Numerical Linear Algebra

m Modified Gram-Schmidt as triangular orthogonalization.
m Householder Triangularization.
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Gram-Schmidt

m Consider classical Gram-Schmidt as a sequence of
formulas:
Pray Pray Pa,

W=7p ©=Tp_ o ¢=Tp o

| Praall” || Paas||” || Pranl|

where P; denotes an orthogonal projector
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where P; denotes an orthogonal projector

m This projector can be represented explicitly. Let ;4
denote the m x (j — 1) matrix containing the first (j — 1)
columns of Q:
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Gram-Schmidt

m Consider classical Gram-Schmidt as a sequence of
formulas:
Pray Pray Pa,
= o= ..., =
[Praf]” ™ [[Paal]’ O Pl

where P; denotes an orthogonal projector

m This projector can be represented explicitly. Let ;4
denote the m x (j — 1) matrix containing the first (j — 1)
columns of Q:

q1

Qic1= | |@| | g

m Then P; is given by:
Pp=1-0Q;1Q;
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Modified Gram-Schmidt

m In contrast, if one thinks of the modified Gram-Schmidt
algorithm, then computes the same result by a sequence
of of (j — 1) projections.
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Modified Gram-Schmidt

m In contrast, if one thinks of the modified Gram-Schmidt
algorithm, then computes the same result by a sequence
of of (j — 1) projections.

m If P, =1 — qg*, then in modified Gram-Schmidt,
Pj - PJ—ijl o 'PJ-Q2PJ-Q1

m Each outer step of the algorithm can be interpreted as a
right multiplication by a square upper-triangular matrix.

m For example, beginning with A, the first iteration
multiplies the first column a; with TL and then subtracts
r1; times the result from each of the remaining columns

(lj.
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Triangular Orthogonalization

m This is equivalent to right-multiplication by a matrix R;:

T11 T11 T11

2 2

Vi |V2|...| Upn . . = |q1 Ué) U7(1)
1
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Triangular Orthogonalization

m This is equivalent to right-multiplication by a matrix R;:

T11 T11 T11

2 2

Vi |V2|...| Upn . . = |q1 Ué) U7(1)
1

m In general, step i subtracts r;;/r;; times column i of the current
A from columns, j > ¢ and replaces column i by 1/r;; times
itself. This corresponds to multiplication by upper triangular
matrix R;:

1 1
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Triangular Orthogonalization

m At the end of the iteration:

ARy R, =Q
——

R-1
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Triangular Orthogonalization

m At the end of the iteration:
ARRy- R, =Q
1
[

m This shows that Gram-Schmidt is a method of triangular
orthogonalization: It applies triangular operations on the
right of a matrix to reduce it to a matrix of orthonormal
columns.
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Householder triangularization

m Householder method applies a succession of elementary
unitary matrices (), on the left of A so that the resulting
matrix:

Qn-- QQLA=R
Qx

is upper triangular.
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m The product, Q = Q7Q% - - - Q7 is unitary too and
therefore A = QR is the QR factorization of A.
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Householder triangularization

m Householder method applies a succession of elementary
unitary matrices (), on the left of A so that the resulting
matrix:

Qn- Q1 A=R
Q
is upper triangular.

m The product, Q = Q7Q% - - - Q7 is unitary too and

therefore A = QR is the QR factorization of A.

B = Gram-Schmidt: Triangular Orthogonalization
m Householder : Orthogonal triangularization
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Triangularization by introducing zeroes

m The matrix )}, are chosen such that it introduces zeros below
the diagonal in the kth column, while preserving all the zeroes
previously introduced.
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Triangularization by introducing zeroes

m The matrix )}, are chosen such that it introduces zeros below
the diagonal in the kth column, while preserving all the zeroes
previously introduced.

m For example, in the 5 x 3 case, the zeroes are introduced in the
following way:

X X X X X
X X X X X
X X X X X
o o oX
X X X X X
X X X X X
o o o X X
X X X X X
S O X X X
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Householder Reflectors

m How do we construct the reflectors that will do this?
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Householder Reflectors

m How do we construct the reflectors that will do this?
m In general, each @)} is chosen to be a unitary matrix:

I 0
ka[o F]

where [ is a k x k identity matrix and F is an
(m—k+1)x (m—k+ 1) unitary matrix.
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Householder Reflectors

m How do we construct the reflectors that will do this?
m In general, each @)} is chosen to be a unitary matrix:

I 0
where [ is a k x k identity matrix and F is an
(m—k+1)x (m—k+ 1) unitary matrix.

m Multiplication by F' should introduce zeroes in the kth
column.
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Householder reflector

m Suppose at the beginning of step k, the entries k,..., m
of the kth column are given by vector x € C™#+!
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Householder reflector

m Suppose at the beginning of step k, the entries k,..., m
of the kth column are given by vector x € C™#+!

m To introduce zeroes the Householder reflector, F' should
have the following effect:

X |||
X 0
= |X| L Fr=10

X
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Householder reflector

m Suppose at the beginning of step k, the entries k,..., m
of the kth column are given by vector x € C™#+!

m To introduce zeroes the Householder reflector, F' should
have the following effect:

X |||
X 0
z=|*X| 5 Fr=|0
X 0

m The reflector F' will reflect the space C™~*+1 across the
hyperplane H orthogonal to v = ||z||e; — =
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Householder reflector

m Suppose at the beginning of step k, the entries k,..., m
of the kth column are given by vector x € C™#+!

m To introduce zeroes the Householder reflector, F' should
have the following effect:

X |||
X 0
z=|*X| 5 Fr=|0
X 0

m The reflector F' will reflect the space C™~*+1 across the
hyperplane H orthogonal to v = ||z||e; — =

m The matrix F' is:
vU*

F=1-2

v*U
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Householder Reflector

m Given a non-zero p-vector y = (y1, s, - . ., Yp) define:

y1 + sign(y1)||yl|

Y2 1
w = } , V= ——w
: |wl|

Yp
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m Vector w satisfies [[w[|* = 2(w"y) = 2/[y||(|lyl| + [31])
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Householder Reflector

m Given a non-zero p-vector y = (y1, s, - . ., Yp) define:

y1 + sign(y1)||yl|

Y2 1

w = _ , V= ——w
: [|w]]

Yp

m Vector w satisfies [[w[|* = 2(w"y) = 2/[y||(|lyl| + [31])

m The reflector FF = I — 2vv* maps y to multiple of
e1 = (1,0,...,0):

w=y—w= —sign(y1)||y||ex
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Householder QR factorization

The following algorithm computes the factor R of a QR
factorization of a m x n matrix A (m > n), leaving the result
in place of A. n reflection vectors, vy, v9, ..., v, are stored for
later use:

Algorithm 1 Householder QR Factorization
1. for k=1ton do
2 xr = Ak:m,k
30 v =sign(z)||z]|2e1 + T
4 vp = v/ |vkll2
5
6

Ak:m,k:n = Ak:m,k:n - 2vk(v]:Ak:m,k:n)
: end for
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Applying or forming Q

m Upon completion A has been reduced to upper triangular
matrix, but the () matrix has not been formed.
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Applying or forming Q

m Upon completion A has been reduced to upper triangular
matrix, but the () matrix has not been formed.

m This is because explicit construction of () requires
additional work — however we often don't need it explicitly.

m For solving Az = b, we need to evaluate Q*b which we do
as follows:

Algorithm 6 Implicit calculation of @*b
1: fork=1tondo
2 bk:m = bren — 2Uk(vlt;bk:m)
3: end for
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Applying or forming Q

m Upon completion A has been reduced to upper triangular
matrix, but the () matrix has not been formed.

m This is because explicit construction of () requires
additional work — however we often don't need it explicitly.

m For solving Az = b, we need to evaluate Q*b which we do
as follows:

Algorithm 8 Implicit calculation of @*b
1: fork=1tondo
2 bk:m = bren — 2Uk(vlt;bk:m)
3: end for

m Similarly Qz can also be evaluated:

Algorithm 9 Implicit calculation of Qx
1: for k = n down to 1 do
2: Lhm = Thim — QUk(UZka:m)
3: end for 12/17




Householder triangularization

m Work for Householder orthogonalization ~ 2mn?* — Zn?
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Householder triangularization

m Work for Householder orthogonalization ~ 2mn? — 2n3

3
m Work for (modified) Gram-Schmidt: ~ 2mn?

m Householder triangularization is numerically more stable
than Gram-Schmidt and hence is used for QR
factorization.
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1
A=1_1 g = (10Q2Q3 []O%]
7
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~ QuQ:Qs [fﬂ

|
—_
|
—_
~J Ut W

We compute reflectors (01, 2, Q3 that trangularize A:

}%11 }%12 }%13

| 0 Ry R
Q3Q2Q1 A - O O R33
0

0 0
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Compute the reflector that maps first column of A to multiple
of e;

-1 -3 -3

1
- B w = - e1 = s v = —U = ——
1 1 1
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Compute the reflector that maps first column of A to multiple
of e;

—1 -3 -3
Yow=y-lllea=| L n=—w= ——
-1 -1 Tl 23 |1
1 1 1

<
|

Overwrite A with I — 2vyv]

4 2
4/3 8/3
2/3 16/3
4/3 20/3

A= (I —2v))A =

O O O NN
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Compute the reflector that maps A4 5 to multiple of e,

4/3 10/3 . L
y=12/3, w=y+|lyllei=|2/3 |, n=7—w=— |1
4/3 4/3 [l 30 |2
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Compute the reflector that maps A4 5 to multiple of e,

4/3 10/3 . E
y= 421?2 , w=y+|yller = 421?3 R I TR ;
Overwrite Ay.4 0.3 with I — 2vyv}
2 4 2
A= {(1) I- gvgvgl A= 8 _02 1%?5
0 0 12/5
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Compute the reflector that maps As.4 3 to multiple of e,

- [27 Bl = 7w

, W =Y+ e = , V3 = W = —F—
12/5] y+lylle: {12/5 57 ] J10 1
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Compute the reflector that maps As.4 3 to multiple of e,

o= [58) =vete= [ - e~ 7 ]

Overwrite As.4 3 with I — 2vsv3

2 4 2
I 0 0 -2 -8
A= {0 1—2v3v§}‘4— 0 0 —4
0 0 0

17/17



