

- Rayleigh Quotient.
- Power Iteration.
- Inverse Iteration.
- Rayleigh Quotient Iteration.
- Arnoldi Iteration.
- Lanczos Iteration.

Rayleigh Quotient

- For a given complex Hermitian matrix M and nonzero vector x , the Rayleigh quotient $r(x)$, is defined as:

$$r(x) = \frac{x^* M x}{x^* x}.$$

Rayleigh Quotient

- For a given complex Hermitian matrix M and nonzero vector x , the Rayleigh quotient $r(x)$, is defined as:

$$r(x) = \frac{x^* M x}{x^* x}.$$

- It addresses the question, given an x , what scalar, α , "acts most like the eigenvalue" for x in the sense of minimizing $\|Mx - \alpha x\|$?

Rayleigh Quotient

- For a given complex Hermitian matrix M and nonzero vector x , the Rayleigh quotient $r(x)$, is defined as:

$$r(x) = \frac{x^* M x}{x^* x}.$$

- It addresses the question, given an x , what scalar, α , "acts most like the eigenvalue" for x in the sense of minimizing $\|Mx - \alpha x\|$?
- Calculating the gradient:

$$\nabla r(x) = \frac{2}{x^* x} (Mx - r(x)x)$$

- For a given complex Hermitian matrix M and nonzero vector x , the Rayleigh quotient $r(x)$, is defined as:

$$r(x) = \frac{x^* M x}{x^* x}.$$

- It addresses the question, given an x , what scalar, α , "acts most like the eigenvalue" for x in the sense of minimizing $\|Mx - \alpha x\|$?
- Calculating the gradient:

$$\nabla r(x) = \frac{2}{x^* x} (Mx - r(x)x)$$

- This shows that the eigenvectors of M are the stationary points of the function $r(x)$ and the eigenvalues of M are the values of $r(x)$ at these stationary points.

- For a given complex Hermitian matrix M and nonzero vector x , the Rayleigh quotient $r(x)$, is defined as:

$$r(x) = \frac{x^* M x}{x^* x}.$$

- It addresses the question, given an x , what scalar, α , "acts most like the eigenvalue" for x in the sense of minimizing $\|Mx - \alpha x\|$?
- Calculating the gradient:

$$\nabla r(x) = \frac{2}{x^* x} (Mx - r(x)x)$$

- This shows that the eigenvectors of M are the stationary points of the function $r(x)$ and the eigenvalues of M are the values of $r(x)$ at these stationary points.
- The Rayleigh quotient is a quadratically accurate estimate of the eigenvalue!

- Suppose $v^{(0)}$ is a normalized vector. The following is expected to produce a sequence $v^{(i)}$ that converges to an eigenvector corresponding to the largest eigenvalue of A .

- Suppose $v^{(0)}$ is a normalized vector. The following is expected to produce a sequence $v^{(i)}$ that converges to an eigenvector corresponding to the largest eigenvalue of A .

Algorithm 2 Power Iteration

- 1: $v^{(0)}$ = some vector with $\|v^{(0)}\| = 1$
- 2: **for** $k = 1, 2, \dots$ **do**
- 3: $w = Av^{(k-1)}$
- 4: $v^{(k)} = w/\|w\|$
- 5: $\lambda_k = (v^{(k)})^T A v^{(k)}$
- 6: **end for**

- We can analyze the power iteration as:

$$v^{(0)} = a_1 q_1 + a_2 q_2 + \dots + a_m q_m$$

where q_i are orthonormal eigenvectors with corresponding eigenvalues satisfying $|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_m| \geq 0$.

- We can analyze the power iteration as:

$$v^{(0)} = a_1 q_1 + a_2 q_2 + \dots + a_m q_m$$

where q_i are orthonormal eigenvectors with corresponding eigenvalues satisfying $|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_m| \geq 0$.

- Then one can write:

$$\begin{aligned} v^{(k)} &= c_k A^k v^{(0)} \\ &= c_k \lambda_1^k (a_1 q_1 + a_2 (\lambda_2 / \lambda_1)^k q_2 + \dots + a_m (\lambda_m / \lambda_1)^k q_m) \end{aligned}$$

- We can analyze the power iteration as:

$$v^{(0)} = a_1 q_1 + a_2 q_2 + \dots + a_m q_m$$

where q_i are orthonormal eigenvectors with corresponding eigenvalues satisfying $|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_m| \geq 0$.

- Then one can write:

$$\begin{aligned} v^{(k)} &= c_k A^k v^{(0)} \\ &= c_k \lambda_1^k (a_1 q_1 + a_2 (\lambda_2 / \lambda_1)^k q_2 + \dots + a_m (\lambda_m / \lambda_1)^k q_m) \end{aligned}$$

- In the limit $k \rightarrow \infty$,

$$||v^{(k)} - (\pm q_1)|| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \quad |\lambda^{(k)} - \lambda_1| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$$

- For any μ that is not an eigenvalue of A , the eigenvectors of $(A - \mu I)^{-1}$ has the same eigenvectors as A and the corresponding eigenvalues are $(\lambda_j - \mu)^{-1}$.

- For any μ that is not an eigenvalue of A , the eigenvectors of $(A - \mu I)^{-1}$ has the same eigenvectors as A and the corresponding eigenvalues are $(\lambda_j - \mu)^{-1}$.
- Then by a judicious choice of μ close to λ_J , $(\lambda_J - \mu)^{-1}$ can be made much larger for $j \neq J$.

- For any μ that is not an eigenvalue of A , the eigenvectors of $(A - \mu I)^{-1}$ has the same eigenvectors as A and the corresponding eigenvalues are $(\lambda_j - \mu)^{-1}$.
- Then by a judicious choice of μ close to λ_J , $(\lambda_J - \mu)^{-1}$ can be made much larger for $j \neq J$.
- Applying the power iteration should converge to q_J .

- For any μ that is not an eigenvalue of A , the eigenvectors of $(A - \mu I)^{-1}$ has the same eigenvectors as A and the corresponding eigenvalues are $(\lambda_j - \mu)^{-1}$.
- Then by a judicious choice of μ close to λ_J , $(\lambda_J - \mu)^{-1}$ can be made much larger for $j \neq J$.
- Applying the power iteration should converge to q_J .

Algorithm 6 Inverse Iteration

- 1: $v^{(0)}$ = some vector with $\|v^{(0)}\| = 1$
- 2: **for** $k = 1, 2, \dots$ **do**
- 3: Solve $(A - \mu I)w = v^{(k-1)}$ for w
- 4: $v^{(k)} = w/\|w\|$
- 5: $\lambda_k = (v^{(k)})^T A v^{(k)}$
- 6: **end for**

- The Rayleigh Quotient is a method for obtaining eigenvalue from and eigenvector estimate while the Inverse iteration obtains an eigenvector from estimate of the eigenvalue.

- The Rayleigh Quotient is a method for obtaining eigenvalue from and eigenvector estimate while the Inverse iteration obtains an eigenvector from estimate of the eigenvalue.
- In this algorithm, one combines the two:

Algorithm 8 Rayleigh quotient Iteration

- 1: $v^{(0)}$ = some vector with $\|v^{(0)}\| = 1$
- 2: $\lambda^{(0)} = (v^{(0)})^T A v^{(0)}$
- 3: **for** $k = 1, 2, \dots$ **do**
- 4: Solve $(A - \lambda^{(k-1)} I)w = v^{(k-1)}$ for w
- 5: $v^{(k)} = w/\|w\|$
- 6: $\lambda^{(k)} = (v^{(k)})^T A v^{(k)}$
- 7: **end for**

- Iterative methods are based on projecting an m -dimensional problem into a lower dimensional Krylov subspace.

- Iterative methods are based on projecting an m —dimensional problem into a lower dimensional Krylov subspace.
- Given a matrix A and a vector b , the associated sequence of vectors:

$$b, Ab, A^2b, A^3b \dots$$

is called Krylov sequence or Krylov subspace.

- For a matrix A , a complete reduction into Hessenberg form by an orthogonality transformation:

$$AQ = QH$$

is out of question if m is large.

- For a matrix A , a complete reduction into Hessenberg form by an orthogonality transformation:

$$AQ = QH$$

is out of question if m is large.

- Instead consider the first n columns of the above factorization.

- For a matrix A , a complete reduction into Hessenberg form by an orthogonality transformation:

$$AQ = QH$$

is out of question if m is large.

- Instead consider the first n columns of the above factorization.
- Let Q_n be a $m \times n$ matrix whose columns are the first columns of Q :

$$\left[\begin{array}{c|c|c|c} q_1 & q_2 & \dots & q_n \end{array} \right]$$

Algorithm 9 Arnoldi Iteration

```
1:  $b = \text{some vector with } q_1 = b/\|b\|$ 
2: for  $n = 1, 2, 3, \dots$  do
3:    $v = Aq_n$ 
4:   for  $j = 1$  to  $n$  do
5:      $h_{jn} = q_j^* v$ 
6:      $v = v - h_{nj} q_j$ 
7:   end for
8:    $h_{n+1,n} = \|v\|$ 
9:    $q_{n+1} = v/h_{n+1,n}$ 
10: end for
```

The Arnoldi process can be described as a systematic construction of orthonormal bases using successive Krylov subspaces – done using the Gram-Schmidt orthogonalization procedure.

$$K_n = Q_n R_n$$

Arnoldi Iteration

Let H_n be the (upper Hessenberg) matrix formed by the numbers $h_{j,k}$ computed by the algorithm:

$$H_n = \begin{bmatrix} h_{1,1} & h_{1,2} & h_{1,3} & \cdots & h_{1,n} \\ h_{2,1} & h_{2,2} & h_{2,3} & \cdots & h_{2,n} \\ 0 & h_{3,2} & h_{3,3} & \cdots & h_{3,n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & h_{n,n-1} & h_{n,n} \end{bmatrix}.$$

We then have

$$H_n = Q_n^* A Q_n.$$

This yields an alternative interpretation of the Arnoldi iteration as a (partial) orthogonal reduction of A to Hessenberg form. The matrix H_n can be viewed as the representation in the basis formed by the Arnoldi vectors of the orthogonal projection of A onto the Krylov subspace.

- Let \tilde{H}_n be the $(n + 1) \times n$ upper-left section of H ,

$$\tilde{H}_n = \begin{bmatrix} h_{11} & & \cdots & & h_{1n} \\ h_{21} & h_{22} & & & \\ & \ddots & \ddots & & \vdots \\ & & & h_{n,n-1} & h_{n,n} \\ & & & & h_{n+1,n} \end{bmatrix}$$

- Let \tilde{H}_n be the $(n + 1) \times n$ upper-left section of H ,

$$\tilde{H}_n = \begin{bmatrix} h_{11} & & \cdots & h_{1n} \\ h_{21} & h_{22} & & \\ & \ddots & \ddots & \vdots \\ & & h_{n,n-1} & h_{n,n} \\ & & & h_{n+1,n} \end{bmatrix}$$

- Then we have

$$AQ_n = Q_{n+1}\tilde{H}_n$$

- Let \tilde{H}_n be the $(n + 1) \times n$ upper-left section of H ,

$$\tilde{H}_n = \begin{bmatrix} h_{11} & \cdots & & h_{1n} \\ h_{21} & h_{22} & & \\ \ddots & \ddots & \ddots & \vdots \\ & & h_{n,n-1} & h_{n,n} \\ & & & h_{n+1,n} \end{bmatrix}$$

- Then we have

$$AQ_n = Q_{n+1}\tilde{H}_n$$

- The n^{th} column of this equation:

$$Aq_n = h_{1n}q_1 + \cdots + h_{nn}q_n + h_{n+1,n}q_{n+1}$$

This indicates that $q_{(n+1)}$, satisfies an $(n + 1)$ term recurrence relation involving itself and previous Krylov subspace vectors.

- Let \tilde{H}_n be the $(n + 1) \times n$ upper-left section of H ,

$$\tilde{H}_n = \begin{bmatrix} h_{11} & & \cdots & & h_{1n} \\ h_{21} & h_{22} & & & \\ & \ddots & \ddots & & \vdots \\ & & & h_{n,n-1} & h_{n,n} \\ & & & & h_{n+1,n} \end{bmatrix}$$

- Then we have

$$AQ_n = Q_{n+1}\tilde{H}_n$$

- The n^{th} column of this equation:

$$Aq_n = h_{1n}q_1 + \cdots + h_{nn}q_n + h_{n+1,n}q_{n+1}$$

This indicates that $q_{(n+1)}$, satisfies an $(n + 1)$ term recurrence relation involving itself and previous Krylov subspace vectors.

- Arnoldi iteration is simply the modified Gram-Schmidt iteration that implements the above equation.

- To find the eigenvalues of A , one expects that since H_n is a projection of A , eigenvalues of H_n must be related to that of A .

- To find the eigenvalues of A , one expects that since H_n is a projection of A , eigenvalues of H_n must be related to that of A .
- These eigenvalues are called the Ritz value or Arnoldi eigenvalue estimates.

- For a symmetric matrix, since the matrix, H_n is both Hessenberg and symmetric – It just becomes a triangular matrix.

- For a symmetric matrix, since the matrix, H_n is both Hessenberg and symmetric – It just becomes a triangular matrix.
- Again just like Arnoldi, we find the eigenvalues of this triangular matrix.

- For a symmetric matrix, since the matrix, H_n is both Hessenberg and symmetric – It just becomes a triangular matrix.
- Again just like Arnoldi, we find the eigenvalues of this triangular matrix.
- This leads to a three term recurrence relation.

- For a symmetric matrix, since the matrix, H_n is both Hessenberg and symmetric – It just becomes a triangular matrix.
- Again just like Arnoldi, we find the eigenvalues of this triangular matrix.
- This leads to a three term recurrence relation.

Algorithm 13 Lanczos Iteration

- 1: $\beta_0 = 0, q_0 = 0, b = \text{some vector with } q_1 = b/\|b\|$
- 2: **for** $n = 1, 2, 3, \dots$ **do**
- 3: $v = Aq_n$
- 4: $\alpha_n = q_n^T v$
- 5: $v = v - \beta_{n-1}q_{n-1} - \alpha_n q_n$
- 6: $\beta_n = \|v\|$
- 7: $q_{n+1} = v/\beta_n$
- 8: **end for**