Numerical Linear Algebra

m SVD Decomposition.
m Schur factorization.
m Eigenvalue finding.
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Singular Value Decomposition

m Singular Value Decomposition (SVD) is the generalization
of the eigendecomposition of a positive semidefinite
normal matrix to any m X n matrix.
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where U is m X m a unitary matrix, X is a m X n
rectangular diagonal matrix with non-negative real
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Singular Value Decomposition

m Singular Value Decomposition (SVD) is the generalization
of the eigendecomposition of a positive semidefinite
normal matrix to any m X n matrix.

m It is a factorization of a matrix M into:
M=UXV"*

where U is m X m a unitary matrix, X is a m X n
rectangular diagonal matrix with non-negative real
numbers on the diagonal and V' is a n x n unitary matrix.

m The diagonal entries o; of ¥ are known as the singular
values of M . The columns of U and the columns of V
are called the left-singular vectors and right-singular
vectors of M, respectively.
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Physical meaning of SVD
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Singular Value decomposition

m The left-singular vectors of M are a set of orthonormal
eigenvectors of M M*.
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Singular Value decomposition

m The left-singular vectors of M are a set of orthonormal
eigenvectors of M M*.

m The right-singular vectors of M are a set of orthonormal
eigenvectors of M*M.

m The non-zero singular values of M (found on the diagonal
entries of 3J) are the square roots of the non-zero
eigenvalues of both M*M and M M*.
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Rank, Null space and Range

m The right-singular vectors corresponding to vanishing
singular values of M span the null space of M
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m The right-singular vectors corresponding to vanishing
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Rank, Null space and Range

m The right-singular vectors corresponding to vanishing
singular values of M span the null space of M

m The left-singular vectors corresponding to the non-zero
singular values of M span the range of M.

m The rank of M equals the number of non-zero singular
values which is the same as the number of non-zero
diagonal elements in X.
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SVD and eigen decomposition

m Eigenvalue decomposition of a square matrix:
A=XAX"!

where A is a diagonal matrix and X contains linearly
independent eigenvectors of A.
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SVD and eigen decomposition

m Eigenvalue decomposition of a square matrix:
A=XAX"!

where A is a diagonal matrix and X contains linearly
independent eigenvectors of A.

m SVD is the generalization of eigen decomposition to
rectangular matrices.

m SVD uses two bases (left and right singular vectors) while
eigenvalue decomposition uses only one (just the
eigenvectors).

m In applications, SVD is relevant for problems involving the
matrix itself where as eigen decomposition is useful to
compute iterated forms of the matrix — such as matrix
powers or exponentials etc.
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Schur Factorization

m One final factorization:

A=QTQ*

where () is unitary and T is upper-triangular.
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where () is unitary and T is upper-triangular.

m Since A and T are similar, eigenvalues of A neccesarily
appear on the diagonal of T'.
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Schur Factorization

m One final factorization:

A=QTQ*

where () is unitary and T is upper-triangular.

m Since A and T are similar, eigenvalues of A neccesarily
appear on the diagonal of T'.

m Diagonalization algorithms use this factorization.
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Diagonalization and Schur Factorization

m Any eigenvalue solver has to be iterative!
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Diagonalization and Schur Factorization

m Any eigenvalue solver has to be iterative!

m Most of the general purpose eigenvalue algorithms
proceed by computing the Schur factorization:

Qo QRAQQ - Q;
¥ 7

converges to an upper triangular matrix 7" as j — oo.
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Two phases of eigenvalue computations

m Whether or not A is hermitian, the sequence is usually
split into two phases — first a direct method is applied to
produce a upper-Hessenberg matrix H, that is, a matrix
with zeros below the first subdiagonal.
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Two phases of eigenvalue computations

m Whether or not A is hermitian, the sequence is usually
split into two phases — first a direct method is applied to
produce a upper-Hessenberg matrix H, that is, a matrix
with zeros below the first subdiagonal.

m In the second phase, an iteration is used to generate a
formally infinite sequence of Hessenberg matrices that

converge to a triangular form.
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Reduction to Hessenberg/Tridiagonal form

m Use Householder reflectors to introduce zeros, but leave
the first row as it is!
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Reduction to Hessenberg/Tridiagonal form

m Use Householder reflectors to introduce zeros, but leave
the first row as it is!

m Upon applying with Q1 on the right, it will not destroy
the zeroes that you have!
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Householder reduction to Hessenberg Form

The following algorithm computes the Householder reduction
of A to Hessenberg form:

Algorithm 1 Householder reduction to Hessenberg form
1. fork=1tom—2do
22 = Aprtmpk
3 v = sign(x)||z||2e1 + x
4 v = v/ |vkll2
5 Ak—l—l:m,k:n = Ak+1:m,k:n - ZUk(U;;Ak—I—l:m,k:n)
6:
7

: Al:m,kJrl:n = Al:m,kJrl:n - 2vk(UZA1:m,k+1:n)
: end for
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Householder reduction to Tridiagonal form

m Reduces a symmetric/hermitian matrix to tridiagonal
form.
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Householder reduction to Tridiagonal form

m Reduces a symmetric/hermitian matrix to tridiagonal
form.

m Work done ~ 2m*Flops
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