
Numerical Linear Algebra

SVD Decomposition.
Schur factorization.
Eigenvalue finding.
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Singular Value Decomposition

Singular Value Decomposition (SVD) is the generalization
of the eigendecomposition of a positive semidefinite
normal matrix to any m× n matrix.

It is a factorization of a matrix M into:

M = UΣV ∗

where U is m×m a unitary matrix, Σ is a m× n
rectangular diagonal matrix with non-negative real
numbers on the diagonal and V is a n× n unitary matrix.
The diagonal entries σi of Σ are known as the singular
values of M . The columns of U and the columns of V
are called the left-singular vectors and right-singular
vectors of M , respectively.
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Physical meaning of SVD
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Singular Value decomposition

The left-singular vectors of M are a set of orthonormal
eigenvectors of MM∗.

The right-singular vectors of M are a set of orthonormal
eigenvectors of M∗M .
The non-zero singular values of M (found on the diagonal
entries of Σ) are the square roots of the non-zero
eigenvalues of both M∗M and MM∗.
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Rank, Null space and Range

The right-singular vectors corresponding to vanishing
singular values of M span the null space of M

The left-singular vectors corresponding to the non-zero
singular values of M span the range of M .
The rank of M equals the number of non-zero singular
values which is the same as the number of non-zero
diagonal elements in Σ.
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SVD and eigen decomposition

Eigenvalue decomposition of a square matrix:

A = XΛX−1

where Λ is a diagonal matrix and X contains linearly
independent eigenvectors of A.

SVD is the generalization of eigen decomposition to
rectangular matrices.
SVD uses two bases (left and right singular vectors) while
eigenvalue decomposition uses only one (just the
eigenvectors).
In applications, SVD is relevant for problems involving the
matrix itself where as eigen decomposition is useful to
compute iterated forms of the matrix – such as matrix
powers or exponentials etc.
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Schur Factorization

One final factorization:

A = QTQ∗

where Q is unitary and T is upper-triangular.

Since A and T are similar, eigenvalues of A neccesarily
appear on the diagonal of T .
Diagonalization algorithms use this factorization.
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Diagonalization and Schur Factorization

Any eigenvalue solver has to be iterative!

Most of the general purpose eigenvalue algorithms
proceed by computing the Schur factorization:

Q∗
j · · ·Q∗

2Q
∗
1︸ ︷︷ ︸

Q∗

AQ1Q2 · · ·Qj︸ ︷︷ ︸
Q

converges to an upper triangular matrix T as j →∞.
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Two phases of eigenvalue computations

Whether or not A is hermitian, the sequence is usually
split into two phases – first a direct method is applied to
produce a upper-Hessenberg matrix H, that is, a matrix
with zeros below the first subdiagonal.

In the second phase, an iteration is used to generate a
formally infinite sequence of Hessenberg matrices that
converge to a triangular form.

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 Phase1−−−−→


× × × × ×
× × × × ×
× × × ×
× × ×
× ×



Phase2−−−−→


× × × × ×
× × × ×
× × ×
× ×
×


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Reduction to Hessenberg/Tridiagonal form

Use Householder reflectors to introduce zeros, but leave
the first row as it is!

Upon applying with Q1 on the right, it will not destroy
the zeroes that you have!

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
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Householder reduction to Hessenberg Form

The following algorithm computes the Householder reduction
of A to Hessenberg form:

Algorithm 1 Householder reduction to Hessenberg form
1: for k = 1 to m− 2 do
2: x = Ak+1:m,k

3: vk = sign(x1)||x||2e1 + x
4: vk = vk/||vk||2
5: Ak+1:m,k:n = Ak+1:m,k:n − 2vk(v

∗
kAk+1:m,k:n)

6: A1:m,k+1:n = A1:m,k+1:n − 2vk(v
∗
kA1:m,k+1:n)

7: end for
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Householder reduction to Tridiagonal form

Reduces a symmetric/hermitian matrix to tridiagonal
form.

Work done ∼ 4
3
m3Flops
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