

- LU Decomposition.
- Partial and Full Pivoting.
- Cholesky Decomposition.

- Gaussian Elimination/LU decomposition transforms a full linear system into an upper-triangular one by applying simple linear transformations to the left.

- Gaussian Elimination/LU decomposition transforms a full linear system into an upper-triangular one by applying simple linear transformations to the left.
- It is similar to Householder triangularization – the difference is that the transformations applied are not unitary.

- Gaussian Elimination/LU decomposition transforms a full linear system into an upper-triangular one by applying simple linear transformations to the left.
- It is similar to Householder triangularization – the difference is that the transformations applied are not unitary.
- This is done by subtracting multiples of each row from subsequent rows!

- Gaussian Elimination/LU decomposition transforms a full linear system into an upper-triangular one by applying simple linear transformations to the left.
- It is similar to Householder triangularization – the difference is that the transformations applied are not unitary.
- This is done by subtracting multiples of each row from subsequent rows!
- This elimination method is equivalent to multiplying A by a sequence of lower-triangular matrices L_k on the left:

$$\underbrace{L_{m-1} \cdots L_2 L_1}_{L^{-1}} A = U$$

- Gaussian Elimination/LU decomposition transforms a full linear system into an upper-triangular one by applying simple linear transformations to the left.
- It is similar to Householder triangularization – the difference is that the transformations applied are not unitary.
- This is done by subtracting multiples of each row from subsequent rows!
- This elimination method is equivalent to multiplying A by a sequence of lower-triangular matrices L_k on the left:

$$\underbrace{L_{m-1} \cdots L_2 L_1}_{L^{-1}} A = U$$

- Setting $L = L_1^{-1} L_2^{-1} \cdots L_{m-1}^{-1}$ gives

$$A = LU$$

Gaussian Elimination

- The matrix L_k are chosen such that it introduces zeros below the diagonal in the k th column by subtracting multiples of row k from rows $k + 1, \dots, m$.

- The matrix L_k are chosen such that it introduces zeros below the diagonal in the k th column by subtracting multiples of row k from rows $k + 1, \dots, m$.
- As the first $k - 1$ entries are already zero, this operation does not destroy any zeroes previously obtained.

Gaussian Elimination

- The matrix L_k are chosen such that it introduces zeros below the diagonal in the k th column by subtracting multiples of row k from rows $k + 1, \dots, m$.
- As the first $k - 1$ entries are already zero, this operation does not destroy any zeroes previously obtained.
- For example, in the 4×4 case, the zeroes are introduced in the following way:

$$\begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & \times & \times & \times \end{bmatrix} \xrightarrow{L_1} \begin{bmatrix} \times & \times & \times & \times \\ \mathbf{0} & \times & \times & \times \\ \mathbf{0} & \times & \times & \times \\ \mathbf{0} & \times & \times & \times \end{bmatrix} \xrightarrow{L_2} \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ \mathbf{0} & \times & \times & \times \\ \mathbf{0} & \times & \times & \times \end{bmatrix}$$
$$\xrightarrow{L_3} \begin{bmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & \times & \times & \times \\ \mathbf{0} & \times & \times & \times \end{bmatrix}$$

- Gram-Schmidt: $A = QR$ by triangular orthogonalization.
- Householder: $A = QR$ by orthogonal triangularization.
- Gaussian Elimination: $A = LU$ by triangular triangularization.

LU Decomposition

- Consider an $m \times m$ matrix. Suppose x_k denotes the k th column of the matrix beginning at step k . Then L_k must be chosen such that:

$$x_k = \begin{bmatrix} x_{1k} \\ \vdots \\ x_{kk} \\ x_{k+1,k} \\ \vdots \\ x_{mk} \end{bmatrix} \xrightarrow{L_k} L_k x_k = \begin{bmatrix} x_{1k} \\ \vdots \\ x_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

LU Decomposition

- Consider an $m \times m$ matrix. Suppose x_k denotes the k th column of the matrix beginning at step k . Then L_k must be chosen such that:

$$x_k = \begin{bmatrix} x_{1k} \\ \vdots \\ x_{kk} \\ x_{k+1,k} \\ \vdots \\ x_{mk} \end{bmatrix} \xrightarrow{L_k} L_k x_k = \begin{bmatrix} x_{1k} \\ \vdots \\ x_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

- To do this, we subtract l_{jk} times row k from row j :

$$l_{jk} = \frac{x_{jk}}{x_{kk}} \quad (k < j \leq m)$$

LU Decomposition

- The matrix L_k takes the form:

$$\begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & -l_{k+1,k} & 1 & \\ & & \vdots & & \ddots \\ & & -l_{mk} & & 1 \end{bmatrix}$$

LU Decomposition

- The matrix L_k takes the form:

$$\begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & -l_{k+1,k} & 1 & \\ & & \vdots & & \ddots \\ & & -l_{mk} & & 1 \end{bmatrix}$$

- Define l_k as:

$$l_k = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ l_{k+1,k} \\ \vdots \\ l_{mk} \end{bmatrix}$$

- Then $L_k = I - l_k e_k^*$ where e_k is the column vector with 1 in position k and 0 otherwise.

- Then $L_k = I - l_k e_k^*$ where e_k is the column vector with 1 in position k and 0 otherwise.
- One can easily check that $e_k^* l_k = 0$.

- Then $L_k = I - l_k e_k^*$ where e_k is the column vector with 1 in position k and 0 otherwise.
- One can easily check that $e_k^* l_k = 0$.
- Therefore consider:

$$(I - l_k e_k^*)(I + l_k e_k^*) = I - l_k e_k^* l_k e_k^* = I$$

That is the inverse of L_k is $I + l_k e_k^*$.

- Then $L_k = I - l_k e_k^*$ where e_k is the column vector with 1 in position k and 0 otherwise.
- One can easily check that $e_k^* l_k = 0$.
- Therefore consider:

$$(I - l_k e_k^*)(I + l_k e_k^*) = I - l_k e_k^* l_k e_k^* = I$$

That is the inverse of L_k is $I + l_k e_k^*$.

- Consider the product:

$$L_k^{-1} L_{k+1}^{-1} = (I + l_k e_k^*)(I + l_{k+1} e_{k+1}^*) = I + l_k e_k^* + l_{k+1} e_{k+1}^*$$

Thus $L_k^{-1} L_{k+1}^{-1}$ is just a lower triangular matrix with entries of both L_k^{-1} and L_{k+1}^{-1} inserted in the usual places.

LU decomposition

- As a result, we can write the full matrix L as:

$$L = L_1^{-1} L_2^{-1} \dots L_m^{-1} = \begin{bmatrix} 1 & & & & & \\ l_{21} & 1 & & & & \\ l_{31} & l_{32} & 1 & & & \\ \vdots & \vdots & \ddots & \ddots & & \\ l_{m1} & l_{m2} & \cdots & l_{m,m-1} & 1 \end{bmatrix}$$

Gaussian Elimination without Pivoting

The following algorithm computes the factor LU of A :

Algorithm 1 Gaussian Elimination without Pivoting

```
1:  $U = A, L = I$ 
2: for  $k = 1$  to  $m - 1$  do
3:   for  $j = k + 1$  to  $m$  do
4:      $l_{jk} = u_{jk}/u_{kk}$ 
5:      $u_{j,k:m} = u_{j,k:m} - l_{jk}u_{k,k:m}$ 
6:   end for
7: end for
```

The following algorithm computes the factor LU of A :

Algorithm 2 Gaussian Elimination without Pivoting

```
1:  $U = A, L = I$ 
2: for  $k = 1$  to  $m - 1$  do
3:   for  $j = k + 1$  to  $m$  do
4:      $l_{jk} = u_{jk}/u_{kk}$ 
5:      $u_{j,k:m} = u_{j,k:m} - l_{jk}u_{k,k:m}$ 
6:   end for
7: end for
```

- Work for Householder orthogonalization $\sim 2mn^2 - \frac{2}{3}n^3$

The following algorithm computes the factor LU of A :

Algorithm 3 Gaussian Elimination without Pivoting

```
1:  $U = A, L = I$ 
2: for  $k = 1$  to  $m - 1$  do
3:   for  $j = k + 1$  to  $m$  do
4:      $l_{jk} = u_{jk}/u_{kk}$ 
5:      $u_{j,k:m} = u_{j,k:m} - l_{jk}u_{k,k:m}$ 
6:   end for
7: end for
```

- Work for Householder orthogonalization $\sim 2mn^2 - \frac{2}{3}n^3$
- Work for (modified) Gram-Schmidt: $\sim 2mn^2$

The following algorithm computes the factor LU of A :

Algorithm 4 Gaussian Elimination without Pivoting

```
1:  $U = A, L = I$ 
2: for  $k = 1$  to  $m - 1$  do
3:   for  $j = k + 1$  to  $m$  do
4:      $l_{jk} = u_{jk}/u_{kk}$ 
5:      $u_{j,k:m} = u_{j,k:m} - l_{jk}u_{k,k:m}$ 
6:   end for
7: end for
```

- Work for Householder orthogonalization $\sim 2mn^2 - \frac{2}{3}n^3$
- Work for (modified) Gram-Schmidt: $\sim 2mn^2$
- Work for Gaussian elimination: $\sim \frac{2}{3}m^3$

- Gaussian elimination can become unstable/fail completely if the diagonal entries of the matrix A are very small/zero.

- Gaussian elimination can become unstable/fail completely if the diagonal entries of the matrix A are very small/zero.
- x_{kk} element plays an important role in Gaussian elimination and is called a pivot.

- Gaussian elimination can become unstable/fail completely if the diagonal entries of the matrix A are very small/zero.
- x_{kk} element plays an important role in Gaussian elimination and is called a pivot.
- If $x_{kk} = 0$ then we need a different (modified) algorithm. Even if $x_{kk} \neq 0$, but is small, there is a need for a more stable method.

- Gaussian elimination can become unstable/fail completely if the diagonal entries of the matrix A are very small/zero.
- x_{kk} element plays an important role in Gaussian elimination and is called a pivot.
- If $x_{kk} = 0$ then we need a different (modified) algorithm. Even if $x_{kk} \neq 0$, but is small, there is a need for a more stable method.
- In principle, there is no need to pick only x_{kk} as the pivot. In principle, we can use any element of $X_{k:m,k:m}$ as the pivot!

- Gaussian elimination can become unstable/fail completely if the diagonal entries of the matrix A are very small/zero.
- x_{kk} element plays an important role in Gaussian elimination and is called a pivot.
- If $x_{kk} = 0$ then we need a different (modified) algorithm. Even if $x_{kk} \neq 0$, but is small, there is a need for a more stable method.
- In principle, there is no need to pick only x_{kk} as the pivot. In principle, we can use any element of $X_{k:m,k:m}$ as the pivot!
- We can interchange columns/rows among themselves to bring a large number to the diagonal – rather than work with a smaller number.

- Gaussian elimination can become unstable/fail completely if the diagonal entries of the matrix A are very small/zero.
- x_{kk} element plays an important role in Gaussian elimination and is called a pivot.
- If $x_{kk} = 0$ then we need a different (modified) algorithm. Even if $x_{kk} \neq 0$, but is small, there is a need for a more stable method.
- In principle, there is no need to pick only x_{kk} as the pivot. In principle, we can use any element of $X_{k:m,k:m}$ as the pivot!
- We can interchange columns/rows among themselves to bring a large number to the diagonal – rather than work with a smaller number.
- This is crucial for stability of the algorithm.

- If any element of $X_{k:m,k:m}$ can be considered a pivot, then searching for the largest number will cost $\mathcal{O}(m - k)^2$ flops per step – overall cost for m steps $\mathcal{O}(m^3)$.

- If any element of $X_{k:m,k:m}$ can be considered a pivot, then searching for the largest number will cost $\mathcal{O}(m - k)^2$ flops per step – overall cost for m steps $\mathcal{O}(m^3)$.
- This strategy – is expensive and called complete pivoting.

- If any element of $X_{k:m,k:m}$ can be considered a pivot, then searching for the largest number will cost $\mathcal{O}(m - k)^2$ flops per step – overall cost for m steps $\mathcal{O}(m^3)$.
- This strategy – is expensive and called complete pivoting.
- In practice, equally good pivots can be found by choosing the largest element from $(m - k + 1)$ subdiagonal entries in column k . This can be achieved in $\mathcal{O}(m - k)$ operations and overall cost for finding the pivot is $\mathcal{O}(m^2)$.

- If any element of $X_{k:m,k:m}$ can be considered a pivot, then searching for the largest number will cost $\mathcal{O}(m - k)^2$ flops per step – overall cost for m steps $\mathcal{O}(m^3)$.
- This strategy – is expensive and called complete pivoting.
- In practice, equally good pivots can be found by choosing the largest element from $(m - k + 1)$ subdiagonal entries in column k . This can be achieved in $\mathcal{O}(m - k)$ operations and overall cost for finding the pivot is $\mathcal{O}(m^2)$.
- Then only rows are interchanged and it is called partial pivoting.

- If any element of $X_{k:m,k:m}$ can be considered a pivot, then searching for the largest number will cost $\mathcal{O}(m - k)^2$ flops per step – overall cost for m steps $\mathcal{O}(m^3)$.
- This strategy – is expensive and called complete pivoting.
- In practice, equally good pivots can be found by choosing the largest element from $(m - k + 1)$ subdiagonal entries in column k . This can be achieved in $\mathcal{O}(m - k)$ operations and overall cost for finding the pivot is $\mathcal{O}(m^2)$.
- Then only rows are interchanged and it is called partial pivoting.
- The interchange of rows can be represented by the application of the Permutation operator.

Partial Pivoting

- This can be visualized as:

$$\begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ \mathbf{x}_{ik} & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \end{bmatrix} \xrightarrow{P_1} \begin{bmatrix} \times & \times & \times & \times & \times \\ \mathbf{x}_{ik} & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \end{bmatrix}$$
$$\xrightarrow{L_1} \begin{bmatrix} \times & \times & \times & \times & \times \\ \mathbf{x}_{ik} & \times & \times & \times & \times \\ \mathbf{0} & \times & \times & \times & \times \\ \mathbf{0} & \times & \times & \times & \times \\ \mathbf{0} & \times & \times & \times & \times \end{bmatrix}$$

Partial Pivoting

- This can be visualized as:

$$\begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ \mathbf{x}_{ik} & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \end{bmatrix} \xrightarrow{P_1} \begin{bmatrix} \times & \times & \times & \times & \times \\ \mathbf{x}_{ik} & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \end{bmatrix}$$
$$\xrightarrow{L_1} \begin{bmatrix} \times & \times & \times & \times & \times \\ \mathbf{x}_{ik} & \times & \times & \times & \times \\ \mathbf{0} & \times & \times & \times & \times \\ \mathbf{0} & \times & \times & \times & \times \\ \mathbf{0} & \times & \times & \times & \times \end{bmatrix}$$

- Then the upper triangular matrix can be:

$$L_{m-1}P_{m-1} \cdots L_2P_2L_2P_1A = U$$

- Consider the following definition:

$$L'_k = P_{m-1} \dots P_{k+1} L_k P_{k+1}^{-1} \dots P_{m-1}^{-1}$$

- Consider the following definition:

$$L'_k = P_{m-1} \dots P_{k+1} L_k P_{k+1}^{-1} \dots P_{m-1}^{-1}$$

- Then:

$$\begin{aligned} U &= L_{m-1} P_{m-1} \dots L_2 P_2 L_2 P_1 A \\ &= (L'_{m-1} \dots L'_2 L'_1) (P_{m-1} \dots P_2 P_1) A \end{aligned}$$

- Consider the following definition:

$$L'_k = P_{m-1} \dots P_{k+1} L_k P_{k+1}^{-1} \dots P_{m-1}^{-1}$$

- Then:

$$\begin{aligned} U &= L_{m-1} P_{m-1} \dots L_2 P_2 L_2 P_1 A \\ &= (L'_{m-1} \dots L'_2 L'_1) (P_{m-1} \dots P_2 P_1) A \end{aligned}$$

- Equivalent to solving $PA = LU$.

Gaussian Elimination with partial Pivoting

The following algorithm computes the factor LU of A :

Algorithm 5 Gaussian Elimination with Partial Pivoting

- 1: $U = A, L = I, P = 1$
- 2: **for** $k = 1$ to $m - 1$ **do**
- 3: Select $i \geq k$ to maximize $|u_{ik}|$
- 4: $u_{k,k:m} \leftrightarrow u_{i,k:m}$
- 5: $l_{k,k-1} \leftrightarrow l_{i,1:k-1}$
- 6: $p_{k,:} \leftrightarrow p_{i,:}$
- 7: **for** $j = k + 1$ to m **do**
- 8: $l_{jk} = u_{jk}/u_{kk}$
- 9: $u_{j,k:m} = u_{j,k:m} - l_{jk}u_{k,k:m}$
- 10: **end for**
- 11: **end for**

- Hermitian positive definite matrices can be decomposed into triangular factors twice as quickly as general matrices.

- Hermitian positive definite matrices can be decomposed into triangular factors twice as quickly as general matrices.
- The standard algorithm for this is the Cholesky factorization, which is a variant of Gaussian elimination that operates on left and right of the matrix at once.

- Hermitian positive definite matrices can be decomposed into triangular factors twice as quickly as general matrices.
- The standard algorithm for this is the Cholesky factorization, which is a variant of Gaussian elimination that operates on left and right of the matrix at once.
- For a complex matrix $A \in \mathbb{C}^{m \times m}$, Hermitian matrices are $A = A^*$.

- Hermitian positive definite matrices can be decomposed into triangular factors twice as quickly as general matrices.
- The standard algorithm for this is the Cholesky factorization, which is a variant of Gaussian elimination that operates on left and right of the matrix at once.
- For a complex matrix $A \in \mathbb{C}^{m \times m}$, Hermitian matrices are $A = A^*$.
- A Hermitian matrix is positive definite iff for any $x \in \mathbb{C}^m$, $x^*Ax > 0$. The eigenvalues of Hermitian positive definite matrix are always positive and real.

Cholesky decomposition

- Consider what happens if we apply a single step of Gaussian elimination to a Hermitian matrix A with 1 in the upper left position:

$$A = \begin{bmatrix} 1 & w^* \\ w & K \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ w & I \end{bmatrix} \begin{bmatrix} 1 & w^* \\ 0 & K - ww^* \end{bmatrix}$$

- Consider what happens if we apply a single step of Gaussian elimination to a Hermitian matrix A with 1 in the upper left position:

$$A = \begin{bmatrix} 1 & w^* \\ w & K \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ w & I \end{bmatrix} \begin{bmatrix} 1 & w^* \\ 0 & K - ww^* \end{bmatrix}$$

- Gaussian elimination would now proceed with introducing zeros in the next column. However, in Cholesky factorization, they are introduced in the first row to keep the hermiticity of the matrix.

$$\begin{bmatrix} 1 & w^* \\ 0 & K - ww^* \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & K - ww^* \end{bmatrix} \begin{bmatrix} 1 & w^* \\ 0 & I \end{bmatrix}$$

- Combining the two steps:

$$A = \begin{bmatrix} 1 & w^* \\ w & K \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ w & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - ww^* \end{bmatrix} \begin{bmatrix} 1 & w^* \\ 0 & I \end{bmatrix}$$

- Combining the two steps:

$$A = \begin{bmatrix} 1 & w^* \\ w & K \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ w & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - ww^* \end{bmatrix} \begin{bmatrix} 1 & w^* \\ 0 & I \end{bmatrix}$$

- The idea of Cholesky decomposition is to continue this process till the matrix is reduced to identity!

- Combining the two steps:

$$A = \begin{bmatrix} 1 & w^* \\ w & K \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ w & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - ww^* \end{bmatrix} \begin{bmatrix} 1 & w^* \\ 0 & I \end{bmatrix}$$

- The idea of Cholesky decomposition is to continue this process till the matrix is reduced to identity!
- In general, we need this to work for any $a_{11} > 0$. The generalization of this achieved by adjusting the algorithm and introducing $\alpha = \sqrt{a_{11}}$

$$\begin{aligned} A &= \begin{bmatrix} a_{11} & w^* \\ w & K \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ w/\alpha & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - ww^*/a_{11} \end{bmatrix} \begin{bmatrix} \alpha & w^*/\alpha \\ 0 & I \end{bmatrix} \\ &= R_1^* A_1 R_1 \end{aligned}$$

- If the upper left entry of the submatrix $K - ww^*/a_{11}$ is positive, the process can be continued further:

$$\begin{aligned} A &= \underbrace{R_1^* R_2^* \cdots R_m^*}_{R^*} \underbrace{R_m \cdots R_2 R_1}_R \\ &= R^* R \quad r_{jj} > 0 \end{aligned}$$

where R is upper triangular.

- If the upper left entry of the submatrix $K - ww^*/a_{11}$ is positive, the process can be continued further:

$$\begin{aligned} A &= \underbrace{R_1^* R_2^* \cdots R_m^*}_{R^*} \underbrace{R_m \cdots R_2 R_1}_R \\ &= R^* R \quad r_{jj} > 0 \end{aligned}$$

where R is upper triangular.

- The only thing left hanging is that how do we know that the upper left entry of $K - ww^*/a_{11}$ is positive? It has to be because, $K - ww^*/a_{11}$ is positive definite as it is the principle submatrix of the positive definite matrix $R_1^{-*} A R_1^{-1}$.

The following algorithm computes the factor R^*R of complex Hermitian A :

Algorithm 6 Cholesky factorization

```
1:  $R = A$ 
2: for  $k = 1$  to  $m$  do
3:   for  $j = k + 1$  to  $m$  do
4:      $R_{j,j:m} = R_{j,j:m} - R_{k,j:m} \overline{R_{kj}} / R_{kk}$ 
5:   end for
6:    $R_{k,k:m} = R_{k,k:m} / \sqrt{R_{kk}}$ 
7: end for
```

The following algorithm computes the factor R^*R of complex Hermitian A :

Algorithm 7 Cholesky factorization

```
1:  $R = A$ 
2: for  $k = 1$  to  $m$  do
3:   for  $j = k + 1$  to  $m$  do
4:      $R_{j,j:m} = R_{j,j:m} - R_{k,j:m} \overline{R_{kj}} / R_{kk}$ 
5:   end for
6:    $R_{k,k:m} = R_{k,k:m} / \sqrt{R_{kk}}$ 
7: end for
```

- Work for Householder orthogonalization $\sim 2mn^2 - \frac{2}{3}n^3$

Cholesky decomposition

The following algorithm computes the factor R^*R of complex Hermitian A :

Algorithm 8 Cholesky factorization

```
1:  $R = A$ 
2: for  $k = 1$  to  $m$  do
3:   for  $j = k + 1$  to  $m$  do
4:      $R_{j,j:m} = R_{j,j:m} - R_{k,j:m} \overline{R_{kj}} / R_{kk}$ 
5:   end for
6:    $R_{k,k:m} = R_{k,k:m} / \sqrt{R_{kk}}$ 
7: end for
```

- Work for Householder orthogonalization $\sim 2mn^2 - \frac{2}{3}n^3$
- Work for (modified) Gram-Schmidt: $\sim 2mn^2$

Cholesky decomposition

The following algorithm computes the factor R^*R of complex Hermitian A :

Algorithm 9 Cholesky factorization

```
1:  $R = A$ 
2: for  $k = 1$  to  $m$  do
3:   for  $j = k + 1$  to  $m$  do
4:      $R_{j,j:m} = R_{j,j:m} - R_{k,j:m} \overline{R_{kj}} / R_{kk}$ 
5:   end for
6:    $R_{k,k:m} = R_{k,k:m} / \sqrt{R_{kk}}$ 
7: end for
```

- Work for Householder orthogonalization $\sim 2mn^2 - \frac{2}{3}n^3$
- Work for (modified) Gram-Schmidt: $\sim 2mn^2$
- Work for Gaussian elimination: $\sim \frac{2}{3}m^3$

Cholesky decomposition

The following algorithm computes the factor R^*R of complex Hermitian A :

Algorithm 10 Cholesky factorization

```
1:  $R = A$ 
2: for  $k = 1$  to  $m$  do
3:   for  $j = k + 1$  to  $m$  do
4:      $R_{j,j:m} = R_{j,j:m} - R_{k,j:m} \overline{R_{kj}} / R_{kk}$ 
5:   end for
6:    $R_{k,k:m} = R_{k,k:m} / \sqrt{R_{kk}}$ 
7: end for
```

- Work for Householder orthogonalization $\sim 2mn^2 - \frac{2}{3}n^3$
- Work for (modified) Gram-Schmidt: $\sim 2mn^2$
- Work for Gaussian elimination: $\sim \frac{2}{3}m^3$
- Work for Cholesky factorization: $\sim \frac{1}{3}m^3$