

- Matrix vector product
- QR factorization.
- Gram-Schmidt.
- Modified Gram-Schmidt.

- Let x be a n -dimensional column vector and A be an $m \times n$ matrix (m rows and n columns).

- Let x be a n -dimensional column vector and A be an $m \times n$ matrix (m rows and n columns).
- The matrix vector product $b = Ax$ is the m -dimensional column vector:

$$b_i = \sum_{j=1}^n a_{ij}x_j \quad i = 1, \dots, m.$$

- Let x be a n -dimensional column vector and A be an $m \times n$ matrix (m rows and n columns).
- The matrix vector product $b = Ax$ is the m -dimensional column vector:

$$b_i = \sum_{j=1}^n a_{ij}x_j \quad i = 1, \dots, m.$$

- Let a_j denote the j th column of A , an m -vector. Then rewriting the above equation:

$$b = Ax = \sum_{j=1}^n x_j a_j$$

Matrix Vector product

$$\begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} a_1 \end{bmatrix} + x_2 \begin{bmatrix} a_2 \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_n \end{bmatrix}$$

Matrix Vector product

$$\begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} a_1 \end{bmatrix} + x_2 \begin{bmatrix} a_2 \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_n \end{bmatrix}$$

- b can also be thought of as a linear combination of the columns a_j

Matrix Vector product

$$\begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} a_1 \end{bmatrix} + x_2 \begin{bmatrix} a_2 \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_n \end{bmatrix}$$

- b can also be thought of as a linear combination of the columns a_j
- $Ax = b$ is usually thought of as A acting on x to produce b
- $Ax = b$ can also be thought of as x acting on A to produce b !

Matrix Vector product

$$\begin{bmatrix} b \\ \vdots \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} a_1 \\ \vdots \end{bmatrix} + x_2 \begin{bmatrix} a_2 \\ \vdots \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_n \\ \vdots \end{bmatrix}$$

- b can also be thought of as a linear combination of the columns a_j
- $Ax = b$ is usually thought of as A acting on x to produce b
- $Ax = b$ can also be thought of as x acting on A to produce b !
- From $x = A^{-1}b$, x can be thought of just as the result of application of A^{-1} to b .

$$\begin{bmatrix} b \\ \vdots \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} a_1 \\ \vdots \end{bmatrix} + x_2 \begin{bmatrix} a_2 \\ \vdots \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_n \\ \vdots \end{bmatrix}$$

- b can also be thought of as a linear combination of the columns a_j
- $Ax = b$ is usually thought of as A acting on x to produce b
- $Ax = b$ can also be thought of as x acting on A to produce b !
- From $x = A^{-1}b$, x can be thought of just as the result of application of A^{-1} to b .
- Alternatively, $A^{-1}b$ is the vector of coefficients of the expansion of b in the basis of columns of A .

- One algorithmic idea in numerical linear algebra that is more important than all others.

- One algorithmic idea in numerical linear algebra that is more important than all others.
- In many applications, we are interested in column spaces of a matrix A . These are *successive* spaces spanned by the columns a_1, a_2, \dots of A :

$$\langle a_1 \rangle \subseteq \langle a_1, a_2 \rangle \subseteq \langle a_1, a_2, a_3 \rangle \subseteq \dots$$

where $\langle \dots \rangle$ denotes the subspace spanned by whatever vectors are included in the brackets.

- One algorithmic idea in numerical linear algebra that is more important than all others.
- In many applications, we are interested in column spaces of a matrix A . These are *successive* spaces spanned by the columns a_1, a_2, \dots of A :

$$\langle a_1 \rangle \subseteq \langle a_1, a_2 \rangle \subseteq \langle a_1, a_2, a_3 \rangle \subseteq \dots$$

where $\langle \dots \rangle$ denotes the subspace spanned by whatever vectors are included in the brackets.

- The idea of QR factorization is to construct a sequence of *orthonormal* vectors, q_1, q_2, \dots that span these successive spaces.

- Assume for the moment that $A \in \mathbb{C}^{m \times n}$ ($m \geq n$), we want the sequence q_1, q_2, \dots to have the property:

$$\langle q_1, q_2, \dots, q_j \rangle = \langle a_1, a_2, \dots, a_j \rangle \quad j = 1, \dots, n$$

QR Factorization

- Assume for the moment that $A \in \mathbb{C}^{m \times n}$ ($m \geq n$), we want the sequence q_1, q_2, \dots to have the property:

$$\langle q_1, q_2, \dots, q_j \rangle = \langle a_1, a_2, \dots, a_j \rangle \quad j = 1, \dots, n$$

- This amounts to :

$$\left[\begin{array}{c|c|c|c} a_1 & a_2 & \dots & a_n \end{array} \right] = \left[\begin{array}{c|c|c|c} q_1 & q_2 & \dots & q_n \end{array} \right] \left[\begin{array}{cccc} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & & \\ \ddots & & & \\ & & & r_{nn} \end{array} \right]$$

QR Factorization

- Assume for the moment that $A \in \mathbb{C}^{m \times n}$ ($m \geq n$), we want the sequence q_1, q_2, \dots to have the property:

$$\langle q_1, q_2, \dots, q_j \rangle = \langle a_1, a_2, \dots, a_j \rangle \quad j = 1, \dots, n$$

- This amounts to :

$$\left[\begin{array}{c|c|c|c} & & & \\ a_1 & a_2 & \dots & a_n \end{array} \right] = \left[\begin{array}{c|c|c|c} q_1 & q_2 & \dots & q_n \end{array} \right] \left[\begin{array}{cccc} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{22} & & & \\ \ddots & & & \\ r_{nn} & & & \end{array} \right]$$

- Then a_1, \dots, a_k can be expressed as a linear combination of q_1, \dots, q_k , and vice versa!

- Written out the equations are:

$$a_1 = r_{11}q_1$$

$$a_2 = r_{12}q_1 + r_{22}q_2$$

⋮

$$a_n = r_{n1}q_1 + r_{2n}q_2 + \cdots + r_{nn}q_n$$

- Written out the equations are:

$$a_1 = r_{11}q_1$$

$$a_2 = r_{12}q_1 + r_{22}q_2$$

$$\vdots$$

$$a_n = r_{n1}q_1 + r_{2n}q_2 + \cdots + r_{nn}q_n$$

- If $A \in \mathbb{R}^{m \times n}$, vectors q_1, q_2, \dots, q_n are orthonormal m -vectors:

$$q_i^T q_j = \delta_{ij}$$

- Written out the equations are:

$$a_1 = r_{11}q_1$$

$$a_2 = r_{12}q_1 + r_{22}q_2$$

$$\vdots$$

$$a_n = r_{n1}q_1 + r_{2n}q_2 + \cdots + r_{nn}q_n$$

- If $A \in \mathbb{R}^{m \times n}$, vectors q_1, q_2, \dots, q_n are orthonormal m -vectors:

$$q_i^T q_j = \delta_{ij}$$

- Diagonal elements r_{ii} are non-zero.

- Written out the equations are:

$$a_1 = r_{11}q_1$$

$$a_2 = r_{12}q_1 + r_{22}q_2$$

$$\vdots$$

$$a_n = r_{n1}q_1 + r_{2n}q_2 + \cdots + r_{nn}q_n$$

- If $A \in \mathbb{R}^{m \times n}$, vectors q_1, q_2, \dots, q_n are orthonormal m -vectors:

$$q_i^T q_j = \delta_{ij}$$

- Diagonal elements r_{ii} are non-zero.
- If $r_{ii} < 0$, one can switch the signs of r_{ii}, \dots, r_{in} and the vector q_i .

- Written out the equations are:

$$a_1 = r_{11}q_1$$

$$a_2 = r_{12}q_1 + r_{22}q_2$$

$$\vdots$$

$$a_n = r_{n1}q_1 + r_{2n}q_2 + \cdots + r_{nn}q_n$$

- If $A \in \mathbb{R}^{m \times n}$, vectors q_1, q_2, \dots, q_n are orthonormal m -vectors:

$$q_i^T q_j = \delta_{ij}$$

- Diagonal elements r_{ii} are non-zero.
- If $r_{ii} < 0$, one can switch the signs of r_{ii}, \dots, r_{in} and the vector q_i .
- Require $r_{ii} > 0$; this makes Q and R unique.

- If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as:

$$A = QR$$

- If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as:

$$A = QR$$

- Q factor:

- If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as:

$$A = QR$$

- Q factor:
 - Q is $m \times n$ with orthonormal columns ($Q^T Q = I$).

- If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as:

$$A = QR$$

- Q factor:

- Q is $m \times n$ with orthonormal columns ($Q^T Q = I$).
- if A is square ($m = n$), then Q is orthogonal ($Q^T Q = QQ^T = I$)

- If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as:

$$A = QR$$

- Q factor:

- Q is $m \times n$ with orthonormal columns ($Q^T Q = I$).
- if A is square ($m = n$), then Q is orthogonal ($Q^T Q = QQ^T = I$)

- R factor:

- If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as:

$$A = QR$$

- Q factor:
 - Q is $m \times n$ with orthonormal columns ($Q^T Q = I$).
 - if A is square ($m = n$), then Q is orthogonal ($Q^T Q = QQ^T = I$)
- R factor:
 - R is $n \times n$, upper triangular, with nonzero diagonal elements.

- If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as:

$$A = QR$$

- Q factor:
 - Q is $m \times n$ with orthonormal columns ($Q^T Q = I$).
 - if A is square ($m = n$), then Q is orthogonal ($Q^T Q = QQ^T = I$)
- R factor:
 - R is $n \times n$, upper triangular, with nonzero diagonal elements.
 - R is nonsingular (diagonal elements are nonzero)

Example of QR factorization

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{22} & & & \\ \ddots & & & \\ & & & r_{nn} \end{bmatrix}$$
$$= QR$$

Solution of $Ax = b$ using QR factorization

- Compute the QR factorization of A : $A = QR$.

- Compute the QR factorization of A : $A = QR$.
- Compute $y = Q^T b$

- Compute the QR factorization of A : $A = QR$.
- Compute $y = Q^T b$
- Solve $Rx = y$ for x : This is just backward substitution as R is upper triangular.

- Classical Gram-Schmidt

- Classical Gram-Schmidt
 - Complexity is $2mn^2$ flops.

- Classical Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Not recommended in practice (sensitive to rounding errors)

- Classical Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Not recommended in practice (sensitive to rounding errors)
- Modified Gram-Schmidt

- Classical Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Not recommended in practice (sensitive to rounding errors)
- Modified Gram-Schmidt
 - Complexity is $2mn^2$ flops.

- Classical Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Not recommended in practice (sensitive to rounding errors)
- Modified Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Better numerical properties.

- Classical Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Not recommended in practice (sensitive to rounding errors)
- Modified Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Better numerical properties.
- Householder

- Classical Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Not recommended in practice (sensitive to rounding errors)
- Modified Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Better numerical properties.
- Householder
 - Complexity is $2mn^2 - (2/3)n^3$ flops.

- Classical Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Not recommended in practice (sensitive to rounding errors)
- Modified Gram-Schmidt
 - Complexity is $2mn^2$ flops.
 - Better numerical properties.
- Householder
 - Complexity is $2mn^2 - (2/3)n^3$ flops.
 - Represent Q as a product of elementary orthogonal algorithms.

Classical Gram Schmidt

- Given a_1, a_2, \dots , we can construct the vectors q_1, q_2, \dots , and r_{ij} by a process of successive orthogonalization.

- Given a_1, a_2, \dots , we can construct the vectors q_1, q_2, \dots , and r_{ij} by a process of successive orthogonalization.
- The process works as follows. At the j th step, we wish to find a unit vector $q_j \in \langle a_1, \dots, a_j \rangle$ that is orthogonal to q_1, \dots, q_{j-1} .

- Given a_1, a_2, \dots , we can construct the vectors q_1, q_2, \dots , and r_{ij} by a process of successive orthogonalization.
- The process works as follows. At the j th step, we wish to find a unit vector $q_j \in \langle a_1, \dots, a_j \rangle$ that is orthogonal to q_1, \dots, q_{j-1} .
-

$$v_j = a_j - (q_1^* a_j) q_1 - \dots - (q_{j-1}^* a_j) q_{j-1}$$

is a vector of kind required except that it is not normalized yet.

- Given a_1, a_2, \dots , we can construct the vectors q_1, q_2, \dots , and r_{ij} by a process of successive orthogonalization.
- The process works as follows. At the j th step, we wish to find a unit vector $q_j \in \langle a_1, \dots, a_j \rangle$ that is orthogonal to q_1, \dots, q_{j-1} .
-

$$v_j = a_j - (q_1^* a_j) q_1 - \dots - (q_{j-1}^* a_j) q_{j-1}$$

is a vector of kind required except that it is not normalized yet.

- With this in mind:

$$q_1 = \frac{a_1}{r_{11}}$$

$$q_2 = \frac{a_2 - r_{12}q_1}{r_{22}}$$

⋮

$$q_n = \frac{a_n - \sum_{i=1}^{n-1} r_{in} q_i}{r_{nn}}$$

Algorithm 1 Classical Gram-Schmidt (unstable)

```
1: for  $j = 1$  to  $n$  do  
2:    $v_j = a_j$   
3:   for  $i = 1$  to  $j - 1$  do  
4:      $r_{ij} = q_i^* a_j$   
5:      $v_j = v_j - r_{ij} q_i$   
6:   end for  
7:    $r_{jj} = |v_j|_2$   
8:    $q_j = v_j / r_{jj}$   
9: end for
```

- In exact arithmetic, this algorithm is stable.. but on a computer, we always have roundoff errors.

- In exact arithmetic, this algorithm is stable.. but on a computer, we always have roundoff errors.
- Nevertheless – this decomposes $A = QR$.

- In exact arithmetic, this algorithm is stable.. but on a computer, we always have roundoff errors.
- Nevertheless – this decomposes $A = QR$.
- Consider:

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} \\
 = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{22} & \ddots & & \vdots \\ & & r_{nn} \end{bmatrix}$$

Example

- First column of Q and R:

$$q_1 = a_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad r_{11} = |q_1| = 2 \quad q_1 = \frac{1}{r_{11}}q_1 = \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$$

Example

- First column of Q and R:

$$q_1 = a_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad r_{11} = |q_1| = 2 \quad q_1 = \frac{1}{r_{11}} q_1 = \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$$

- Second column of Q and R:

$$r_{12} = q_1^T a_2 = 4$$

Example

- First column of Q and R:

$$q_1 = a_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad r_{11} = |q_1| = 2 \quad q_1 = \frac{1}{r_{11}} q_1 = \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$$

- Second column of Q and R:

$$r_{12} = q_1^T a_2 = 4$$

- Compute:

$$\tilde{q}_2 = a_2 - r_{12} q_1 = \begin{bmatrix} -1 \\ 3 \\ -1 \\ 3 \end{bmatrix} - 4 \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Example

- $r_{22} = |\tilde{q}_2| = 2$

$$q_2 = \frac{1}{r_{22}} \tilde{q}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

Example

- $r_{22} = |\tilde{q}_2| = 2$

$$q_2 = \frac{1}{r_{22}} \tilde{q}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

Example

- $r_{22} = |\tilde{q}_2| = 2$

$$q_2 = \frac{1}{r_{22}} \tilde{q}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

- Compute $r_{13} = q_1^T a_3 = 3$ and $r_{23} = q_2^T a_3 = 8$

Example

- $r_{22} = |\tilde{q}_2| = 2$

$$q_2 = \frac{1}{r_{22}} \tilde{q}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

- Compute $r_{13} = q_1^T a_3 = 3$ and $r_{23} = q_2^T a_3 = 8$
- Compute

$$\tilde{q}_3 = a_3 - r_{13}q_1 - r_{23}q_2 = \begin{bmatrix} -2 \\ -2 \\ 2 \\ 2 \end{bmatrix}$$

Example

- $r_{22} = |\tilde{q}_2| = 2$

$$q_2 = \frac{1}{r_{22}} \tilde{q}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

- Compute $r_{13} = q_1^T a_3 = 3$ and $r_{23} = q_2^T a_3 = 8$
- Compute

$$\tilde{q}_3 = a_3 - r_{13}q_1 - r_{23}q_2 = \begin{bmatrix} -2 \\ -2 \\ 2 \\ 2 \end{bmatrix}$$

- Normalize:

$$r_{33} = |\tilde{q}_3| = 4 \quad q_3 = \frac{1}{r_{33}} \tilde{q}_3 = \begin{bmatrix} -1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

Example

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{22} & & & \\ \ddots & & & \\ & & & r_{nn} \end{bmatrix}$$
$$= QR$$

Modified Gram-Schmidt

We define:

$$\text{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$$

- As mentioned Gram-Schmidt is numerically unstable:

$$\mathbf{u}_k = \mathbf{v}_k - \text{proj}_{\mathbf{u}_1}(\mathbf{v}_k) - \text{proj}_{\mathbf{u}_2}(\mathbf{v}_k) - \cdots - \text{proj}_{\mathbf{u}_{k-1}}(\mathbf{v}_k),$$

Modified Gram-Schmidt

We define:

$$\text{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$$

- As mentioned Gram-Schmidt is numerically unstable:

$$\mathbf{u}_k = \mathbf{v}_k - \text{proj}_{\mathbf{u}_1}(\mathbf{v}_k) - \text{proj}_{\mathbf{u}_2}(\mathbf{v}_k) - \cdots - \text{proj}_{\mathbf{u}_{k-1}}(\mathbf{v}_k),$$

- However, it can be stabilized with a small modification:

$$\mathbf{u}_k^{(1)} = \mathbf{v}_k - \text{proj}_{\mathbf{u}_1}(\mathbf{v}_k),$$

$$\mathbf{u}_k^{(2)} = \mathbf{u}_k^{(1)} - \text{proj}_{\mathbf{u}_2}(\mathbf{u}_k^{(1)}),$$

$$\vdots$$

$$\mathbf{u}_k^{(k-2)} = \mathbf{u}_k^{(k-3)} - \text{proj}_{\mathbf{u}_{k-2}}(\mathbf{u}_k^{(k-3)}),$$

$$\mathbf{u}_k^{(k-1)} = \mathbf{u}_k^{(k-2)} - \text{proj}_{\mathbf{u}_{k-1}}(\mathbf{u}_k^{(k-2)}).$$

Algorithm 2 Modified Gram-Schmidt

```
1: for  $i = 1$  to  $n$  do
2:    $v_i = a_i$ 
3: end for
4: for  $i = 1$  to  $n$  do
5:    $r_{ii} = |v_i|_2$ 
6:    $q_i = v_i / r_{ii}$ 
7:   for  $j = i + 1$  to  $n$  do
8:      $r_{ij} = q_i^* v_j$ 
9:      $v_j = v_j - r_{ij} q_i$ 
10:  end for
11: end for
```

- Even though on paper, the modified Gram-Schmidt should give identical results as Classical Gram-Schmidt, in practice it is wildly different.

- Even though on paper, the modified Gram-Schmidt should give identical results as Classical Gram-Schmidt, in practice it is wildly different.
- Modified Gram-Schmidt is stable and is routinely used in various software.