppose v(¥ is a normalized vector. The following is
expected to produce a sequence v that converges to an
eigenvector corresponding to the largest eigenvalue of A.

Algorithm 2 Power lteration

1: v(9 = some vector with |[v(?)]| =1
fork=1,2,...do
w = Av*=1

o) = w /]|
A\ = (U(k))TAU(k)
end for

S
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Power lteration

m We can analyze the power iteration as:
v = a1 + asqa + - . . + Al

where ¢; are orthonormal eigenvectors with corresponding
eigenvalues satisfying [A| > [Ao] > -+ > ||, > 0.
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Power lteration

m We can analyze the power iteration as:
v = a1 + asqa + - . . + Al

where ¢; are orthonormal eigenvectors with corresponding
eigenvalues satisfying [A| > [Ao] > -+ > ||, > 0.

m Then one can write:

v® =c AFy©
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Power lteration

m We can analyze the power iteration as:
v = a1+ axge + - A+ Antm

where ¢; are orthonormal eigenvectors with corresponding
eigenvalues satisfying [A| > [Ao] > -+ > ||, > 0.

m Then one can write:

v® =c AFy©

:Ck)\]f(alfh + az()\2/)\1)kQ2 + -+ am(Am/)\l)ka
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m In the limit £ — oo,

re
M

Ao

16~ (il = ®
1

4/13



Inverse lteration

m For any p that is not an eigenvalue of A, the eigenvectors
of (A — uI)~! has the same eigenvectors as A and the
corresponding eigenvalues are (\; — u)~ 1.
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Inverse lteration

m For any p that is not an eigenvalue of A, the eigenvectors
of (A — uI)~! has the same eigenvectors as A and the

corresponding eigenvalues are (\; — u)~ 1.
m Then by a judicious choice of i close to \j, (A\; — p)
can be made much larger for j # J.

-1
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Inverse lteration

m For any p that is not an eigenvalue of A, the eigenvectors
of (A — uI)~! has the same eigenvectors as A and the
corresponding eigenvalues are (\; — 1)t

m Then by a judicious choice of 1 close to A\j, (A; — )
can be made much larger for j # J.

m Applying the power iteration should converge to ¢;.

-1

Algorithm 6 Inverse Iteration

1: v(9) = some vector with |[v(?]| =1
2: for k=1,2,...do

3 Solve (A — pul)w = vV for w
4 oW =w/|w|

5 A= ()T Apk)

6: end for
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Rayleigh Quotient lteration

m The Rayleigh Quotient is a method for obtaining
eigenvalue from and eigenvector estimate while the
Inverse iteration obtains an eigenvector from estimate of
the eigenvalue.
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Rayleigh Quotient lteration

m The Rayleigh Quotient is a method for obtaining
eigenvalue from and eigenvector estimate while the
Inverse iteration obtains an eigenvector from estimate of
the eigenvalue.

m In this algorithm, one combines the two:

Algorithm 8 Rayleigh quotient Iteration

1: v(9 = some vector with |[v(?]| =1
AO) — (00T 4,
cfork=1,2,...do
Solve (A — A=V w = v* =1 for w
v = w/|w]]
A — ()T 49
end for

N gk weN

6/13



Projection into Krylov Subspace

m lterative methods are based on projecting an
m—dimensional problem into a lower dimensional Krylov
subspace.
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Projection into Krylov Subspace

m lterative methods are based on projecting an
m—dimensional problem into a lower dimensional Krylov
subspace.

m Given a matrix A and a vector b, the associated sequence
of vectors:

b, Ab, A*b, A%b. ..

is called Krylov sequence or Krylov subspace.
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Arnoldi lteration

m For a matrix A, a complete reduction into Hessenberg
form by an orthogonality transformation:

AQ =QH

is out of question if m is large.
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m For a matrix A, a complete reduction into Hessenberg
form by an orthogonality transformation:

AQ = QH

is out of question if m is large.

m Instead consider the first n columns of the above
factorization.
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Arnoldi lteration

m For a matrix A, a complete reduction into Hessenberg
form by an orthogonality transformation:

AQ =QH

is out of question if m is large.

m Instead consider the first n columns of the above
factorization.

m Let , be a m x n matrix whose columns are the first
columns of Q:

g1 q2|---|Gn
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Arnoldi Iteration — modified Gram-Schmidt

Algorithm 9 Arnoldi Iteration

1: b = some vector with ¢; = b/|[b
2: forn=1,2,3,...do

3: v = Agn

4. forj=1ton do
5: hjn = q;-‘v

6: v =0 — hyjq;
7. end for

8: hnt1n = |v]]

9: n+1 ::U/hn+1ml
10: end for

The Arnoldi process can be described as a systematic
construction of orthonormal bases using successive Krylov
subspaces — done using the Gram-Schmidt orthogonalization

procedure.

9/13



Arnoldi lteration

Let H,, be the (upper Hessenberg) matrix formed by the
numbers h;; computed by the algorithm:

hii hig hiz - hin
hoy hao hasz -+ ha
H,=| 0 hsa hsz - hgn
0 e 0 hn,n—l hn,n
We then have

This yields an alternative interpretation of the Arnoldi iteration
as a (partial) orthogonal reduction of A to Hessenberg form.
The matrix H,, can be viewed as the representation in the
basis formed by the Arnoldi vectors of the orthogonal

projection of A onto the Krylov subspace.
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Arnoldi lteration

m Let H, be the (n+ 1) x n upper-left section of H,
hiy e hin

ho1 hao

Hn = ' :
hn,nfl hn,n

hn+1,n
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Arnoldi lteration

m Let H, be the (n+ 1) x n upper-left section of H,

hll e hln
h21 h22
ﬁn = ) :
hop—1 hnp
hn+1,n

m Then we have .
f1(27z = (27z+-1]3;1
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Arnoldi lteration

m Let H, be the (n+ 1) x n upper-left section of H,

hiy e hin,
hat  hao
I:[n = ) :
-1 hon
hn+1,n
m Then we have .
AQn = Qn-i—lHn

m The n* column of this equation:
AQn - hanl + -+ hann + hn—f—l,nQn—i—l

This indicates that g(,1), satisfies an (n + 1) term
recurrence relation involving itself and previous Krylov
subspace vectors.
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Arnoldi lteration

m Let H, be the (n+ 1) x n upper-left section of H,

hiy e hin,
hat  hao
ﬁn = ) :
-1 hon
hn+1,n
m Then we have .
AQn = Qn-i—lHn

m The n* column of this equation:

AQn - hanl + -+ hann + hn—i—l,nQn—i—l

This indicates that g(,1), satisfies an (n + 1) term
recurrence relation involving itself and previous Krylov
subspace vectors.

m Arnoldi iteration is simply the modified Gram-Schmidt

iteration that implements the above equation.
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Arnoldi method

m To find the eigenvalues of A, one expects that since H,, is
a projection of A, eigenvalues of H,, must be related to
that of A.
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Arnoldi method

m To find the eigenvalues of A, one expects that since H,, is
a projection of A, eigenvalues of H,, must be related to
that of A.

m These eigenvalues are called the Ritz value or Arnoldi
eigenvalue estimates.
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Lanczos lteration

m For a symmetric matrix, since the matrix, H, is both
Hessenberg and symmetric — It just becomes a triangular
matrix.
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matrix.
m Again just like Arnoldi, we find the eigenvalues of this
triangular matrix.
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Lanczos lteration

m For a symmetric matrix, since the matrix, H, is both
Hessenberg and symmetric — It just becomes a triangular
matrix.

m Again just like Arnoldi, we find the eigenvalues of this
triangular matrix.

m This leads to a three term recurrence relation.

Algorithm 13 Lanczos lteration
1 Bo =0, go =0, b = some vector with ¢g; = b/||b
2: forn=1,2,3,...do
v = Agn
4 an = qlv
5: V=0~ Bn_1Gn-1 — OnGn
6: S =Ivll
7.
8

w

: dn+1 ::U/Bn
. end for
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