
Numerical Linear Algebra

Matrix vector product
QR factorization.
Gram-Schmidt.
Modified Gram-Schmidt.

1/19



Matrix Vector product

Let x be a n-dimensional column vector and A be an
m× n matrix (m rows and n columns).

The matrix vector product b = Ax is the m-dimensional
column vector:

bi =
n∑

j=1

aijxj i = 1, . . . ,m.

Let aj denote the jth column of A, an m-vector. Then
rewriting the above equation:

b = Ax =
n∑

j=1

xjaj

2/19



Matrix Vector product

Let x be a n-dimensional column vector and A be an
m× n matrix (m rows and n columns).
The matrix vector product b = Ax is the m-dimensional
column vector:

bi =
n∑

j=1

aijxj i = 1, . . . ,m.

Let aj denote the jth column of A, an m-vector. Then
rewriting the above equation:

b = Ax =
n∑

j=1

xjaj

2/19



Matrix Vector product

Let x be a n-dimensional column vector and A be an
m× n matrix (m rows and n columns).
The matrix vector product b = Ax is the m-dimensional
column vector:

bi =
n∑

j=1

aijxj i = 1, . . . ,m.

Let aj denote the jth column of A, an m-vector. Then
rewriting the above equation:

b = Ax =
n∑

j=1

xjaj

2/19



Matrix Vector product

b
 =

a1 a2 . . . an



x1
x2
...
xn

 = x1

a1
+x2

a2
+· · ·+xn

an


b can also be thought of as a linear combination of the
columns aj
Ax = b is usually thought of as A acting on x to produce b
Ax = b can also be thought of as x acting on A to produce b!
From x = A−1b, x can be thought of just as the result of
application of A−1 to b.
Alternatively, A−1b is the vector of coefficients of the
expansion of b in the basis of columns of A.

3/19



Matrix Vector product

b
 =

a1 a2 . . . an



x1
x2
...
xn

 = x1

a1
+x2

a2
+· · ·+xn

an


b can also be thought of as a linear combination of the
columns aj

Ax = b is usually thought of as A acting on x to produce b
Ax = b can also be thought of as x acting on A to produce b!
From x = A−1b, x can be thought of just as the result of
application of A−1 to b.
Alternatively, A−1b is the vector of coefficients of the
expansion of b in the basis of columns of A.

3/19



Matrix Vector product

b
 =

a1 a2 . . . an



x1
x2
...
xn

 = x1

a1
+x2

a2
+· · ·+xn

an


b can also be thought of as a linear combination of the
columns aj
Ax = b is usually thought of as A acting on x to produce b
Ax = b can also be thought of as x acting on A to produce b!

From x = A−1b, x can be thought of just as the result of
application of A−1 to b.
Alternatively, A−1b is the vector of coefficients of the
expansion of b in the basis of columns of A.

3/19



Matrix Vector product

b
 =

a1 a2 . . . an



x1
x2
...
xn

 = x1

a1
+x2

a2
+· · ·+xn

an


b can also be thought of as a linear combination of the
columns aj
Ax = b is usually thought of as A acting on x to produce b
Ax = b can also be thought of as x acting on A to produce b!
From x = A−1b, x can be thought of just as the result of
application of A−1 to b.

Alternatively, A−1b is the vector of coefficients of the
expansion of b in the basis of columns of A.

3/19



Matrix Vector product

b
 =

a1 a2 . . . an



x1
x2
...
xn

 = x1

a1
+x2

a2
+· · ·+xn

an


b can also be thought of as a linear combination of the
columns aj
Ax = b is usually thought of as A acting on x to produce b
Ax = b can also be thought of as x acting on A to produce b!
From x = A−1b, x can be thought of just as the result of
application of A−1 to b.
Alternatively, A−1b is the vector of coefficients of the
expansion of b in the basis of columns of A.

3/19



QR Factorization

One algorithmic idea in numerical linear algebra that is
more important than all others.

In many applications, we are interested in column spaces
of a matrix A. These are successive spaces spanned by
the columns a1, a2, . . . of A:

〈a1〉 ⊆ 〈a1, a2〉 ⊆ 〈a1, a2, a3〉 ⊆ . . .

where 〈· · · 〉 denotes the subspace spanned by whatever
vectors are included in the brackets.
The idea of QR factorization is to construct a sequence of
orthonormal vectors, q1, q2, . . . that span these successive
spaces.

4/19



QR Factorization

One algorithmic idea in numerical linear algebra that is
more important than all others.
In many applications, we are interested in column spaces
of a matrix A. These are successive spaces spanned by
the columns a1, a2, . . . of A:

〈a1〉 ⊆ 〈a1, a2〉 ⊆ 〈a1, a2, a3〉 ⊆ . . .

where 〈· · · 〉 denotes the subspace spanned by whatever
vectors are included in the brackets.

The idea of QR factorization is to construct a sequence of
orthonormal vectors, q1, q2, . . . that span these successive
spaces.

4/19



QR Factorization

One algorithmic idea in numerical linear algebra that is
more important than all others.
In many applications, we are interested in column spaces
of a matrix A. These are successive spaces spanned by
the columns a1, a2, . . . of A:

〈a1〉 ⊆ 〈a1, a2〉 ⊆ 〈a1, a2, a3〉 ⊆ . . .

where 〈· · · 〉 denotes the subspace spanned by whatever
vectors are included in the brackets.
The idea of QR factorization is to construct a sequence of
orthonormal vectors, q1, q2, . . . that span these successive
spaces.

4/19



QR Factorization

Assume for the moment that A ∈ Cm×n (m ≥ n), we
want the sequence q1, q2, . . . to have the property:

〈q1, q2, . . . , qj〉 = 〈a1, a2, . . . , aj〉 j = 1, . . . , n

This amounts to :a1 a2 . . . an

 =

q1 q2 . . . qn



r11 r12 · · · r1n

r22
. . . ...

rnn


Then a1, . . . , ak can be expressed as a linear combination
of q1, . . . qk, and vice versa!

5/19



QR Factorization

Assume for the moment that A ∈ Cm×n (m ≥ n), we
want the sequence q1, q2, . . . to have the property:

〈q1, q2, . . . , qj〉 = 〈a1, a2, . . . , aj〉 j = 1, . . . , n

This amounts to :a1 a2 . . . an

 =

q1 q2 . . . qn



r11 r12 · · · r1n

r22
. . . ...

rnn



Then a1, . . . , ak can be expressed as a linear combination
of q1, . . . qk, and vice versa!

5/19



QR Factorization

Assume for the moment that A ∈ Cm×n (m ≥ n), we
want the sequence q1, q2, . . . to have the property:

〈q1, q2, . . . , qj〉 = 〈a1, a2, . . . , aj〉 j = 1, . . . , n

This amounts to :a1 a2 . . . an

 =

q1 q2 . . . qn



r11 r12 · · · r1n

r22
. . . ...

rnn


Then a1, . . . , ak can be expressed as a linear combination
of q1, . . . qk, and vice versa!

5/19



QR Factorization

Written out the equations are:

a1 = r11q1

a2 = r12q1 + r22q2
...

an = rn1q1 + r2nq2 + · · ·+ rnnqn

If A ∈ Rm×n, vectors q1, q2, . . . , qn are orthonormal
m-vectors:

qTi qj = δij

Diagonal elements rii are non-zero.
If rii < 0, one can switch the signs of rii, . . . , rin and the
vector qi.
Require rii > 0; this makes Q and R unique.

6/19



QR Factorization

Written out the equations are:

a1 = r11q1

a2 = r12q1 + r22q2
...

an = rn1q1 + r2nq2 + · · ·+ rnnqn

If A ∈ Rm×n, vectors q1, q2, . . . , qn are orthonormal
m-vectors:

qTi qj = δij

Diagonal elements rii are non-zero.
If rii < 0, one can switch the signs of rii, . . . , rin and the
vector qi.
Require rii > 0; this makes Q and R unique.

6/19



QR Factorization

Written out the equations are:

a1 = r11q1

a2 = r12q1 + r22q2
...

an = rn1q1 + r2nq2 + · · ·+ rnnqn

If A ∈ Rm×n, vectors q1, q2, . . . , qn are orthonormal
m-vectors:

qTi qj = δij

Diagonal elements rii are non-zero.

If rii < 0, one can switch the signs of rii, . . . , rin and the
vector qi.
Require rii > 0; this makes Q and R unique.

6/19



QR Factorization

Written out the equations are:

a1 = r11q1

a2 = r12q1 + r22q2
...

an = rn1q1 + r2nq2 + · · ·+ rnnqn

If A ∈ Rm×n, vectors q1, q2, . . . , qn are orthonormal
m-vectors:

qTi qj = δij

Diagonal elements rii are non-zero.
If rii < 0, one can switch the signs of rii, . . . , rin and the
vector qi.

Require rii > 0; this makes Q and R unique.

6/19



QR Factorization

Written out the equations are:

a1 = r11q1

a2 = r12q1 + r22q2
...

an = rn1q1 + r2nq2 + · · ·+ rnnqn

If A ∈ Rm×n, vectors q1, q2, . . . , qn are orthonormal
m-vectors:

qTi qj = δij

Diagonal elements rii are non-zero.
If rii < 0, one can switch the signs of rii, . . . , rin and the
vector qi.
Require rii > 0; this makes Q and R unique.

6/19



QR Factorization in matrix notation

If A ∈ Rm×n has linearly independent columns then it can
be factored as:

A = QR

Q factor:

Q is m× n with orthonormal columns (QTQ = I).
if A is square (m = n), then Q is orthogonal
(QTQ = QQT = I)

R factor:

R is n× n, upper triangular, with nonzero diagonal elements.
R is nonsingular (diagonal elements are nonzero)

7/19



QR Factorization in matrix notation

If A ∈ Rm×n has linearly independent columns then it can
be factored as:

A = QR

Q factor:

Q is m× n with orthonormal columns (QTQ = I).
if A is square (m = n), then Q is orthogonal
(QTQ = QQT = I)

R factor:

R is n× n, upper triangular, with nonzero diagonal elements.
R is nonsingular (diagonal elements are nonzero)

7/19



QR Factorization in matrix notation

If A ∈ Rm×n has linearly independent columns then it can
be factored as:

A = QR

Q factor:
Q is m× n with orthonormal columns (QTQ = I).

if A is square (m = n), then Q is orthogonal
(QTQ = QQT = I)

R factor:

R is n× n, upper triangular, with nonzero diagonal elements.
R is nonsingular (diagonal elements are nonzero)

7/19



QR Factorization in matrix notation

If A ∈ Rm×n has linearly independent columns then it can
be factored as:

A = QR

Q factor:
Q is m× n with orthonormal columns (QTQ = I).
if A is square (m = n), then Q is orthogonal
(QTQ = QQT = I)

R factor:

R is n× n, upper triangular, with nonzero diagonal elements.
R is nonsingular (diagonal elements are nonzero)

7/19



QR Factorization in matrix notation

If A ∈ Rm×n has linearly independent columns then it can
be factored as:

A = QR

Q factor:
Q is m× n with orthonormal columns (QTQ = I).
if A is square (m = n), then Q is orthogonal
(QTQ = QQT = I)

R factor:

R is n× n, upper triangular, with nonzero diagonal elements.
R is nonsingular (diagonal elements are nonzero)

7/19



QR Factorization in matrix notation

If A ∈ Rm×n has linearly independent columns then it can
be factored as:

A = QR

Q factor:
Q is m× n with orthonormal columns (QTQ = I).
if A is square (m = n), then Q is orthogonal
(QTQ = QQT = I)

R factor:
R is n× n, upper triangular, with nonzero diagonal elements.

R is nonsingular (diagonal elements are nonzero)

7/19



QR Factorization in matrix notation

If A ∈ Rm×n has linearly independent columns then it can
be factored as:

A = QR

Q factor:
Q is m× n with orthonormal columns (QTQ = I).
if A is square (m = n), then Q is orthogonal
(QTQ = QQT = I)

R factor:
R is n× n, upper triangular, with nonzero diagonal elements.
R is nonsingular (diagonal elements are nonzero)

7/19



Example of QR factorization


−1 −1 1
1 3 3
−1 −1 5
1 3 7

 =


−1/2 1/2 −1/2
1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 1/2 1/2


2 4 2
0 2 8
0 0 4



=

q1 q2 . . . qn



r11 r12 · · · r1n

r22
. . . ...

rnn


= QR

8/19



Solution of Ax = b using QR factorization

Compute the QR factorization of A: A = QR.

Compute y = QT b

Solve Rx = y for x : This is just backward substitution as
R is upper triangular.

9/19



Solution of Ax = b using QR factorization

Compute the QR factorization of A: A = QR.
Compute y = QT b

Solve Rx = y for x : This is just backward substitution as
R is upper triangular.

9/19



Solution of Ax = b using QR factorization

Compute the QR factorization of A: A = QR.
Compute y = QT b

Solve Rx = y for x : This is just backward substitution as
R is upper triangular.

9/19



Algorithms for QR factorization

Classical Gram-Schmidt

Complexity is 2mn2 flops.
Not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt

Complexity is 2mn2 flops.
Better numerical properties.

Householder

Complexity is 2mn2 − (2/3)n3 flops.
Represent Q as a product of elementary orthogonal algorithms.

10/19



Algorithms for QR factorization

Classical Gram-Schmidt
Complexity is 2mn2 flops.

Not recommended in practice (sensitive to rounding errors)
Modified Gram-Schmidt

Complexity is 2mn2 flops.
Better numerical properties.

Householder

Complexity is 2mn2 − (2/3)n3 flops.
Represent Q as a product of elementary orthogonal algorithms.

10/19



Algorithms for QR factorization

Classical Gram-Schmidt
Complexity is 2mn2 flops.
Not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt

Complexity is 2mn2 flops.
Better numerical properties.

Householder

Complexity is 2mn2 − (2/3)n3 flops.
Represent Q as a product of elementary orthogonal algorithms.

10/19



Algorithms for QR factorization

Classical Gram-Schmidt
Complexity is 2mn2 flops.
Not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt

Complexity is 2mn2 flops.
Better numerical properties.

Householder

Complexity is 2mn2 − (2/3)n3 flops.
Represent Q as a product of elementary orthogonal algorithms.

10/19



Algorithms for QR factorization

Classical Gram-Schmidt
Complexity is 2mn2 flops.
Not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt
Complexity is 2mn2 flops.

Better numerical properties.
Householder

Complexity is 2mn2 − (2/3)n3 flops.
Represent Q as a product of elementary orthogonal algorithms.

10/19



Algorithms for QR factorization

Classical Gram-Schmidt
Complexity is 2mn2 flops.
Not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt
Complexity is 2mn2 flops.
Better numerical properties.

Householder

Complexity is 2mn2 − (2/3)n3 flops.
Represent Q as a product of elementary orthogonal algorithms.

10/19



Algorithms for QR factorization

Classical Gram-Schmidt
Complexity is 2mn2 flops.
Not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt
Complexity is 2mn2 flops.
Better numerical properties.

Householder

Complexity is 2mn2 − (2/3)n3 flops.
Represent Q as a product of elementary orthogonal algorithms.

10/19



Algorithms for QR factorization

Classical Gram-Schmidt
Complexity is 2mn2 flops.
Not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt
Complexity is 2mn2 flops.
Better numerical properties.

Householder
Complexity is 2mn2 − (2/3)n3 flops.

Represent Q as a product of elementary orthogonal algorithms.

10/19



Algorithms for QR factorization

Classical Gram-Schmidt
Complexity is 2mn2 flops.
Not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt
Complexity is 2mn2 flops.
Better numerical properties.

Householder
Complexity is 2mn2 − (2/3)n3 flops.
Represent Q as a product of elementary orthogonal algorithms.

10/19



Classical Gram Schmidt

Given a1, a2, . . ., we can construct the vectors q1, q2, . . . ,
and rij by a process of successive orthogonalization.

The process works as follows. At the jth step, we wish to
find a unit vector qj ∈ 〈a1, . . . , aj〉 that is orthogonal to
q1, . . . , qj−1.

vj = aj − (q∗1aj)q1 . . .− (q∗j−1aj)qj−1

is a vector of kind required except that it is not
normalized yet.
With this in mind:

q1 =
a1
r11

q2 =
a2−r12q1

r22

...

qn =
an−

∑n−1
i=1 rinqi
rnn

11/19



Classical Gram Schmidt

Given a1, a2, . . ., we can construct the vectors q1, q2, . . . ,
and rij by a process of successive orthogonalization.
The process works as follows. At the jth step, we wish to
find a unit vector qj ∈ 〈a1, . . . , aj〉 that is orthogonal to
q1, . . . , qj−1.

vj = aj − (q∗1aj)q1 . . .− (q∗j−1aj)qj−1

is a vector of kind required except that it is not
normalized yet.
With this in mind:

q1 =
a1
r11

q2 =
a2−r12q1

r22

...

qn =
an−

∑n−1
i=1 rinqi
rnn

11/19



Classical Gram Schmidt

Given a1, a2, . . ., we can construct the vectors q1, q2, . . . ,
and rij by a process of successive orthogonalization.
The process works as follows. At the jth step, we wish to
find a unit vector qj ∈ 〈a1, . . . , aj〉 that is orthogonal to
q1, . . . , qj−1.

vj = aj − (q∗1aj)q1 . . .− (q∗j−1aj)qj−1

is a vector of kind required except that it is not
normalized yet.

With this in mind:

q1 =
a1
r11

q2 =
a2−r12q1

r22

...

qn =
an−

∑n−1
i=1 rinqi
rnn

11/19



Classical Gram Schmidt

Given a1, a2, . . ., we can construct the vectors q1, q2, . . . ,
and rij by a process of successive orthogonalization.
The process works as follows. At the jth step, we wish to
find a unit vector qj ∈ 〈a1, . . . , aj〉 that is orthogonal to
q1, . . . , qj−1.

vj = aj − (q∗1aj)q1 . . .− (q∗j−1aj)qj−1

is a vector of kind required except that it is not
normalized yet.
With this in mind:

q1 =
a1
r11

q2 =
a2−r12q1

r22

...

qn =
an−

∑n−1
i=1 rinqi
rnn

11/19



Classical Gram-Schmidt

Algorithm 1 Classical Gram-Schmidt (unstable)
1: for j = 1 to n do
2: vj = aj
3: for i = 1 to j − 1 do
4: rij = q∗i aj
5: vj = vj − rijqi
6: end for
7: rjj = |vj |2
8: qj = vj/rjj
9: end for

12/19



Classical Gram-Schmidt

In exact arithematic, this algorithm is stable.. but on a
computer, we always have roundoff errors.

Nevertheless – this decomposes A = QR.
Consider:a1 a2 a3

 =


−1 −1 1
1 3 3
−1 −1 5
1 3 7



=

q1 q2 . . . qn



r11 r12 · · · r1n

r22
. . . ...

rnn



13/19



Classical Gram-Schmidt

In exact arithematic, this algorithm is stable.. but on a
computer, we always have roundoff errors.
Nevertheless – this decomposes A = QR.

Consider:a1 a2 a3

 =


−1 −1 1
1 3 3
−1 −1 5
1 3 7



=

q1 q2 . . . qn



r11 r12 · · · r1n

r22
. . . ...

rnn



13/19



Classical Gram-Schmidt

In exact arithematic, this algorithm is stable.. but on a
computer, we always have roundoff errors.
Nevertheless – this decomposes A = QR.
Consider:a1 a2 a3

 =


−1 −1 1
1 3 3
−1 −1 5
1 3 7



=

q1 q2 . . . qn



r11 r12 · · · r1n

r22
. . . ...

rnn



13/19



Example

First column of Q and R:

q1 = a1 =


−1
1
−1
1

 , r11 = |q1| = 2 q1 =
1

rii
q1 =


−1/2
1/2
−1/2
1/2



Second column of Q and R:

r12 = qT1 a2 = 4

Compute:

q̃2 = a2 − r12q1 =


−1
3
−1
3

− 4


−1/2
1/2
−1/2
1/2

 =


1
1
1
1



14/19



Example

First column of Q and R:

q1 = a1 =


−1
1
−1
1

 , r11 = |q1| = 2 q1 =
1

rii
q1 =


−1/2
1/2
−1/2
1/2


Second column of Q and R:

r12 = qT1 a2 = 4

Compute:

q̃2 = a2 − r12q1 =


−1
3
−1
3

− 4


−1/2
1/2
−1/2
1/2

 =


1
1
1
1



14/19



Example

First column of Q and R:

q1 = a1 =


−1
1
−1
1

 , r11 = |q1| = 2 q1 =
1

rii
q1 =


−1/2
1/2
−1/2
1/2


Second column of Q and R:

r12 = qT1 a2 = 4

Compute:

q̃2 = a2 − r12q1 =


−1
3
−1
3

− 4


−1/2
1/2
−1/2
1/2

 =


1
1
1
1


14/19



Example

r22 = |q̃2| = 2

q2 =
1

r22
q̃2 =


1/2
1/2
1/2
1/2



Compute r13 = qT1 a3 = 3 and r23 = qT2 a3 = 8
Compute

q̃3 = a3 − r13q1 − r23q2 =


−2
−2
2
2


Normalize:

r33 = |q̃3| = 4 q3 =
1

r33
q̃3 =


−1/2
−1/2
1/2
1/2



15/19



Example

r22 = |q̃2| = 2

q2 =
1

r22
q̃2 =


1/2
1/2
1/2
1/2



Compute r13 = qT1 a3 = 3 and r23 = qT2 a3 = 8
Compute

q̃3 = a3 − r13q1 − r23q2 =


−2
−2
2
2


Normalize:

r33 = |q̃3| = 4 q3 =
1

r33
q̃3 =


−1/2
−1/2
1/2
1/2



15/19



Example

r22 = |q̃2| = 2

q2 =
1

r22
q̃2 =


1/2
1/2
1/2
1/2


Compute r13 = qT1 a3 = 3 and r23 = qT2 a3 = 8

Compute

q̃3 = a3 − r13q1 − r23q2 =


−2
−2
2
2


Normalize:

r33 = |q̃3| = 4 q3 =
1

r33
q̃3 =


−1/2
−1/2
1/2
1/2



15/19



Example

r22 = |q̃2| = 2

q2 =
1

r22
q̃2 =


1/2
1/2
1/2
1/2


Compute r13 = qT1 a3 = 3 and r23 = qT2 a3 = 8
Compute

q̃3 = a3 − r13q1 − r23q2 =


−2
−2
2
2



Normalize:

r33 = |q̃3| = 4 q3 =
1

r33
q̃3 =


−1/2
−1/2
1/2
1/2



15/19



Example

r22 = |q̃2| = 2

q2 =
1

r22
q̃2 =


1/2
1/2
1/2
1/2


Compute r13 = qT1 a3 = 3 and r23 = qT2 a3 = 8
Compute

q̃3 = a3 − r13q1 − r23q2 =


−2
−2
2
2


Normalize:

r33 = |q̃3| = 4 q3 =
1

r33
q̃3 =


−1/2
−1/2
1/2
1/2


15/19



Example


−1 −1 1
1 3 3
−1 −1 5
1 3 7

 =


−1/2 1/2 −1/2
1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 1/2 1/2


2 4 2
0 2 8
0 0 4



=

q1 q2 . . . qn



r11 r12 · · · r1n

r22
. . . ...

rnn


= QR

16/19



Modified Gram-Schmidt

We define:
proju (v) =

〈v,u〉
〈u,u〉

u

As mentioned Gram-Schmidt is numerically unstable:

uk = vk− proju1
(vk)− proju2

(vk)− · · ·− projuk−1
(vk),

However, it can be stabilized with a small modification:

u
(1)
k = vk − proju1

(vk),

u
(2)
k = u

(1)
k − proju2

(u
(1)
k ),

...

u
(k−2)
k = u

(k−3)
k − projuk−2

(u
(k−3)
k ),

u
(k−1)
k = u

(k−2)
k − projuk−1

(u
(k−2)
k ).

17/19



Modified Gram-Schmidt

We define:
proju (v) =

〈v,u〉
〈u,u〉

u

As mentioned Gram-Schmidt is numerically unstable:

uk = vk− proju1
(vk)− proju2

(vk)− · · ·− projuk−1
(vk),

However, it can be stabilized with a small modification:

u
(1)
k = vk − proju1

(vk),

u
(2)
k = u

(1)
k − proju2

(u
(1)
k ),

...

u
(k−2)
k = u

(k−3)
k − projuk−2

(u
(k−3)
k ),

u
(k−1)
k = u

(k−2)
k − projuk−1

(u
(k−2)
k ).

17/19



Modified Gram-Schmidt

Algorithm 2 Modified Gram-Schmidt
1: for i = 1 to n do
2: vi = ai
3: end for
4: for i = 1 to n do
5: rii = |vi|2
6: qi = vi/rii
7: for j = i+ 1 to n do
8: rij = q∗i vj
9: vj = vj − rijqi

10: end for
11: end for

18/19



Modified Gram Schmidt

Even though on paper, the modified Gram-Schmidt should
give identical results as Classical Gram-Schmidt, in
practice it is wildly different.

Modified Gram-Schmidt is stable and is routinely used in
various software.

19/19



Modified Gram Schmidt

Even though on paper, the modified Gram-Schmidt should
give identical results as Classical Gram-Schmidt, in
practice it is wildly different.
Modified Gram-Schmidt is stable and is routinely used in
various software.

19/19


