Numerical Linear Algebra

m LU Decomposition.
m Partial and Full Pivoting.
m Cholesky Decomposition.
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m Gaussian Elimination/LU decomposition transforms a full
linear system into an upper-triangular one by applying
simple linear transformations to the left.
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m Gaussian Elimination/LU decomposition transforms a full
linear system into an upper-triangular one by applying
simple linear transformations to the left.

m It is similar to Householder triangularization — the
difference is that the transformations applied are not
unitary.

m This is done by subtracting multiples of each row from
subsequent rows!

m This elimination method is equivalent to multiplying A by
a sequence of lower-triangular matrices L, on the left:

Ly Loy A=U
—_———

L1
m Setting L= L;'Ly'--- L' | gives
A=LU
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Gaussian Elimination

m The matrix L;, are chosen such that it introduces zeros

below the diagonal in the kth column by subtracting
multiples of row k& from rows k& +1,...,m.

m As the first &k — 1 entries are already zero, this operation
does not destroy any zeroes previously obtained.

m For example, in the 4 x 4 case, the zeroes are introduced

in the following way:

X

X
X
X

X X X X
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X
X
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X
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LU decomposition

m Gram-Schmidt: A = QR by triangular orthogonalization.
m Householder: A = QR by orthogonal triangularization.

m Gaussian Elimination: A = LU by triangular
triangularization.
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LU Decomposition

m Consider an m x m matrix. Suppose ) denotes the kth
column of the matrix beginning at step k. Then L; must

be chosen such that:

T =

L1k

Tkk
Tp41,k

Tmk

L
—k) Lkl’k =

L1k
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LU Decomposition

m Consider an m x m matrix. Suppose ) denotes the kth
column of the matrix beginning at step k. Then L; must
be chosen such that:

L1k L1k
T L x

T = kk k Lyay = kk
Tht1,k 0

| Tmk | | 0 ]

m To do this, we subtract [;; times row k from row j:
T ,
o= (k< j<m)
Tk
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LU Decomposition

m The matrix L; takes the form:

1

e 1

— Lk 1
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LU Decomposition

m The matrix L; takes the form:

m Define [}, as:

I, =
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LU decomposition

m Then L, = I — I e} where e is the column vector with 1
in position k£ and 0 otherwise.
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LU decomposition

m Then L, = I — I e} where e is the column vector with 1
in position k£ and 0 otherwise.

m One can easily check that el = 0.
m Therefore consider:

([ — lkGZ)(I + leZ) =1- lkeZlkez =1

That is the inverse of Ly, is I + [iej.
m Consider the product:

L' Ly, = (T + &) (L + i) = T+ ke + lepehy,

Thus L;lL,;l is just a lower triangular matrix with
entries of both ;! and L;}, inserted in the usual places.
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LU decomposition

m As a result, we can write the full matrix L as:

1
121 1
L=IL7'Lyt o 0 =l e 1

lml lm2 lm,mfl 1
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Gaussian Elimination without Pivoting

The following algorithm computes the factor LU of A:

Algorithm 1 Gaussian Elimination without Pivoting
LU=AL=1
2: fork=1tom—1do

3 for j=k+1tomdo

4 Lik = wjk/ugk

5: Ujkem = Wjkem — Lk Uk o
6 end for

7: end for
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Gaussian Elimination without Pivoting

The following algorithm computes the factor LU of A:

Algorithm 4 Gaussian Elimination without Pivoting
LU=AL=1
2: fork=1tom—1do

3 for j=k+1tomdo

4 Lik = wjk/ugk

5: Ujkem = Wjkem — Lk Uk o
6 end for

7: end for

m Work for Householder orthogonalization ~ 2mn? — 2n3

3
m Work for (modified) Gram-Schmidt: ~ 2mn?

m Work for Gaussian elimination: ~ %m?’

9/19



m Gaussian elimination can become unstable/fail completely
if the diagonal entries of the matrix A are very small/zero.
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m Gaussian elimination can become unstable/fail completely
if the diagonal entries of the matrix A are very small/zero.

m 1 element plays an important role in Gaussian
elimination and is called a pivot.

m If 24, = 0 then we need a different (modified) algorithm.
Even if z;, # 0, but is small, there is a need for a more
stable method.

m In principle, there is no need to pick only xy, as the pivot.
In principle, we can use any element of Xy, k. as the
pivot!

m We can interchange columns/rows among themselves to
bring a large number to the diagonal — rather than work
with a smaller number.

m This is crucial for stability of the algorithm.
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Partial Pivoting

m If any element of Xj.;,, x.m can be considered a pivot, then
searching for the largest number will cost O(m — k)? flops
per step — overall cost for m steps O(m?).
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Partial Pivoting

m If any element of Xj.;,, x.m can be considered a pivot, then
searching for the largest number will cost O(m — k)? flops
per step — overall cost for m steps O(m?).

m This strategy — is expensive an called complete pivoting.

m In practice, equally good pivots can be found by choosing
the largest element from (m — k + 1) subdiagonal entries
in column k. This can be achieved in O(m — k)
operations and overall cost for finding the pivot is O(m?).

m Then only rows are interchanged and it is called partial
pivoting.

m The interchange of rows can be represented by the
application of the Permutation operator.
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Partial Pivoting

m This can be visualied as:

X X X
X X

X X

T X

X X

m Then the upper triangular matrix can be:

Ly 1Py LoPyLoPLA=U

X

X X X X

X X X X X

XXX XX x XXX X

XXX XX XX XX X

X X X X X x X X X X
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Partial Pivoting

m Consider the following definition:

Ly=Py_1...Pe L P ... PY
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Partial Pivoting

m Consider the following definition:
Ly=Py_1...Pe L P ... PY
m Then:

U :melpmfl e L2P2L2P1A
= (L'lm—l T LIQLII)(Pm—l e 'P2P1>A

m Equivalent to solving PA = LU.
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Gaussian Elimination with partial Pivoting

The following algorithm computes the factor LU of A:

Algorithm 5 Gaussian Elimination with Partial Pivoting
L U=AL=IP=1
2. fork=1tom—1do
Select i > k to maximize |u;|
Uk k:m < Ui k:m
lgjo—1 < li1k—1
Pk,: <7 Di:
for j=k+1tomdo
Lik = wjk/ugk
Ujkem = Wj k:m — ljkuk,k:m
10: end for
11: end for

© o N>R
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Cholesky Decomposition

m Hermitian positive definite matrices can be decomposed
into triangular factors twice as quickly as general matrices.
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Cholesky Decomposition

m Hermitian positive definite matrices can be decomposed
into triangular factors twice as quickly as general matrices.

m The standard algorithm for this is the Cholesky
factorization, which is a variant of Gaussian elimination
that operates on left and right of the matrix at once.

m For a complex matrix A € C™*™, Hermitian matrices are
A= A"

m A Hermitian matrix is positive definite iff for any z € C™,
x*Ax > 0. The eigenvalues of Hermitian positive definite
matrix are always positive and real.

15/19



Cholesky decomposition

m Consider what happens if we apply a single step of
Gaussian elimination to a Hermitian matrix A with 1 in
the upper left position:

A_lw*_lOl w*
Clw K| |w Il|0 K—wuw*
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Cholesky decomposition

m Consider what happens if we apply a single step of
Gaussian elimination to a Hermitian matrix A with 1 in
the upper left position:

A - 1 w'| |1 0f|1 w*
Clw K| |jw I]]0 K—ww*
m Gaussian elimination would now proceed with introducing
zeros in the next column. However, in Cholesky

factorization, they are introduced in the first row to keep
the hermiticity of the matrix.

1w ] 10 1w
0 K—ww*| |0 K—ww*| |0 I
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Cholesky factorization

m Combining the two steps:

S P4 P AP
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Cholesky factorization

m Combining the two steps:

S P4 P AP

m The idea of Cholesky decomposition is to continue this
process till the matrix is reduced to identity!

m In general, we need this to work for any a;; > 0. The
generalization of this achieved by adjusting the algorithm
and introducing o = /a1,

ol L U e
v |

= RIAR
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Cholesky factorization

m If the upper left entry of the submatrix K — ww*/ay; is
positive, the process can be continued further:

A=R{R} Rl Ry RoRy
R* R
=R'R Tjj>0

where R is upper triangular.
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Cholesky factorization

m If the upper left entry of the submatrix K — ww*/ay; is
positive, the process can be continued further:

A=R{R} Rl Ry RoRy
R* R
=R'R Tjj>0

where R is upper triangular.

m The only thing left hanging is that how do we know that
the upper left entry of K — ww*/ay; is positive? It has to
be because, K — ww*/ay; is positive definite as it is the
principle submatrix of the positive definite matrix
R{*ART.
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Cholesky decomposition

The following algorithm computes the factor R*R of complex
Hermitian A:

Algorithm 6 Cholesky factorization
1. R=A
2: for k=1tomdo
3 for j=k+1tomdo
4: }{@jnn ::Igﬁjnn _’]%kjnn]%kj/}%kk
5: end for
6
7:

Ry kom = Ri kom /v Rick:
end for
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Cholesky decomposition

The following algorithm computes the factor R*R of complex
Hermitian A:

Algorithm 10 Cholesky factorization
1. R=A
2: for k=1tomdo
3 for j=k+1tomdo
4: }{@jnn ::Igﬁjnn _’]%kdnn]%kj/}%kk
5: end for
6
7:

Ry kom = Ri kom /v Rick:
end for

m Work for Householder orthogonalization ~ 2mn? — Zn?

m Work for (modified) Gram-Schmidt: ~ 2mn?

m Work for Gaussian elimination: ~ %m?’
m Work for Cholesky factorization: ~ im?
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