
Numerical Linear Algebra

LU Decomposition.
Partial and Full Pivoting.
Cholesky Decomposition.

1/19

Gaussian Elimination

Gaussian Elimination/LU decomposition transforms a full
linear system into an upper-triangular one by applying
simple linear transformations to the left.

It is similar to Householder triangularization – the
difference is that the transformations applied are not
unitary.
This is done by subtracting multiples of each row from
subsequent rows!
This elimination method is equivalent to multiplying A by
a sequence of lower-triangular matrices Lk on the left:

Lm−1 · · ·L2L1︸ ︷︷ ︸
L−1

A = U

Setting L = L−11 L−12 · · ·L−1m−1 gives

A = LU

2/19

Gaussian Elimination

Gaussian Elimination/LU decomposition transforms a full
linear system into an upper-triangular one by applying
simple linear transformations to the left.
It is similar to Householder triangularization – the
difference is that the transformations applied are not
unitary.

This is done by subtracting multiples of each row from
subsequent rows!
This elimination method is equivalent to multiplying A by
a sequence of lower-triangular matrices Lk on the left:

Lm−1 · · ·L2L1︸ ︷︷ ︸
L−1

A = U

Setting L = L−11 L−12 · · ·L−1m−1 gives

A = LU

2/19

Gaussian Elimination

Gaussian Elimination/LU decomposition transforms a full
linear system into an upper-triangular one by applying
simple linear transformations to the left.
It is similar to Householder triangularization – the
difference is that the transformations applied are not
unitary.
This is done by subtracting multiples of each row from
subsequent rows!

This elimination method is equivalent to multiplying A by
a sequence of lower-triangular matrices Lk on the left:

Lm−1 · · ·L2L1︸ ︷︷ ︸
L−1

A = U

Setting L = L−11 L−12 · · ·L−1m−1 gives

A = LU

2/19

Gaussian Elimination

Gaussian Elimination/LU decomposition transforms a full
linear system into an upper-triangular one by applying
simple linear transformations to the left.
It is similar to Householder triangularization – the
difference is that the transformations applied are not
unitary.
This is done by subtracting multiples of each row from
subsequent rows!
This elimination method is equivalent to multiplying A by
a sequence of lower-triangular matrices Lk on the left:

Lm−1 · · ·L2L1︸ ︷︷ ︸
L−1

A = U

Setting L = L−11 L−12 · · ·L−1m−1 gives

A = LU

2/19

Gaussian Elimination

Gaussian Elimination/LU decomposition transforms a full
linear system into an upper-triangular one by applying
simple linear transformations to the left.
It is similar to Householder triangularization – the
difference is that the transformations applied are not
unitary.
This is done by subtracting multiples of each row from
subsequent rows!
This elimination method is equivalent to multiplying A by
a sequence of lower-triangular matrices Lk on the left:

Lm−1 · · ·L2L1︸ ︷︷ ︸
L−1

A = U

Setting L = L−11 L−12 · · ·L−1m−1 gives

A = LU

2/19

Gaussian Elimination

The matrix Lk are chosen such that it introduces zeros
below the diagonal in the kth column by subtracting
multiples of row k from rows k + 1, . . . ,m.

As the first k − 1 entries are already zero, this operation
does not destroy any zeroes previously obtained.
For example, in the 4× 4 case, the zeroes are introduced
in the following way:
× × × ×
× × × ×
× × × ×
× × × ×

 L1−→


× × × ×
0 × × ×
0 × × ×
0 × × ×

 L2−→


× × × ×
× × ×
0 × ×
0 × ×


L3−→


× × × ×
× × ×
× ×
0 ×



3/19

Gaussian Elimination

The matrix Lk are chosen such that it introduces zeros
below the diagonal in the kth column by subtracting
multiples of row k from rows k + 1, . . . ,m.
As the first k − 1 entries are already zero, this operation
does not destroy any zeroes previously obtained.

For example, in the 4× 4 case, the zeroes are introduced
in the following way:
× × × ×
× × × ×
× × × ×
× × × ×

 L1−→


× × × ×
0 × × ×
0 × × ×
0 × × ×

 L2−→


× × × ×
× × ×
0 × ×
0 × ×


L3−→


× × × ×
× × ×
× ×
0 ×



3/19

Gaussian Elimination

The matrix Lk are chosen such that it introduces zeros
below the diagonal in the kth column by subtracting
multiples of row k from rows k + 1, . . . ,m.
As the first k − 1 entries are already zero, this operation
does not destroy any zeroes previously obtained.
For example, in the 4× 4 case, the zeroes are introduced
in the following way:
× × × ×
× × × ×
× × × ×
× × × ×

 L1−→


× × × ×
0 × × ×
0 × × ×
0 × × ×

 L2−→


× × × ×
× × ×
0 × ×
0 × ×


L3−→


× × × ×
× × ×
× ×
0 ×


3/19

LU decomposition

Gram-Schmidt: A = QR by triangular orthogonalization.
Householder: A = QR by orthogonal triangularization.
Gaussian Elimination: A = LU by triangular
triangularization.

4/19

LU Decomposition

Consider an m×m matrix. Suppose xk denotes the kth
column of the matrix beginning at step k. Then Lk must
be chosen such that:

xk =



x1k
...
xkk
xk+1,k

...
xmk


Lk−→ Lkxk =



x1k
...
xkk
0
...
0



To do this, we subtract ljk times row k from row j:

ljk =
xjk
xkk

(k < j ≤ m)

5/19

LU Decomposition

Consider an m×m matrix. Suppose xk denotes the kth
column of the matrix beginning at step k. Then Lk must
be chosen such that:

xk =



x1k
...
xkk
xk+1,k

...
xmk


Lk−→ Lkxk =



x1k
...
xkk
0
...
0


To do this, we subtract ljk times row k from row j:

ljk =
xjk
xkk

(k < j ≤ m)

5/19

LU Decomposition

The matrix Lk takes the form:

1
. . .

1
−lk+1,k 1

... . . .
−lmk 1



Define lk as:

lk =



0
...
0

lk+1,k
...
lmk



6/19

LU Decomposition

The matrix Lk takes the form:

1
. . .

1
−lk+1,k 1

... . . .
−lmk 1


Define lk as:

lk =



0
...
0

lk+1,k
...
lmk


6/19

LU decomposition

Then Lk = I − lke∗k where ek is the column vector with 1
in position k and 0 otherwise.

One can easily check that e∗klk = 0.
Therefore consider:

(I − lke∗k)(I + lke
∗
k) = I − lke∗klke∗k = I

That is the inverse of Lk is I + lke
∗
k.

Consider the product:

L−1k L−1k+1 = (I + lke
∗
k)(I + lk+1e

∗
k+1) = I + lke

∗
k + lk+1e

∗
k+1

Thus L−1k L−1k+1 is just a lower triangular matrix with
entries of both L−1k and L−1k+1 inserted in the usual places.

7/19

LU decomposition

Then Lk = I − lke∗k where ek is the column vector with 1
in position k and 0 otherwise.
One can easily check that e∗klk = 0.

Therefore consider:

(I − lke∗k)(I + lke
∗
k) = I − lke∗klke∗k = I

That is the inverse of Lk is I + lke
∗
k.

Consider the product:

L−1k L−1k+1 = (I + lke
∗
k)(I + lk+1e

∗
k+1) = I + lke

∗
k + lk+1e

∗
k+1

Thus L−1k L−1k+1 is just a lower triangular matrix with
entries of both L−1k and L−1k+1 inserted in the usual places.

7/19

LU decomposition

Then Lk = I − lke∗k where ek is the column vector with 1
in position k and 0 otherwise.
One can easily check that e∗klk = 0.
Therefore consider:

(I − lke∗k)(I + lke
∗
k) = I − lke∗klke∗k = I

That is the inverse of Lk is I + lke
∗
k.

Consider the product:

L−1k L−1k+1 = (I + lke
∗
k)(I + lk+1e

∗
k+1) = I + lke

∗
k + lk+1e

∗
k+1

Thus L−1k L−1k+1 is just a lower triangular matrix with
entries of both L−1k and L−1k+1 inserted in the usual places.

7/19

LU decomposition

Then Lk = I − lke∗k where ek is the column vector with 1
in position k and 0 otherwise.
One can easily check that e∗klk = 0.
Therefore consider:

(I − lke∗k)(I + lke
∗
k) = I − lke∗klke∗k = I

That is the inverse of Lk is I + lke
∗
k.

Consider the product:

L−1k L−1k+1 = (I + lke
∗
k)(I + lk+1e

∗
k+1) = I + lke

∗
k + lk+1e

∗
k+1

Thus L−1k L−1k+1 is just a lower triangular matrix with
entries of both L−1k and L−1k+1 inserted in the usual places.

7/19

LU decomposition

As a result, we can write the full matrix L as:

L = L−11 L−12 . . . L−1m =


1
l21 1
l31 l32 1
...

...
lm1 lm2 · · · lm,m−1 1



8/19

Gaussian Elimination without Pivoting

The following algorithm computes the factor LU of A:

Algorithm 1 Gaussian Elimination without Pivoting
1: U = A,L = I
2: for k = 1 to m− 1 do
3: for j = k + 1 to m do
4: ljk = ujk/ukk
5: uj,k:m = uj,k:m − ljkuk,k:m
6: end for
7: end for

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Work for Gaussian elimination: ∼ 2
3
m3

9/19

Gaussian Elimination without Pivoting

The following algorithm computes the factor LU of A:

Algorithm 2 Gaussian Elimination without Pivoting
1: U = A,L = I
2: for k = 1 to m− 1 do
3: for j = k + 1 to m do
4: ljk = ujk/ukk
5: uj,k:m = uj,k:m − ljkuk,k:m
6: end for
7: end for

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Work for Gaussian elimination: ∼ 2
3
m3

9/19

Gaussian Elimination without Pivoting

The following algorithm computes the factor LU of A:

Algorithm 3 Gaussian Elimination without Pivoting
1: U = A,L = I
2: for k = 1 to m− 1 do
3: for j = k + 1 to m do
4: ljk = ujk/ukk
5: uj,k:m = uj,k:m − ljkuk,k:m
6: end for
7: end for

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Work for Gaussian elimination: ∼ 2
3
m3

9/19

Gaussian Elimination without Pivoting

The following algorithm computes the factor LU of A:

Algorithm 4 Gaussian Elimination without Pivoting
1: U = A,L = I
2: for k = 1 to m− 1 do
3: for j = k + 1 to m do
4: ljk = ujk/ukk
5: uj,k:m = uj,k:m − ljkuk,k:m
6: end for
7: end for

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Work for Gaussian elimination: ∼ 2
3
m3

9/19

Pivoting

Gaussian elimination can become unstable/fail completely
if the diagonal entries of the matrix A are very small/zero.

xkk element plays an important role in Gaussian
elimination and is called a pivot.
If xkk = 0 then we need a different (modified) algorithm.
Even if xkk 6= 0, but is small, there is a need for a more
stable method.
In principle, there is no need to pick only xkk as the pivot.
In principle, we can use any element of Xk:m,k:m as the
pivot!
We can interchange columns/rows among themselves to
bring a large number to the diagonal – rather than work
with a smaller number.
This is crucial for stability of the algorithm.

10/19

Pivoting

Gaussian elimination can become unstable/fail completely
if the diagonal entries of the matrix A are very small/zero.
xkk element plays an important role in Gaussian
elimination and is called a pivot.

If xkk = 0 then we need a different (modified) algorithm.
Even if xkk 6= 0, but is small, there is a need for a more
stable method.
In principle, there is no need to pick only xkk as the pivot.
In principle, we can use any element of Xk:m,k:m as the
pivot!
We can interchange columns/rows among themselves to
bring a large number to the diagonal – rather than work
with a smaller number.
This is crucial for stability of the algorithm.

10/19

Pivoting

Gaussian elimination can become unstable/fail completely
if the diagonal entries of the matrix A are very small/zero.
xkk element plays an important role in Gaussian
elimination and is called a pivot.
If xkk = 0 then we need a different (modified) algorithm.
Even if xkk 6= 0, but is small, there is a need for a more
stable method.

In principle, there is no need to pick only xkk as the pivot.
In principle, we can use any element of Xk:m,k:m as the
pivot!
We can interchange columns/rows among themselves to
bring a large number to the diagonal – rather than work
with a smaller number.
This is crucial for stability of the algorithm.

10/19

Pivoting

Gaussian elimination can become unstable/fail completely
if the diagonal entries of the matrix A are very small/zero.
xkk element plays an important role in Gaussian
elimination and is called a pivot.
If xkk = 0 then we need a different (modified) algorithm.
Even if xkk 6= 0, but is small, there is a need for a more
stable method.
In principle, there is no need to pick only xkk as the pivot.
In principle, we can use any element of Xk:m,k:m as the
pivot!

We can interchange columns/rows among themselves to
bring a large number to the diagonal – rather than work
with a smaller number.
This is crucial for stability of the algorithm.

10/19

Pivoting

Gaussian elimination can become unstable/fail completely
if the diagonal entries of the matrix A are very small/zero.
xkk element plays an important role in Gaussian
elimination and is called a pivot.
If xkk = 0 then we need a different (modified) algorithm.
Even if xkk 6= 0, but is small, there is a need for a more
stable method.
In principle, there is no need to pick only xkk as the pivot.
In principle, we can use any element of Xk:m,k:m as the
pivot!
We can interchange columns/rows among themselves to
bring a large number to the diagonal – rather than work
with a smaller number.

This is crucial for stability of the algorithm.

10/19

Pivoting

Gaussian elimination can become unstable/fail completely
if the diagonal entries of the matrix A are very small/zero.
xkk element plays an important role in Gaussian
elimination and is called a pivot.
If xkk = 0 then we need a different (modified) algorithm.
Even if xkk 6= 0, but is small, there is a need for a more
stable method.
In principle, there is no need to pick only xkk as the pivot.
In principle, we can use any element of Xk:m,k:m as the
pivot!
We can interchange columns/rows among themselves to
bring a large number to the diagonal – rather than work
with a smaller number.
This is crucial for stability of the algorithm.

10/19

Partial Pivoting

If any element of Xk:m,k:m can be considered a pivot, then
searching for the largest number will cost O(m− k)2 flops
per step – overall cost for m steps O(m3).

This strategy – is expensive an called complete pivoting.
In practice, equally good pivots can be found by choosing
the largest element from (m− k + 1) subdiagonal entries
in column k. This can be achieved in O(m− k)
operations and overall cost for finding the pivot is O(m2).
Then only rows are interchanged and it is called partial
pivoting.
The interchange of rows can be represented by the
application of the Permutation operator.

11/19

Partial Pivoting

If any element of Xk:m,k:m can be considered a pivot, then
searching for the largest number will cost O(m− k)2 flops
per step – overall cost for m steps O(m3).
This strategy – is expensive an called complete pivoting.

In practice, equally good pivots can be found by choosing
the largest element from (m− k + 1) subdiagonal entries
in column k. This can be achieved in O(m− k)
operations and overall cost for finding the pivot is O(m2).
Then only rows are interchanged and it is called partial
pivoting.
The interchange of rows can be represented by the
application of the Permutation operator.

11/19

Partial Pivoting

If any element of Xk:m,k:m can be considered a pivot, then
searching for the largest number will cost O(m− k)2 flops
per step – overall cost for m steps O(m3).
This strategy – is expensive an called complete pivoting.
In practice, equally good pivots can be found by choosing
the largest element from (m− k + 1) subdiagonal entries
in column k. This can be achieved in O(m− k)
operations and overall cost for finding the pivot is O(m2).

Then only rows are interchanged and it is called partial
pivoting.
The interchange of rows can be represented by the
application of the Permutation operator.

11/19

Partial Pivoting

If any element of Xk:m,k:m can be considered a pivot, then
searching for the largest number will cost O(m− k)2 flops
per step – overall cost for m steps O(m3).
This strategy – is expensive an called complete pivoting.
In practice, equally good pivots can be found by choosing
the largest element from (m− k + 1) subdiagonal entries
in column k. This can be achieved in O(m− k)
operations and overall cost for finding the pivot is O(m2).
Then only rows are interchanged and it is called partial
pivoting.

The interchange of rows can be represented by the
application of the Permutation operator.

11/19

Partial Pivoting

If any element of Xk:m,k:m can be considered a pivot, then
searching for the largest number will cost O(m− k)2 flops
per step – overall cost for m steps O(m3).
This strategy – is expensive an called complete pivoting.
In practice, equally good pivots can be found by choosing
the largest element from (m− k + 1) subdiagonal entries
in column k. This can be achieved in O(m− k)
operations and overall cost for finding the pivot is O(m2).
Then only rows are interchanged and it is called partial
pivoting.
The interchange of rows can be represented by the
application of the Permutation operator.

11/19

Partial Pivoting

This can be visualied as:
× × × × ×
× × × ×
× × × ×
xik × × ×
× × × ×

 P1−→


× × × × ×

xik × × ×
× × × ×
× × × ×
× × × ×



L1−→


× × × × ×

xik × × ×
0 × × ×
0 × × ×
0 × × ×



Then the upper triangular matrix can be:

Lm−1Pm−1 · · ·L2P2L2P1A = U

12/19

Partial Pivoting

This can be visualied as:
× × × × ×
× × × ×
× × × ×
xik × × ×
× × × ×

 P1−→


× × × × ×

xik × × ×
× × × ×
× × × ×
× × × ×



L1−→


× × × × ×

xik × × ×
0 × × ×
0 × × ×
0 × × ×


Then the upper triangular matrix can be:

Lm−1Pm−1 · · ·L2P2L2P1A = U

12/19

Partial Pivoting

Consider the following definition:

L′k = Pm−1 . . . Pk+1LkP
−1
k+1 . . . P

−1
m−1

Then:

U =Lm−1Pm−1 · · ·L2P2L2P1A

= (L′m−1 · · ·L′2L′1)(Pm−1 · · ·P2P1)A

Equivalent to solving PA = LU .

13/19

Partial Pivoting

Consider the following definition:

L′k = Pm−1 . . . Pk+1LkP
−1
k+1 . . . P

−1
m−1

Then:

U =Lm−1Pm−1 · · ·L2P2L2P1A

= (L′m−1 · · ·L′2L′1)(Pm−1 · · ·P2P1)A

Equivalent to solving PA = LU .

13/19

Partial Pivoting

Consider the following definition:

L′k = Pm−1 . . . Pk+1LkP
−1
k+1 . . . P

−1
m−1

Then:

U =Lm−1Pm−1 · · ·L2P2L2P1A

= (L′m−1 · · ·L′2L′1)(Pm−1 · · ·P2P1)A

Equivalent to solving PA = LU .

13/19

Gaussian Elimination with partial Pivoting

The following algorithm computes the factor LU of A:

Algorithm 5 Gaussian Elimination with Partial Pivoting
1: U = A,L = I, P = 1
2: for k = 1 to m− 1 do
3: Select i ≥ k to maximize |uik|
4: uk,k:m ↔ ui,k:m
5: lk,k−1 ↔ li,1:k−1
6: pk,: ↔ pi,:
7: for j = k + 1 to m do
8: ljk = ujk/ukk
9: uj,k:m = uj,k:m − ljkuk,k:m

10: end for
11: end for

14/19

Cholesky Decomposition

Hermitian positive definite matrices can be decomposed
into triangular factors twice as quickly as general matrices.

The standard algorithm for this is the Cholesky
factorization, which is a variant of Gaussian elimination
that operates on left and right of the matrix at once.
For a complex matrix A ∈ Cm×m, Hermitian matrices are
A = A∗.
A Hermitian matrix is positive definite iff for any x ∈ Cm,
x∗Ax > 0. The eigenvalues of Hermitian positive definite
matrix are always positive and real.

15/19

Cholesky Decomposition

Hermitian positive definite matrices can be decomposed
into triangular factors twice as quickly as general matrices.
The standard algorithm for this is the Cholesky
factorization, which is a variant of Gaussian elimination
that operates on left and right of the matrix at once.

For a complex matrix A ∈ Cm×m, Hermitian matrices are
A = A∗.
A Hermitian matrix is positive definite iff for any x ∈ Cm,
x∗Ax > 0. The eigenvalues of Hermitian positive definite
matrix are always positive and real.

15/19

Cholesky Decomposition

Hermitian positive definite matrices can be decomposed
into triangular factors twice as quickly as general matrices.
The standard algorithm for this is the Cholesky
factorization, which is a variant of Gaussian elimination
that operates on left and right of the matrix at once.
For a complex matrix A ∈ Cm×m, Hermitian matrices are
A = A∗.

A Hermitian matrix is positive definite iff for any x ∈ Cm,
x∗Ax > 0. The eigenvalues of Hermitian positive definite
matrix are always positive and real.

15/19

Cholesky Decomposition

Hermitian positive definite matrices can be decomposed
into triangular factors twice as quickly as general matrices.
The standard algorithm for this is the Cholesky
factorization, which is a variant of Gaussian elimination
that operates on left and right of the matrix at once.
For a complex matrix A ∈ Cm×m, Hermitian matrices are
A = A∗.
A Hermitian matrix is positive definite iff for any x ∈ Cm,
x∗Ax > 0. The eigenvalues of Hermitian positive definite
matrix are always positive and real.

15/19

Cholesky decomposition

Consider what happens if we apply a single step of
Gaussian elimination to a Hermitian matrix A with 1 in
the upper left position:

A =

[
1 w∗

w K

]
=

[
1 0
w I

] [
1 w∗

0 K − ww∗
]

Gaussian elimination would now proceed with introducing
zeros in the next column. However, in Cholesky
factorization, they are introduced in the first row to keep
the hermiticity of the matrix.[

1 w∗

0 K − ww∗
]
=

[
1 0
0 K − ww∗

] [
1 w∗

0 I

]

16/19

Cholesky decomposition

Consider what happens if we apply a single step of
Gaussian elimination to a Hermitian matrix A with 1 in
the upper left position:

A =

[
1 w∗

w K

]
=

[
1 0
w I

] [
1 w∗

0 K − ww∗
]

Gaussian elimination would now proceed with introducing
zeros in the next column. However, in Cholesky
factorization, they are introduced in the first row to keep
the hermiticity of the matrix.[

1 w∗

0 K − ww∗
]
=

[
1 0
0 K − ww∗

] [
1 w∗

0 I

]

16/19

Cholesky factorization

Combining the two steps:

A =

[
1 w∗

w K

]
=

[
1 0
w I

] [
1 0
0 K − ww∗

] [
1 w∗

0 I

]

The idea of Cholesky decomposition is to continue this
process till the matrix is reduced to identity!
In general, we need this to work for any a11 > 0. The
generalization of this achieved by adjusting the algorithm
and introducing α =

√
a11

A =

[
a11 w∗

w K

]
=

[
α 0
w/α I

] [
1 0
0 K − ww∗/a11

] [
α w∗/α
0 I

]
= R∗1A1R1

17/19

Cholesky factorization

Combining the two steps:

A =

[
1 w∗

w K

]
=

[
1 0
w I

] [
1 0
0 K − ww∗

] [
1 w∗

0 I

]
The idea of Cholesky decomposition is to continue this
process till the matrix is reduced to identity!

In general, we need this to work for any a11 > 0. The
generalization of this achieved by adjusting the algorithm
and introducing α =

√
a11

A =

[
a11 w∗

w K

]
=

[
α 0
w/α I

] [
1 0
0 K − ww∗/a11

] [
α w∗/α
0 I

]
= R∗1A1R1

17/19

Cholesky factorization

Combining the two steps:

A =

[
1 w∗

w K

]
=

[
1 0
w I

] [
1 0
0 K − ww∗

] [
1 w∗

0 I

]
The idea of Cholesky decomposition is to continue this
process till the matrix is reduced to identity!
In general, we need this to work for any a11 > 0. The
generalization of this achieved by adjusting the algorithm
and introducing α =

√
a11

A =

[
a11 w∗

w K

]
=

[
α 0
w/α I

] [
1 0
0 K − ww∗/a11

] [
α w∗/α
0 I

]
= R∗1A1R1

17/19

Cholesky factorization

If the upper left entry of the submatrix K − ww∗/a11 is
positive, the process can be continued further:

A =R∗1R
∗
2 · · ·R∗m︸ ︷︷ ︸
R∗

Rm · · ·R2R1︸ ︷︷ ︸
R

=R∗R rjj > 0

where R is upper triangular.

The only thing left hanging is that how do we know that
the upper left entry of K − ww∗/a11 is positive? It has to
be because, K − ww∗/a11 is positive definite as it is the
principle submatrix of the positive definite matrix
R−∗1 AR−11 .

18/19

Cholesky factorization

If the upper left entry of the submatrix K − ww∗/a11 is
positive, the process can be continued further:

A =R∗1R
∗
2 · · ·R∗m︸ ︷︷ ︸
R∗

Rm · · ·R2R1︸ ︷︷ ︸
R

=R∗R rjj > 0

where R is upper triangular.
The only thing left hanging is that how do we know that
the upper left entry of K − ww∗/a11 is positive? It has to
be because, K − ww∗/a11 is positive definite as it is the
principle submatrix of the positive definite matrix
R−∗1 AR−11 .

18/19

Cholesky decomposition

The following algorithm computes the factor R∗R of complex
Hermitian A:

Algorithm 6 Cholesky factorization
1: R = A
2: for k = 1 to m do
3: for j = k + 1 to m do
4: Rj,j:m = Rj,j:m −Rk,j:mRkj/Rkk

5: end for
6: Rk,k:m = Rk,k:m/

√
Rkk

7: end for

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Work for Gaussian elimination: ∼ 2
3
m3

Work for Cholesky factorization: ∼ 1
3
m3

19/19

Cholesky decomposition

The following algorithm computes the factor R∗R of complex
Hermitian A:

Algorithm 7 Cholesky factorization
1: R = A
2: for k = 1 to m do
3: for j = k + 1 to m do
4: Rj,j:m = Rj,j:m −Rk,j:mRkj/Rkk

5: end for
6: Rk,k:m = Rk,k:m/

√
Rkk

7: end for

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Work for Gaussian elimination: ∼ 2
3
m3

Work for Cholesky factorization: ∼ 1
3
m3

19/19

Cholesky decomposition

The following algorithm computes the factor R∗R of complex
Hermitian A:

Algorithm 8 Cholesky factorization
1: R = A
2: for k = 1 to m do
3: for j = k + 1 to m do
4: Rj,j:m = Rj,j:m −Rk,j:mRkj/Rkk

5: end for
6: Rk,k:m = Rk,k:m/

√
Rkk

7: end for

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Work for Gaussian elimination: ∼ 2
3
m3

Work for Cholesky factorization: ∼ 1
3
m3

19/19

Cholesky decomposition

The following algorithm computes the factor R∗R of complex
Hermitian A:

Algorithm 9 Cholesky factorization
1: R = A
2: for k = 1 to m do
3: for j = k + 1 to m do
4: Rj,j:m = Rj,j:m −Rk,j:mRkj/Rkk

5: end for
6: Rk,k:m = Rk,k:m/

√
Rkk

7: end for

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Work for Gaussian elimination: ∼ 2
3
m3

Work for Cholesky factorization: ∼ 1
3
m3

19/19

Cholesky decomposition

The following algorithm computes the factor R∗R of complex
Hermitian A:

Algorithm 10 Cholesky factorization
1: R = A
2: for k = 1 to m do
3: for j = k + 1 to m do
4: Rj,j:m = Rj,j:m −Rk,j:mRkj/Rkk

5: end for
6: Rk,k:m = Rk,k:m/

√
Rkk

7: end for

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Work for Gaussian elimination: ∼ 2
3
m3

Work for Cholesky factorization: ∼ 1
3
m3

19/19

