Numerical Linear Algebra

m Matrix vector product

m QR factorization.

m Gram-Schmidt.

m Modified Gram-Schmidt.
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Matrix Vector product

m Let = be a n-dimensional column vector and A be an
m X n matrix (m rows and n columns).

2/19



Matrix Vector product

m Let = be a n-dimensional column vector and A be an
m X n matrix (m rows and n columns).

m The matrix vector product b = Ax is the m-dimensional
column vector:

n
bi: E Q54 ’L:]_,,m
J=1

2/19



Matrix Vector product

m Let  be a n-dimensional column vector and A be an
m X n matrix (m rows and n columns).

m The matrix vector product b = Ax is the m-dimensional
column vector:

n

bi: E Q54 ’L:]_,...,m.

j=1

m Let a; denote the jth column of A, an m-vector. Then
rewriting the above equation:

b= Ax = Z xja;
j=1

2/19



Matrix Vector product

bl = |lay|as|...|ay, | =2 o | +xn |as |+ 42y, | an

3/19



Matrix Vector product

bl = |lay|as|...|ay, | =2 o | +xn |as |+ 42y, | an

8 ..

n

m b can also be thought of as a linear combination of the
columns a;

3/19



Matrix Vector product

bl = |lay|as|...|ay, | =2 o | +xn |as |+ 42y, | an

8 ..

n

m b can also be thought of as a linear combination of the
columns a;

m Ax = b is usually thought of as A acting on = to produce b

m Ax = b can also be thought of as z acting on A to produce b!

3/19



Matrix Vector product

bl = |lay|as|...|ay, | =2 o | +xn |as |+ 42y, | an

8 ..

n

m b can also be thought of as a linear combination of the
columns a;

m Ax = b is usually thought of as A acting on = to produce b

m Ax = b can also be thought of as z acting on A to produce b!

m From 2 = A~'b, x can be thought of just as the result of
application of A~! to b.

3/19



Matrix Vector product

bl = |lay|as|...|ay, | =2 o | +xn |as |+ 42y, | an

8 ..

n

m b can also be thought of as a linear combination of the
columns a;

m Ax = b is usually thought of as A acting on = to produce b

m Ax = b can also be thought of as z acting on A to produce b!

m From 2 = A~'b, x can be thought of just as the result of
application of A~! to b.

m Alternatively, A~'b is the vector of coefficients of the
expansion of b in the basis of columns of A.
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QR Factorization

m One algorithmic idea in numerical linear algebra that is
more important than all others.
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m In many applications, we are interested in column spaces
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the columns ay, as, ... of A:
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where (---) denotes the subspace spanned by whatever
vectors are included in the brackets.
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QR Factorization

m One algorithmic idea in numerical linear algebra that is
more important than all others.

m In many applications, we are interested in column spaces
of a matrix A. These are successive spaces spanned by
the columns ay, as, ... of A:

(a1) C (ay,a2) C (ay,a9,a3) C ...

where (---) denotes the subspace spanned by whatever
vectors are included in the brackets.

m The idea of QR factorization is to construct a sequence of
orthonormal vectors, ¢, ¢o, ... that span these successive
spaces.
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QR Factorization

m Assume for the moment that A € C™*" (m > n), we
want the sequence ¢, ¢s, . .. to have the property:

<Q1,QQ,..-,Qj>:<a1,a2,...,aj> jzla"'un
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QR Factorization

m Assume for the moment that A € C™*" (m > n), we
want the sequence ¢, ¢s, . .. to have the property:

<Q1,QQ,..-,Qj>:<a1,a2,...,aj> j:17"'7n

m This amounts to :

T Tz - Tin
722
ay | ag | ... |ap| = |q1 Q2| ... | Q4n
rnn
m Then aq,...,a, can be expressed as a linear combination

of q1,...qx, and vice versa!
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QR Factorization

m Written out the equations are:

a1 = T11q1

Qg = T12q1 + 72202

An = Tp1q1 + T2rq2 + -+ + Thunln
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QR Factorization

m Written out the equations are:

a1 = T11q1

Qg = T12q1 + 72202

An = Tp1q1 + T2rq2 + -+ + Thunln

m If A e R™*™ vectors q1,qs, ..., q, are orthonormal
m-vectors:
4 ¢j = b
m Diagonal elements r; are non-zero.
m If r; < 0, one can switch the signs of r;,...,7;, and the
vector g;.

m Require r;; > 0; this makes () and R unique.
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QR Factorization in matrix notation

m If A € R™ ™ has linearly independent columns then it can
be factored as:

A=QR
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QR Factorization in matrix notation

m If A € R™ ™ has linearly independent columns then it can
be factored as:

A=QR

m () factor:
m @ is m x n with orthonormal columns (QTQ = I).
m if A is square (m = n), then @ is orthogonal
(QTQ=QQ" =1)
m R factor:

m R is n X n, upper triangular, with nonzero diagonal elements.
m R is nonsingular (diagonal elements are nonzero)
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Example of QR factorization

[—1/2
1/2
—1/2
1/2

q1 | 42

1/2
1/2
1/2
1/2

—1/2 2 4 2
—1/2
0 2 8
1/2 0 0 4
1/2
i1 Ti2 n
T'22
qn
Tnn
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Solution of Az = b using QR factorization

m Compute the QR factorization of A: A = QR.
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Solution of Az = b using QR factorization

m Compute the QR factorization of A: A = QR.

m Compute y = Q7b

m Solve Rx = y for x : This is just backward substitution as
R is upper triangular.

9/19



Algorithms for QR factorization

m Classical Gram-Schmidt
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Algorithms for QR factorization

m Classical Gram-Schmidt
m Complexity is 2mn? flops.
m Not recommended in practice (sensitive to rounding errors)
m Modified Gram-Schmidt
m Complexity is 2mn? flops.
m Better numerical properties.
m Householder
m Complexity is 2mn? — (2/3)n? flops.
m Represent ) as a product of elementary orthogonal algorithms.
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Classical Gram Schmidt

m Given ay,as, ..., we can construct the vectors q1, qa, . . .,
and r;; by a process of successive orthogonalization.
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m Given ay,as, ..., we can construct the vectors ¢, ¢s, . .
and r;; by a process of successive orthogonalization.
m The process works as follows. At the jth step, we wish to

°

find a unit vector ¢; € (a1, ..., a;) that is orthogonal to
qi, - - - 7Qj—1-
m
vj = a; — (q1a;)qi - .. — (¢_105)qj-1

is a vector of kind required except that it is not
normalized yet.

11/19



Classical Gram Schmidt

m Given ay,asq, ..., we can construct the vectors ¢, ¢o, . . .,
and r;; by a process of successive orthogonalization.
m The process works as follows. At the jth step, we wish to

find a unit vector ¢; € (a1, ..., a;) that is orthogonal to
qi, - - - 7Qj—1-
m
vj = a; — (q1a;)qi - .. — (¢_105)qj-1

is a vector of kind required except that it is not

normalized yet.
m With this in mind:

a1 =

q2

an =

a1

T11
a2—"124q1
T22

n—1
QAn *Zizl Tindi
Tnn
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Classical Gram-Schmidt

Algorithm 1 Classical Gram-Schmidt (unstable)
1. for j =1tondo
2: Vj = a;
3 fori=1toj—1do
4 Tij = 4 a;
5 Vj = Vj — 145
6: end for
7
8
9

Ti5 = |vjl2
qj = vj/7jj
- end for
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Classical Gram-Schmidt

m In exact arithematic, this algorithm is stable.. but on a
computer, we always have roundoff errors.
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Classical Gram-Schmidt

m In exact arithematic, this algorithm is stable.. but on a
computer, we always have roundoff errors.

m Nevertheless — this decomposes A = QR.

m Consider:

[—1 —1 1
1 3 3
e @ = 1 1 5
_1 3 7

1 Tz o Tip

T'22
= 191|492 ---|Gn
Tnn
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m First column of Q and R:

-1 -1/2
1 1 1/2
qr = a1 = 1| 7“11:|(11|:2 QI:T_MQI: _1//2

1 1/2
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m First column of Q and R:

—1
1

1
n=ar= > m=lal=2 a=—q=
""..

(2

1
m Second column of Q and R:

T
T2 =qy a2 =4

~1/2
1/2

~1/2
1/2
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m First column of Q and R:

-1 —1/2
1 1 1/2
n=a=1_41/> 1= || =2 QI:T_MQI: _1//2
1 1/2

m Second column of Q and R:

T
T2 =qy a2 =4

m Compute:
~1 ~1/2 1
~ 3 1/2 1
@2 =02 —T2q1 = | _4 —4 _1//2 =11
3 1/2 1
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u 7o = |¢72‘ =2

G2 =—@ =
T'22

1/2
1/2
1/2
1/2
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u 7o = |¢72‘ =2

G2 =—@ =
T'22

1/2
1/2
1/2
1/2
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u 7o = |¢72‘ =2

1/2
q —id |12
’ 7’222 1/2
1/2

m Compute ry3 = ¢l az = 3 and ry3 = gL az = 8
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u 7o = |¢72‘ =2

1/2
q —id |12
’ 7’222 1/2
1/2

m Compute ry3 = ¢l az = 3 and ry3 = gL az = 8

m Compute

g3 = a3 — r13q1 — 232 =
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u 7o = |¢72‘ =2

1/2
@ = ic} |12
? 722 ? 1/2
1/2
m Compute ry3 = ¢l az = 3 and ry3 = gL az = 8
m Compute
-2
- —2
g3 = a3 — T13q1 — T23Q2 = 9
2
m Normalize:
~1/2
1. |-12

33 = |G3| = 4 Q3:T—33(J3= 1/2
1/2
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[—1/2
1/2
—1/2
1/2

q1 | 42

1/2
1/2
1/2
1/2

AR
—1/2
0 2 8
1/2 0 0 4
1/2
i1 Ti2 n
T'22
qn
Tnn
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Modified Gram-Schmidt

We define:

proj, (v) =

m As mentioned Gram-Schmidt is numerically unstable:

Uy = Vi — PIojy, (Vi) — Projy, (V) = — Projy, (Vk),
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Modified Gram-Schmidt

We define:

proj, (v) =

m As mentioned Gram-Schmidt is numerically unstable:
Uj, = Vi — Proj,, (Vi) — Projy, (Vi) — -+ —proj,, , (vi),
m However, it can be stabilized with a small modification:
(1) = Vi — Projy, (Vi),

2 . 1
u;i) = ) — proj,, (u"),

2) _ (k=3)

k—3

](C - uk _prOJuk 2 (u](ﬂ ))7
k—2 -2

w ™ =0 = proj,,, |, (™).
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Modified Gram-Schmidt

Algorithm 2 Modified Gram-Schmidt
1: for i =1 ton do
2: V; = a;
3: end for
4: for i =1 ton do
i = |vil2
¢ = vi/Tii
for j=i+1tondo
Tij = 4; U
Vj = V5 — Tijdi
10: end for
11: end for

© ® N a
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Modified Gram Schmidt

m Even though on paper, the modified Gram-Schmidt should
give identical results as Classical Gram-Schmidt, in
practice it is wildly different.
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Modified Gram Schmidt

m Even though on paper, the modified Gram-Schmidt should
give identical results as Classical Gram-Schmidt, in
practice it is wildly different.

m Modified Gram-Schmidt is stable and is routinely used in
various software.
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