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Rayleigh Quotient

For a given complex Hermitian matrix M and nonzero
vector x, the Rayleigh quotient r(x), is defined as:

r(x) =
x∗Mx

x∗x
.

It addresses the question, given an x, what scalar, α,
"acts most like the eigenvalue" for x in the sense of
minimizing ||Mx− αx||?
Calculating the gradient:

∇r(x) = 2

x∗x
(Mx− r(x)x)

This shows that the eigenvectors of M are the stationary
points of the function r(x) and the eigenvalues of M are
the values of r(x) at these stationary points.
The Rayleigh quotient is a quadratically accurate estimate
of the eigenvalue!
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Power Iteration

Suppose v(0) is a normalized vector. The following is
expected to produce a sequence v(i) that converges to an
eigenvector corresponding to the largest eigenvalue of A.

Algorithm 1 Power Iteration
1: v(0) = some vector with ||v(0)|| = 1
2: for k = 1, 2, . . . do
3: w = Av(k−1)

4: v(k) = w/||w||
5: λk = (v(k))TAv(k)

6: end for
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Power Iteration

We can analyze the power iteration as:

v(0) = a1q1 + a2q2 + . . .+ amqm

where qi are orthonormal eigenvectors with corresponding
eigenvalues satisfying |λ1| ≥ |λ2| ≥ · · · ≥ |λ|m ≥ 0.

Then one can write:

v(k) =ckA
kv(0)

=ckλ
k
1(a1q1 + a2(λ2/λ1)

kq2 + · · ·+ am(λm/λ1)
kqk

In the limit k →∞,

||v(k) − (±q1)|| = O
(∣∣∣∣λ2λ1

∣∣∣∣k) |λ(k) − λ1| = O
(∣∣∣∣λ2λ1

∣∣∣∣2k)
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Inverse Iteration

For any µ that is not an eigenvalue of A, the eigenvectors
of (A− µI)−1 has the same eigenvectors as A and the
corresponding eigenvalues are (λj − µ)−1.

Then by a judicious choice of µ close to λJ , (λJ − µ)−1

can be made much larger for j 6= J .
Applying the power iteration should converge to qJ .

Algorithm 3 Inverse Iteration
1: v(0) = some vector with ||v(0)|| = 1
2: for k = 1, 2, . . . do
3: Solve (A− µI)w = v(k−1) for w
4: v(k) = w/||w||
5: λk = (v(k))TAv(k)

6: end for
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Rayleigh Quotient Iteration

The Rayleigh Quotient is a method for obtaining
eigenvalue from and eigenvector estimate while the
Inverse iteration obtains an eigenvector from estimate of
the eigenvalue.

In this algorithm, one combines the two:

Algorithm 7 Rayleigh quotient Iteration
1: v(0) = some vector with ||v(0)|| = 1
2: λ(0) = (v(0))TAv(0)

3: for k = 1, 2, . . . do
4: Solve (A− λ(k−1)I)w = v(k−1) for w
5: v(k) = w/||w||
6: λ(k) = (v(k))TAv(k)

7: end for
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Projection into Krylov Subspace

Iterative methods are based on projecting an
m−dimensional problem into a lower dimensional Krylov
subspace.

Given a matrix A and a vector b, the associated sequence
of vectors:

b, Ab,A2b, A3b . . .

is called Krylov sequence or Krylov subspace.
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Arnoldi Iteration

For a matrix A, a complete reduction into Hessenberg
form by an orthogonality transformation:

AQ = QH

is out of question if m is large.

Instead consider the first n columns of the above
factorization.
Let Qn be a m× n matrix whose columns are the first
columns of Q: q1 q2 . . . qn


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Arnoldi Iteration – modified Gram-Schmidt

Algorithm 9 Arnoldi Iteration
1: b = some vector with q1 = b/||b
2: for n = 1, 2, 3, . . . do
3: v = Aqn
4: for j = 1 to n do
5: hjn = q∗j v
6: v = v − hnjqj
7: end for
8: hn+1,n = ||v||
9: qn+1 = v/hn+1,m

10: end for

The Arnoldi process can be described as a systematic
construction of orthonormal bases using successive Krylov
subspaces – done using the Gram-Schmidt orthogonalization
procedure.

Kn = QnRn 9/13



Arnoldi Iteration

Let Hn be the (upper Hessenberg) matrix formed by the
numbers hj,k computed by the algorithm:

Hn =


h1,1 h1,2 h1,3 · · · h1,n
h2,1 h2,2 h2,3 · · · h2,n
0 h3,2 h3,3 · · · h3,n
... . . . . . . . . . ...
0 · · · 0 hn,n−1 hn,n

 .
We then have

Hn = Q∗
nAQn.

This yields an alternative interpretation of the Arnoldi iteration
as a (partial) orthogonal reduction of A to Hessenberg form.
The matrix Hn can be viewed as the representation in the
basis formed by the Arnoldi vectors of the orthogonal
projection of A onto the Krylov subspace.
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Arnoldi Iteration

Let H̃n be the (n+ 1)× n upper-left section of H,

H̃n =


h11 · · · h1n
h21 h22

. . . . . . ...
hn,n−1 hn,n

hn+1,n



Then we have
AQn = Qn+1H̃n

The nth column of this equation:

Aqn = h1nq1 + · · ·+ hnnqn + hn+1,nqn+1

This indicates that q(n+1), satisfies an (n+ 1) term
recurrence relation involving itself and previous Krylov
subspace vectors.
Arnoldi iteration is simply the modified Gram-Schmidt
iteration that implements the above equation.
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Arnoldi method

To find the eigenvalues of A, one expects that since Hn is
a projection of A, eigenvalues of Hn must be related to
that of A.

These eigenvalues are called the Ritz value or Arnoldi
eigenvalue estimates.
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Lanczos Iteration

For a symmetric matrix, since the matrix, Hn is both
Hessenberg and symmetric – It just becomes a triangular
matrix.

Again just like Arnoldi, we find the eigenvalues of this
triangular matrix.
This leads to a three term recurrence relation.

Algorithm 10 Lanczos Iteration
1: β0 = 0, q0 = 0, b = some vector with q1 = b/||b
2: for n = 1, 2, 3, . . . do
3: v = Aqn
4: αn = qTn v
5: v = v − βn−1qn−1 − αnqn
6: βn = ||v||
7: qn+1 = v/βn
8: end for

13/13



Lanczos Iteration

For a symmetric matrix, since the matrix, Hn is both
Hessenberg and symmetric – It just becomes a triangular
matrix.
Again just like Arnoldi, we find the eigenvalues of this
triangular matrix.

This leads to a three term recurrence relation.

Algorithm 11 Lanczos Iteration
1: β0 = 0, q0 = 0, b = some vector with q1 = b/||b
2: for n = 1, 2, 3, . . . do
3: v = Aqn
4: αn = qTn v
5: v = v − βn−1qn−1 − αnqn
6: βn = ||v||
7: qn+1 = v/βn
8: end for

13/13



Lanczos Iteration

For a symmetric matrix, since the matrix, Hn is both
Hessenberg and symmetric – It just becomes a triangular
matrix.
Again just like Arnoldi, we find the eigenvalues of this
triangular matrix.
This leads to a three term recurrence relation.

Algorithm 12 Lanczos Iteration
1: β0 = 0, q0 = 0, b = some vector with q1 = b/||b
2: for n = 1, 2, 3, . . . do
3: v = Aqn
4: αn = qTn v
5: v = v − βn−1qn−1 − αnqn
6: βn = ||v||
7: qn+1 = v/βn
8: end for

13/13



Lanczos Iteration

For a symmetric matrix, since the matrix, Hn is both
Hessenberg and symmetric – It just becomes a triangular
matrix.
Again just like Arnoldi, we find the eigenvalues of this
triangular matrix.
This leads to a three term recurrence relation.

Algorithm 13 Lanczos Iteration
1: β0 = 0, q0 = 0, b = some vector with q1 = b/||b
2: for n = 1, 2, 3, . . . do
3: v = Aqn
4: αn = qTn v
5: v = v − βn−1qn−1 − αnqn
6: βn = ||v||
7: qn+1 = v/βn
8: end for

13/13


