
Numerical Linear Algebra

Modified Gram-Schmidt as triangular orthogonalization.
Householder Triangularization.
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Gram-Schmidt

Consider classical Gram-Schmidt as a sequence of
formulas:

q1 =
P1a1
||P1a1||

, q2 =
P2a2
||P2a2||

, . . . , qn =
Pnan
||Pnan||

where Pj denotes an orthogonal projector

This projector can be represented explicitly. Let Qj−1
denote the m× (j − 1) matrix containing the first (j − 1)
columns of Q:

Qj−1 =

q1 q2 . . . qj−1


Then Pj is given by:

Pj = I −Qj−1Q
∗
j−1
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Modified Gram-Schmidt

In contrast, if one thinks of the modified Gram-Schmidt
algorithm, then computes the same result by a sequence
of of (j − 1) projections.

If P⊥q = I − qq∗, then in modified Gram-Schmidt,

Pj = P⊥qj−1
· · ·P⊥q2P⊥q1

Each outer step of the algorithm can be interpreted as a
right multiplication by a square upper-triangular matrix.
For example, beginning with A, the first iteration
multiplies the first column a1 with 1

r11
and then subtracts

r1j times the result from each of the remaining columns
aj.
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Triangular Orthogonalization

This is equivalent to right-multiplication by a matrix R1:v1 v2 . . . vn




1
r11

−r12
r11

· · · −r1n
r11

1
. . . ...

1

 =

q1 v
(2)
2 . . . v

(2)
n



In general, step i subtracts rij/rii times column i of the current
A from columns, j > i and replaces column i by 1/rii times
itself. This corresponds to multiplication by upper triangular
matrix Ri:

R2 =


1

1
r22

−r23
r22

· · ·
1

. . .

R3 =


1

1
1
r33
· · ·
. . .

 , . . .
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Triangular Orthogonalization

At the end of the iteration:

AR1R2 · · ·Rn︸ ︷︷ ︸
R−1

= Q

This shows that Gram-Schmidt is a method of triangular
orthogonalization: It applies triangular operations on the
right of a matrix to reduce it to a matrix of orthonormal
columns.
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Householder triangularization

Householder method applies a succession of elementary
unitary matrices Qk on the left of A so that the resulting
matrix:

Qn · · ·Q2Q1︸ ︷︷ ︸
Q∗

A = R

is upper triangular.

The product, Q = Q∗1Q
∗
2 · · ·Q∗n is unitary too and

therefore A = QR is the QR factorization of A.

Gram-Schmidt: Triangular Orthogonalization
Householder : Orthogonal triangularization
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Triangularization by introducing zeroes

The matrix Qk are chosen such that it introduces zeros below
the diagonal in the kth column, while preserving all the zeroes
previously introduced.

For example, in the 5× 3 case, the zeroes are introduced in the
following way:
× × ×
× × ×
× × ×
× × ×
× × ×

 Q1−→


× × ×
0 × ×
0 × ×
0 × ×
0 × ×

 Q2−→


× × ×

× ×
0 ×
0 ×
0 ×

 Q3−→


× × ×
× ×

×
0
0


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Householder Reflectors

How do we construct the reflectors that will do this?

In general, each Qk is chosen to be a unitary matrix:

Qk =

[
I 0
0 F

]
where I is a k × k identity matrix and F is an
(m− k + 1)× (m− k + 1) unitary matrix.
Multiplication by F should introduce zeroes in the kth
column.
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Householder reflector

Suppose at the beginning of step k, the entries k, . . . ,m
of the kth column are given by vector x ∈ Cm−k+1

To introduce zeroes the Householder reflector, F should
have the following effect:

x =


×
×
×
...
×

 F−→ Fx =


||x||
0
0
...
0


The reflector F will reflect the space Cm−k+1 across the
hyperplane H orthogonal to v = ||x||e1 − x

The matrix F is:
F = I − 2

vv∗

v∗v
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Householder Reflector

Given a non-zero p-vector y = (y1, y2, . . . , yp) define:

w =


y1 + sign(y1)||y||

y2
...
yp

 , v =
1

||w||
w

Vector w satisfies ||w||2 = 2(w∗y) = 2||y||(||y||+ |y1|)
The reflector F = I − 2vv∗ maps y to multiple of
e1 = (1, 0, . . . , 0):

Fy = y − 2(w∗y)

||w||2
w = y − w = −sign(y1)||y||e1

10/17



Householder Reflector

Given a non-zero p-vector y = (y1, y2, . . . , yp) define:

w =


y1 + sign(y1)||y||

y2
...
yp

 , v =
1

||w||
w

Vector w satisfies ||w||2 = 2(w∗y) = 2||y||(||y||+ |y1|)

The reflector F = I − 2vv∗ maps y to multiple of
e1 = (1, 0, . . . , 0):

Fy = y − 2(w∗y)

||w||2
w = y − w = −sign(y1)||y||e1

10/17



Householder Reflector

Given a non-zero p-vector y = (y1, y2, . . . , yp) define:

w =


y1 + sign(y1)||y||

y2
...
yp

 , v =
1

||w||
w

Vector w satisfies ||w||2 = 2(w∗y) = 2||y||(||y||+ |y1|)
The reflector F = I − 2vv∗ maps y to multiple of
e1 = (1, 0, . . . , 0):

Fy = y − 2(w∗y)

||w||2
w = y − w = −sign(y1)||y||e1

10/17



Householder QR factorization

The following algorithm computes the factor R of a QR
factorization of a m× n matrix A (m ≥ n), leaving the result
in place of A. n reflection vectors, v1, v2, . . . , vn are stored for
later use:

Algorithm 1 Householder QR Factorization
1: for k = 1 to n do
2: x = Ak:m,k

3: vk = sign(x1)||x||2e1 + x
4: vk = vk/||vk||2
5: Ak:m,k:n = Ak:m,k:n − 2vk(v

∗
kAk:m,k:n)

6: end for

11/17



Applying or forming Q

Upon completion A has been reduced to upper triangular
matrix, but the Q matrix has not been formed.

This is because explicit construction of Q requires
additional work – however we often don’t need it explicitly.
For solving Ax = b, we need to evaluate Q∗b which we do
as follows:

Algorithm 2 Implicit calculation of Q∗b
1: for k = 1 to n do
2: bk:m = bk:m − 2vk(v

∗
kbk:m)

3: end for

Similarly Qx can also be evaluated:

Algorithm 3 Implicit calculation of Qx

1: for k = n down to 1 do
2: xk:m = xk:m − 2vk(v

∗
kxk:m)

3: end for
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Householder triangularization

Work for Householder orthogonalization ∼ 2mn2 − 2
3
n3

Work for (modified) Gram-Schmidt: ∼ 2mn2

Householder triangularization is numerically more stable
than Gram-Schmidt and hence is used for QR
factorization.
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Example

A =


−1 −1 1
1 3 3
−1 −1 5
1 3 7

 = Q1Q2Q3

[
R
0

]

We compute reflectors Q1, Q2, Q3 that trangularize A:

Q3Q2Q1A =


R11 R12 R13

0 R22 R23

0 0 R33

0 0 0


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Example

Compute the reflector that maps first column of A to multiple
of e1

y =


−1
1
−1
1

 , w = y−||y||e1 =


−3
1
−1
1

 , v1 =
1

||w||
w =

1

2
√
3


−3
1
−1
1



Overwrite A with I − 2v1v
∗
1

A := (I − 2v1v
∗
1)A =


2 4 2
0 4/3 8/3
0 2/3 16/3
0 4/3 20/3


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Example

Compute the reflector that maps A2:4,2 to multiple of e1

y =

4/32/3
4/3

 , w = y+||y||e1 =

10/32/3
4/3

 , v2 =
1

||w||
w =

1√
30

51
2



Overwrite A2:4,2:3 with I − 2v2v
∗
2

A :=

[
1 0
0 I − 2v2v

∗
2

]
A =


2 4 2
0 −2 −8
0 0 16/5
0 0 12/5



16/17



Example

Compute the reflector that maps A2:4,2 to multiple of e1

y =

4/32/3
4/3

 , w = y+||y||e1 =

10/32/3
4/3

 , v2 =
1

||w||
w =

1√
30

51
2


Overwrite A2:4,2:3 with I − 2v2v

∗
2

A :=

[
1 0
0 I − 2v2v

∗
2

]
A =


2 4 2
0 −2 −8
0 0 16/5
0 0 12/5



16/17



Example

Compute the reflector that maps A3:4,3 to multiple of e1

y =

[
16/5
12/5

]
, w = y+||y||e1 =

[
36/5
12/5

]
, v3 =

1

||w||
w =

1√
10

[
3
1

]

Overwrite A3:4,3 with I − 2v3v
∗
3

A :=

[
I 0
0 I − 2v3v

∗
3

]
A =


2 4 2
0 −2 −8
0 0 −4
0 0 0


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y =

[
16/5
12/5

]
, w = y+||y||e1 =

[
36/5
12/5

]
, v3 =

1

||w||
w =

1√
10

[
3
1

]
Overwrite A3:4,3 with I − 2v3v

∗
3

A :=

[
I 0
0 I − 2v3v

∗
3

]
A =


2 4 2
0 −2 −8
0 0 −4
0 0 0


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